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1  | INTRODUC TION

Heart failure (HF) is a global pandemic heart disease characterized 
by an inadequate systemic perfusion to meet the body's metabolic 
demands. It is estimated to affect approximately 26 million peo-
ple worldwide and results in a heavy burden on the economy and 

healthcare system.1 Moreover, the prevalence of HF is expected 
to increase with population growth and ageing.2 HF is a complex 
disease influenced by environmental and genetic factors. A wide 
range of conditions can lead to HF, such as hereditary defects, car-
diovascular diseases and systemic diseases, which indicates molec-
ular commonalities between HF resulting from different aetiologies. 
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Abstract
Heart failure (HF) is the end stage of most heart disease cases and can be initiated 
from multiple aetiologies. However, whether the molecular basis of HF has a com-
monality between different aetiologies has not been elucidated. To address this lack, 
we performed a three-tiered analysis by integrating transcriptional data and path-
way information to explore the commonalities of HF from different aetiologies. First, 
through differential expression analysis, we obtained 111 genes that were frequently 
differentially expressed in HF from 11 different aetiologies. Several genes, such as 
NPPA and NPPB, are early and accurate biomarkers for HF. We also provided candi-
dates for further experimental verification, such as SERPINA3 and STAT4. Then, using 
gene set enrichment analysis, we successfully identified 19 frequently dysregulated 
pathways. In particular, we found that pathways related to immune system signal-
ling, the extracellular matrix and metabolism were critical in the development of 
HF. Finally, we successfully acquired 241 regulatory relationships between 64 tran-
scriptional factors (TFs) and 17 frequently dysregulated pathways by integrating a 
regulatory network, and some of the identified TFs have already been proven to play 
important roles in HF. Taken together, the three-tiered analysis of HF provided a 
systems biology perspective on HF and emphasized the molecular commonality of 
HF from different aetiologies.
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Thus, exploring the commonalities will help achieve better under-
standing of the aetiology of HF.

The rapid development of high-throughput ‘omics’ technologies 
(such as DNA microarrays and next-generation sequencing) has resulted 
in the increasing availability of transcriptional data.3 The availability of 
these data for HF provides a good opportunity to employ computa-
tional systems biology approaches to advance our understanding of 
the mechanisms underlying the development of HF.4,5 Studies based 
on transcriptional and interactome data have identified 60 common 
functional modules related to HF6 and analysed the differences in the 
pathogenesis of HF arising from different aetiologies.7 By examining the 
expression profiling of miRNAs in failing human hearts, Zhu et al iden-
tified miR-340 as a key miRNA contributing to the progression of HF.8 
By integrating miRNA-target interactions and differentially expressed 
genes/lncRNAs, a recent study investigated the function of lnRNAs in 
HF and identified some lncRNAs that were verified to show a strong 
diagnostic power for HF.9 Although some studies have been carried out 
to decipher the molecular mechanisms of HF based on transcriptional 
data, a systematic research study that comparatively analyses HF from 
different aetiologies through integration of vastly available omics data 
and curated pathways has not been performed.

To address this issue, we perform a three-tiered data analysis 
(Figure 1). At the gene level, we globally analysed the gene expres-
sion of HF from 11 different aetiologies. At the pathway level, we 
comparatively analysed the expression of 610 curated pathways and 
identified 19 frequently dysregulated pathways in HF from 11 dif-
ferent aetiologies. Finally, by integrating the regulatory network, we 
identified several transcriptional factors (TFs) regulating the expres-
sion of the 19 frequently dysregulated pathways. Taken together, 
our work may provide new insights to better understand HF from 
different aetiologies.

2  | MATERIAL S AND METHODS

2.1 | Overview of the data analysis procedure

To understand the molecular commonalities of HF from different 
aetiologies, we performed a three-tiered data analysis (Figure 1). 

First, we started the analysis at the gene level, in which differen-
tially expressed genes (DEGs) were inferred for each disease. Then, 
we extended our analysis to the pathway level, where we identified 
frequently dysregulated pathways across HF from different aetiolo-
gies. Finally, by integrating the regulatory network, we identified TFs 
regulating the expression of the frequently dysregulated pathways.

2.2 | Data collection and pre-processing

Transcriptional data related to HF resulting from 11 different aeti-
ologies were collected from the GEO (Gene Expression Omnibus) 
database.10 Normalized data were directly downloaded from the 
GEO database. Probe sets were mapped to their corresponding 
gene symbol according to the annotation files from GEO, and rep-
licated probes of the same gene were averaged. Curated pathways 
were gathered from the KEGG pathway,11 Reactome pathways,12 
BioCarta pathways, Pathway Interaction Database,13 Sigma-Aldrich 
gene sets, Signal Transduction KE gene sets, Signaling Gateway gene 
sets and SuperArray gene sets from the molecular signatures data-
base (MSigDB, v6.1).14 The curated pathways were downloaded in 
GMT format. Of the available pathways, we used those from C2:CP 
(canonical pathways). After excluding pathways that were too large 
or too small (>300 genes or <5 genes, respectively) and removing 
overlapping pathways (overlap ratio > 0.8), 610 pathways were kept 
for further analyses.

2.3 | Differential expression analysis

DEGs between disease samples and the corresponding control 
samples were inferred using the function RankProducts in the 
BioConductor package RankProd.15 For each disease, the fold 
changes (FCs) of genes between the disease and control samples 
were first translated to the ranks of genes. Then, the combined 
rank of each gene from multiple comparisons was defined as the 
rank product. Independent permutated expression data were used 
to calculate the null density of the rank product and to determine 
the p-value and the percentage of false-positive predictions (pfp) 

F I G U R E  1   Overview of the workflow of the three-tiered data analysis. First, we collected HF-related transcriptional data from the GEO 
database, regulatory network data from RegNetwork and HTRIdb, and curated pathways from MSigDB. Then, we performed three-tiered 
data analysis: gene-centric differential expression analysis, pathway-centric enrichment analysis and network-centric regulatory analysis
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associated with each gene. Finally, genes with pfp values less than 
0.05 were defined as differentially expressed.

2.4 | Machine learning analysis

Random forest (RF) classification models were built using the ‘ran-
domForest’ package (https://cran.r-proje ct.org/web/packa ges/
rando mFore st/) in R with genes (features) in columns and samples in 
rows. We utilized a 10-fold cross-validation procedure to assess the 
performance of the classification models. Samples were randomly 
partitioned into 10 parts with approximately equal number of sam-
ples. Nine parts were used to train the RF classifier, and the remain-
ing one part was used to test the performance. The value of the area 
under the curve (AUC) from the receiver operating characteristic 
(ROC) curve was used to assess the prediction accuracy of the RF 
model. The higher AUC value, which ranges from 0 to 1, indicates 
better prediction performance. After all samples have been used as 
the testing set, the predicted values were imported into the R pack-
age PRROC to visualize the ROC curves.16

2.5 | Gene ontology enrichment analysis

Gene ontology (GO) enrichment analysis for DEGs was performed 
with BiNGO (version 3.03), a plugin in Cytoscape. Using the whole 
annotation of human genes as the reference set, GO terms with 
Benjamini-Hochberg (BH)–adjusted P-values less than 0.05 were ex-
tracted as significantly enriched.

2.6 | Gene set enrichment analysis

The pre-ranked gene set enrichment analysis (GSEA) tool17 [GSEA 
PreRanked (1000 permutations, minimum term size of 5, maximum 
term size of 300)] was used to determine whether the curated 
pathways exhibited statistically significant, concordant difference 
between HF and normal tissue samples. Briefly, genes were first 
ranked based on their FCs between disease samples and the cor-
responding normal samples. Then, ranked genes were used as the 
input for GSEA PreRanked. Finally, curated pathways with P-values 
less than 0.05 were identified as significant.

2.7 | TF-pathway regulation analysis

To identify TFs regulating the dysregulated pathway, we first ob-
tained TF-target regulatory relationships from two databases, 
RegNetwork18 and HTRIdb.19 HTRIdb is an open access database 
that stores experimentally verified human transcriptional regulation 
interactions. RegNetwork integrates curated regulatory interactions 
among transcription factors, microRNAs (miRNAs) and target genes 
from various databases and potential regulatory relationships based TA
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on transcription factor binding sites. Then, for each TF and dysregu-
lated pathway, Fisher's exact test was used to test the enrichment of 
TF targets in the dysregulated pathway, and a P-value was obtained. 
We also calculated the proportion of TF targets in the pathway and 
obtained a ratio. Finally, the TF was predicted to regulate the dys-
regulated pathways when the BH-corrected P-value was less than 
0.05 and the ratio was larger than 0.2.

3  | RESULTS

3.1 | Overview of gene expression in HF from 
different aetiologies

To understand how genes are expressed during HF, we collected 
505 samples from 11 microarray studies measuring gene ex-
pression during HF from 11 different aetiologies from the GEO 
database10 (Table 1, Table S1). Among the 505 collected sam-
ples, 414 samples detected gene expression in patients with HF, 
and the remaining 91 samples were from controls. The DEGs 
between the disease samples and their corresponding control 
samples were inferred using the RankProd package, which was 
developed from the rank product method.15 Rank product is a 
nonparametric statistical method for identifying DEGs (up-regu-
lated or down-regulated) based on the estimated pfp. By keeping 
genes with a pfp of less than 0.05, we obtained 6685 DEGs that 
were differentially expressed in at least one of the 25 compari-
sons (Table S2; see Materials and Methods section for details). 
As shown in Figure 2, only approximately 3.6% (242/6685) of 
the DEGs were differentially expressed in more than 12 com-
parisons. This indicated that only a small fraction of DEGs were 
frequently differentially expressed during the progression of HF 
from different aetiologies.

3.2 | Identification of a common gene expression 
signature of HFs from different aetiologies

To identify the genes that were frequently differentially expressed 
(named frequently differentially expressed genes, FDEGs) during HF 
from different aetiologies, we selected genes that were differen-
tially expressed in more than 60% (15/25) of comparisons and ob-
tained 111 such genes (Table S2). Approximately 60% (67/111) of 
FDEGs were classified as up-regulated since these genes were gen-
erally more up-regulated in all comparisons, whereas the remaining 
44 genes were classified as down-regulated. Next, we investigated 
whether the two conditions (HF and normal control) could be suc-
cessfully discriminated using the FDEGs by employing a RF classifier. 
By removing 16 FDEGs which were not detected in all 505 samples, 
the expression of 95 FDEGs was used as the feature. The AUC value 
from the ROC curve was used to evaluate the prediction accuracy 
of the RF classifier, and we found that FDEGs could classify HF and 
normal control samples with AUC 0.968 (Figure S1; see the Materials 
and Methods section for detail). However, when we randomly se-
lected the equal number of genes (95) from the gene sets detected 
on the microarray to construct the RF classifier and repeated this 
process 1000 times, the average AUC was only 0.912, which was sig-
nificantly lower than the AUC value of RF classifier constructed from 
the 95 FDEGs (Student's t test, P-value <2.2 × 10−16). This result 
further confirmed the presence of multiple FDEGs among HF from 
different aetiologies was due to the shared molecular mechanisms.

GO enrichment analysis showed that up-regulated and down-reg-
ulated FDEGs were enriched in different biological processes (BP) 
(Table S3, Figure 3A). The top 3 enriched GO BP terms for up-reg-
ulated FDEGs were ‘enzyme-linked receptor protein signalling 
pathway’ [hypergeometric test, BH-corrected P = 3.77 × 10−4], 
‘skeletal system development’ (hypergeometric test, BH-corrected 
P = 3.77 × 10−4) and ‘blood circulation’ (hypergeometric test, 

F I G U R E  2   A total of 6,685 DEGs were 
shared between different numbers of 
disease conditions. The x-axis shows the 
number of comparisons, and the y-axis 
represents the number of DEGs. The 
number above each histogram refers to 
the number of DEGs that were shared 
under the given number of comparisons



     |  9089JIANG et Al.

BH-corrected P = 1.54 × 10−3). For down-regulated FDEGs, 
‘response to wounding’ (hypergeometric test, BH-corrected 
P = 8.72 × 10−14), ‘inflammatory response’ (hypergeometric test, BH-
corrected P = 2.10 × 10−12) and ‘defence response’ (hypergeometric 
test, BH-corrected P = 1.15 × 10−10) were the top 3 enriched GO 
terms. Table 2 lists the top 20 FDEGs, which were most frequently 
differentially expressed in HF from 11 different aetiologies, includ-
ing 12 up-regulated genes and 8 down-regulated genes.

For the top 20 FDEGs, six genes, namely natriuretic peptide A 
(NPPA), natriuretic peptide B (NPPB), Ficolin 3 (FCN3), phospholipase 
A2 group IIA (PLA2G2A), S100 calcium binding protein A8 (S100A8) 
and frizzled-related protein (FRZB), were already shown to play 
important roles in HF or cardiovascular disease. NPPA, NPPB and 
FRZB are recognized as biomarkers for HF,20,21 and PLA2G2A is a 
biomarker for cardiovascular disease.22 FCN3 is a recognition mole-
cule in the lectin pathway, and the decreased concentration of FCN3 
in serum has already been associated with the pathophysiology of 
HF.23 The other FDEGs (such as STAT4 and SERPINA3) with unde-
fined roles in HF were good candidates for further experimental ver-
ification as these genes were frequently differentially expressed in 
HF from different aetiologies.

3.3 | Suppressed immune responses in HF

GO annotation analysis showed that the GO term ‘defence re-
sponse’ was significantly enriched in down-regulated FDEGs. We 
wondered whether FDEGs were significantly enriched in defence 
genes. Thus, we first obtained 2209 genes that were involved in the 
immune response from two databases, namely InnateDB24 and the 
Immunogenetic Related Information Source (IRIS).25 After removing 

genes without expression values from 2209 immune response genes, 
2056 genes were kept for further analysis. Statistical analysis 
showed that FDEGs were significantly enriched in these immune-re-
lated genes (Fisher's exact test, P = 1.01 × 10−06; Figure 3B). Further 
investigation showed that immune-related FDEGs were significantly 
enriched in down-regulated FDEGs (Table S2, Fisher's exact test, 
P = 1.04 × 10−08) rather than in up-regulated FDEGs (Fisher's exact 
test, P = 0.13; Figure 3C). Moreover, the top 5 FDEGs (ie SERPINA3, 
FCN3, NPPA, CCL2 and PLA2G2A) were all involved in the immune 
system. All of these 5 genes except NPPA were down-regulated in 
the majority of conditions (Table 2). Briefly, these results indicated 
that immune systems were suppressed in the progression of HF.

3.4 | Gene set enrichment analysis reveals 
dysregulated biological pathways in HF

To identify the biological pathways that were frequently influenced 
by HF from different aetiologies, we obtained 1329 curated pathways 
from the MSigDB database.14 After excluding pathways that were too 
large or too small, overlapping pathways and disease-related path-
ways,26 610 pathways were kept for further analysis (see Materials and 
Methods section). Pathway enrichment analysis of these curated path-
ways performed with GSEA helped us to obtain a P-value per pathway 
per condition. GSEA is a computational method that identifies gene 
sets (eg biological pathways) that show a statistically significant, con-
cordant difference between two biological states.17 Based on GSEA, 
we found that 610 pathways were all dysregulated in at least one of the 
414 disease samples (Table S4). A pathway was defined as a dysregu-
lated pathway in HF from a given aetiology if it was identified as signifi-
cant by GSEA in more than half of the disease samples from the given 

F I G U R E  3   Annotation results for FDEGs. A, Top 10 annotation results for 67 up-regulated FDEGs (red bar) and 44 down-regulated 
FDEGs (blue bar). Annotation analysis was performed with BiNGO (Version 3.03). B, Three-way Venn diagram representing the overlap 
among 2209 immune response genes, 6685 DEGs and 111 FDEGs. C, Three-way Venn diagram representing the overlap among 2209 
immune response genes, 44 up-regulated FDEGs and 67 down-regulated FDEGs
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aetiology. Figure 4 shows the distribution of the dysregulated path-
ways in HF from 11 different aetiologies. On average, approximately 
102 dysregulated pathways were identified in HF from each aetiology. 
HF from HCM resulted in the maximum number (203) of dysregulated 
pathways, whereas HF from DCM resulted in the minimum number 
(37) of dysregulated pathways. This showed that the number of dys-
regulated pathways changed among the different aetiologies of HF.

To identify the pathways that were frequently dysregulated in HF 
from different aetiologies, we selected pathways that were dysregu-
lated in more than 60% of the HF samples27 and get 19 frequently dys-
regulated pathways in Table 3. As shown in Figure 5, HF from different 
aetiologies resulted in the consistent up-regulation or down-regulation 
of the majority of frequently dysregulated pathways. These results 
demonstrated that HF from different aetiologies was associated with 
some common pathways. The top three significant pathways were the 
‘ensemble of genes encoding core extracellular matrix including ECM 
glycoproteins, collagens and proteoglycans’, ‘IL6-mediated signalling 
events’ and the MAPK signalling pathway’ (Table 3). The pathway of 
the ‘ensemble of genes encoding core extracellular matrix including 

ECM glycoproteins, collagens and proteoglycans’ was up-regulated 
in more than 80% (336/414) of the disease samples. The pathways 
‘MAPK signalling pathway’ and ‘IL6-mediated signalling events’ were 
down-regulated in 69% (286/414) and 66% (273/414) of disease sam-
ples, respectively. All three pathways played significant roles in cardiac 
remodelling during various cardiac diseases, such as HF.28-31 When we 
look deeply into the 19 frequently dysregulated pathways, we found 
eight pathways involved in the immune system, namely ‘IL6-mediated 
signalling events’, ‘MAPK signalling pathway’, ‘AP-1 transcription fac-
tor network’, ‘endogenous TLR signalling’, ‘NOD-like receptor signal-
ling pathway’, ‘PDGFR-beta signalling pathway’, ‘cytokine signalling in 
immune system’ and ‘IL 6 signalling pathway’. Meanwhile, two of the 
19 frequently dysregulated pathways were related to the extracellular 
matrix, namely the ‘ensemble of genes encoding core extracellular ma-
trix including ECM glycoproteins, collagens and proteoglycans’ and ‘ex-
tracellular matrix organization’. Moreover, five pathways, that is ‘genes 
involved in translation’, ‘genes involved in the citric acid (TCA) cycle 
and respiratory electron transport’, ‘oxidative phosphorylation’, ‘valine, 
leucine and isoleucine degradation’ and ‘genes involved in metabolism 
of mRNA’, were involved in metabolism. These results suggested that 
pathways related to immune system signalling, the extracellular matrix 
and metabolism might be critical in the development of HF.

3.5 | Potential TFs regulating frequently 
dysregulated pathways

To gain an in-depth understanding of how TFs regulated the ex-
pression of the 19 frequently dysregulated pathways, we collected 
179 785 regulatory interactions from RegNetwork and HTRIdb, 
which comprised 1438 TFs and 18 396 target genes. Then, the regu-
latory relationships between the TFs and pathways were tested using 
Fisher's exact test based on 179 785 regulatory interactions (see 
Materials and Methods section for details). Given a BH-corrected 
P-value threshold of 0.05 and a ratio cut-off of 0.2, we obtained 
241 regulatory relationships between 64 TFs and 17 frequently 
dysregulated pathways (Table S5, Figure 6). On average, each path-
way was predicted to be regulated by approximately 14 TFs, and 
each TF regulated four pathways. The top 10 TFs with the largest 
number of degree were ETS Proto-Oncogene 1 (ETS1), MYC, Specific 
Protein 1 (SP1), Early Growth Response 1 (EGR1), Nuclear Factor Kappa 
B Subunit 1 (NFKB1), Yin And Yang 1 (YY1), (Androgen Receptor) AR, 
Tumor Protein p53 (TP53), (Transcription Factor AP-2 Alpha) TFAP2A 
and Jun Proto-Oncogene (JUN), and their detail information is listed 
in Table S6. These genes may serve as a vital role in regulating these 
dysregulated pathways and potentially affect the initiation and pro-
gression of HF.

4  | DISCUSSION

With the development of high-throughput ‘omics’ technolo-
gies, large-scale transcriptional data of HF are available in public 

TA B L E  2   The top 20 FDEGs

Gene symbol Full name #Up #Down

SERPINA3 Serpin family A member 3 0 25

FCN3 Ficolin 3 0 25

NPPA Natriuretic peptide A 24 0

CCL2 C-C motif chemokine ligand 2 2 22

PLA2G2A Phospholipase A2 group IIA 1 23

NPPB Natriuretic peptide B 17 6

MYH6 Myosin heavy chain 6 0 23

OGN Osteoglycin 22 0

USP9Y Ubiquitin-specific peptidase 9 18 4

EIF1AY Eukaryotic translation initiation 
factor 1A, Y-linked

17 5

RPS4Y1 Ribosomal protein S4, Y-linked 
1

16 6

S100A8 S100 calcium binding protein 
A8

0 22

SFRP4 Secreted frizzled-related protein 
4

21 0

ASPN Asporin 21 0

FRZB Frizzled-related protein 21 0

STAT4 Signal transducer and activator 
of transcription 4

20 1

ANKRD2 Ankyrin repeat domain 2 2 19

RARRES1 Retinoic acid receptor 
responder 1

0 21

THBS4 Thrombospondin 4 20 0

NAP1L3 Nucleosome assembly protein 
1 like 3

20 0

Note: ‘#Up’ and ‘#Down’ represent the number of disease conditions in 
which the corresponding genes are up-regulated and down-regulated, 
respectively. Genes with confirmed roles in HF are marked in bold.
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databases, providing a good opportunity to analyse HF by integrat-
ing these data. Although a few studies were carried out to decipher 
the molecular mechanisms of HF from different aetiologies,6,7 these 

mechanisms have not previously been analysed by integrating large-
scale transcriptional profiles and pathway information. More impor-
tantly, the molecular commonality of HF from different aetiologies 

F I G U R E  4   The distribution of 
dysregulated pathways across HF from 11 
different aetiologies. The number above 
each histogram refers to the number of 
dysregulated pathways in HF from the 
corresponding aetiology

TA B L E  3   The 19 frequently dysregulated pathways in HF from 11 different aetiologies

Pathway ID Pathway name #Significant #Up #Down

NABA_CORE_MATRISOME Ensemble of genes encoding core extracellular matrix 
including ECM glycoproteins, collagens and proteoglycans

372 336 36

PID_IL6_7_PATHWAY IL6-mediated signalling events 306 33 273

KEGG_MAPK_SIGNALING_PATHWAY MAPK signalling pathway 297 11 286

PID_AP1_PATHWAY AP-1 transcription factor network 296 94 202

REACTOME_TRANSLATION Genes involved in Translation 294 50 244

PID_TOLL_ENDOGENOUS_PATHWAY Endogenous TLR signalling 289 20 269

KEGG_NOD_LIKE_RECEPTOR_
SIGNALING_PATHWAY

NOD-like receptor signalling pathway 283 21 262

REACTOME_TCA_CYCLE_AND_
RESPIRATORY_ELECTRON_TRANSPORT

Genes involved in the citric acid (TCA) cycle and respiratory 
electron transport.

279 205 74

PID_PDGFRB_PATHWAY PDGFR-beta signalling pathway 274 38 236

REACTOME_METABOLISM_OF_MRNA Genes involved in metabolism of mRNA 264 55 209

REACTOME_DIABETES_PATHWAYS Genes involved in diabetes pathways 260 31 229

KEGG_OXIDATIVE_PHOSPHORYLATION Oxidative phosphorylation 259 192 67

KEGG_SPLICEOSOME Spliceosome 253 63 190

REACTOME_SIGNALING_BY_TGF_BETA_
RECEPTOR_COMPLEX

Signalling by TGF-beta receptor complex 252 19 233

KEGG_VALINE_LEUCINE_AND_
ISOLEUCINE_DEGRADATION

Valine, leucine and isoleucine degradation 250 208 42

BIOCARTA_IL6_PATHWAY IL 6 signalling pathway 250 22 228

REACTOME_CYTOKINE_SIGNALING_IN_
IMMUNE_SYSTEM

Cytokine signalling in immune system 249 83 166

REACTOME_PROTEIN_FOLDING Genes involved in protein folding 249 32 217

REACTOME_EXTRACELLULAR_MATRIX_
ORGANIZATION

Extracellular matrix organization 249 202 47

Note: ‘#Significant’, ‘#Up’ and ‘#Down’ represent the number of disease samples in which the corresponding pathway was differentially expressed, 
up-regulated and down-regulated, respectively.
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was unclear. In this study, we integrated transcriptional profiles and 
pathway information to investigate the molecular commonalities of 
HF from 11 different aetiologies.

Some previous analyses explored HF by using transcriptional 
data and interaction networks.6,7,32-36 However, using small-scale 
transcriptional data and interaction networks with high positive 
rates may lead to constrained results. In this work, we performed a 
three-tiered transcriptional data analysis by integrating large-scale 
transcriptional data and curated pathways, which can produce more 
solid results. The advantages of integrating curated pathways in-
clude reducing the complexity by grouping thousands of DEGs into 
just several hundred pathways and increasing the explanatory power 
by identifying impacted curated pathways with specific functions.

Our approach not only successfully uncovered several key genes 
(such as NPPA, NPPB and FRZB) already involved in HF but also pro-
vided new candidate genes involved in HF for further experimen-
tal verification. The signal transducer and activator of transcription 
(STAT) family contains seven members (STAT1, STAT2, STAT3, STAT4, 

STAT5, STAT5B and STAT6), and all genes have been reported to 
be expressed in the heart.37 Five of the seven STAT genes (STAT1, 
STAT2, STAT3, STAT5 and STAT6) were reported to play roles in reg-
ulating the progression of HF.38,39 The role of STAT4 in HF has not 
been reported, but it was up-regulated in 20 HF conditions in this 
analysis. Moreover, STAT4 was predicted to regulate two dysregu-
lated pathways (Figure 6). Considering the importance of STAT genes 
in HF and the consistent up-regulation of STAT4 in HF from differ-
ent aetiologies, it was reasonable to suggest that STAT4 may play 
an important role in HF. SERPINA3, a protease inhibitor, was found 
to be down-regulated in the failing myocardium from patients with 
DCM,40 and the up-regulation of SERPINA3 is associated with poor 
survival in patients with HF.41 In this work, a meta-analysis found 
that SERPINA3 was down-regulated in all HF conditions, which fur-
ther confirmed the importance of SERPINA3 in HF. It is possible that 
SERPINA3 might become a novel diagnostic and therapeutic target 
for HF. Lucas et al found that gene osteoglycin (OGN) is overex-
pressed in patients with HF and proposed that OGN can act as a 

F I G U R E  5   The expression pattern of 610 curated pathways in HF from different aetiologies. Each node represents a pathway, and 19 
frequently dysregulated pathways are coloured in red. The x-axis and y-axis are Mup + Ndown and Mup-Ndown, respectively, where Mup and 
Ndown represent the proportion of disease samples in which a given pathway is significantly up-regulated and down-regulated, respectively. 
The dashed lines demarcate the region where the absolute value of Nup − Ndown is < 50% of Nup + Ndown and are generated for visualization 
purposes only
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potential biomarker for ischaemic HF.42 In this work, OGN is not only 
overexpressed in ischaemic HF but also overexpressed in non-isch-
aemic HF. Thus, the role of OGN in non-ischaemic HF needs further 
investigation.

Several frequently dysregulated pathways identified from GSEA, 
for example the ‘MAPK signalling pathway’, ‘valine, leucine and isole-
ucine degradation’ and ‘ensemble of genes encoding core extracellu-
lar matrix including ECM glycoproteins, collagens and proteoglycans’, 
have already been implicated in HF. The MAPK signalling pathway 
consists of a well-studied family of serine/threonine proteins that 
include the extracellular signal-regulated protein kinases (ERKs), the 

c-Jun N-terminal kinases (JNKs) and the p38 family of kinases. ERKs,43 
JNKs44 and p38 MAP kinase45 are all involved in HF. Leucine, isoleu-
cine and valine belonging to the branched-chain amino acids (BCAA) 
represent the most abundant group of essential amino acids that can-
not be synthesized de novo.46 BCAA catabolic deficiency was pro-
posed as a novel metabolic feature in HF with a broad impact on the 
progression of pathological remodelling and dysfunction.47 Multiple 
studies have already shown HF-related changes in cardiac ECM, 
including the accumulation in glycoproteins, collagens and proteo-
glycans.48 We noticed that a disease pathway ‘genes involved in di-
abetes pathways’ was also identified as a frequently down-regulated 

F I G U R E  6   The 241 regulatory relationships between 64 TFs and 17 frequently dysregulated pathways. Circle and triangle nodes 
represent frequently dysregulated pathways and TFs, respectively. TF-pathway regulatory relationships were predicted using Fisher's exact 
test
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pathway (Table 3). HF is closely related to diabetes: patients with HF 
are at higher risk of developing diabetes.49 The enrichment of canon-
ical pathway ‘genes involved in diabetes pathways’ in HF further con-
firmed the close connection between HF and diabetes. In addition, 
our analysis also discovered several biological pathways with potential 
roles in HF from different aetiologies, for example the ‘PDGFR-beta 
signalling pathway’. Chintalgattu et al found that PDGFR-beta knock-
out mice exposed to load-induced stress resulted in HF and showed 
that cardiomyocyte PDGFR-β signalling plays a vital role in stress-in-
duced cardiac angiogenesis.50 It is reasonable to speculate that the 
PDGFR-beta signalling pathway may regulate angiogenesis in the 
heart, which substantially contributes to HF through several different 
mechanisms.

It has been long recognized that immune system activation 
or dysregulation plays a significant role in the development and 
progression of HF.51 In this work, both gene-centric differential 
expression analysis and pathway-centric enrichment analysis re-
vealed that immune system-related genes and pathways were sig-
nificantly changed in HF from 11 different aetiologies. Annotation 
analysis showed that down-regulated FDEGs were significantly 
enriched in the GO terms ‘inflammatory response’ and ‘defence 
response’. Moreover, the top 5 FDEGs, namely SERPINA3, FCN3, 
NPPA, CCL2 and PLA2G2A, were all involved in the immune system 
(Table 2). GSEA identified several pathways frequently dysregu-
lated in HF from 11 aetiologies, and approximately 42% (8/19) of 
the frequently dysregulated pathways were involved in the im-
mune system (Table 3). These results further confirmed the im-
portance of the immune system in HFs and that their role in HF 
was independent of the aetiologies of HF.

Generally, TFs play key roles in regulating the expression of en-
coding genes and tend to regulate genes within the same pathways. 
In this study, we also predicted 64 potential TFs regulating 17 dys-
regulating pathways. Some predicted TFs, such as TP53 and NFKB1, 
have already been reported involving in the progression of HF TP53 
was proven to be a master regulator of the cardiac transcriptome 
and a key molecule, which triggered the development of HF.52,53 
NFKB is a pleiotropic TF involved in different signalling pathways 
and strongly implicated in the development of cardiac remodelling, 
hypertrophy and HF.54-56 NFKB1 belongs to the NFKB TF family, and 
it has been reported that NFKB1 polymorphism is associated with 
the heart function in patients with HF from different aetiologies.57 
The other predicted TFs with unknown roles in HF are good candi-
dates for further experimental verification, such as ETS1 and EGR1. 
It is known that ETS1 is important in heart development. Moreover, a 
previous study found that patients with congenital heart disease had 
a de novo frameshift mutation in ETS1.58 In the present study, we 
found that ETS1 is predicted to regulate the expression of fourteen 
dysregulating pathways. We speculated that ETS1 participated in the 
progression of HF by regulating the expression of these dysregulated 
pathways. EGR1 is an early-response TF that can be rapidly induced 
by various environmental stimuli. It was predicted to regulate 8 dys-
regulated pathways and identified as a FDEG (Table S2). In the pre-
vious studies, EGR1 was found to involve in multiple cardiovascular 

pathobiology including cardiac hypertrophy, atherosclerosis, isch-
aemic pathology and angiogenesis.59 Furthermore, the expression 
level of EGR1 can discriminate between chronic HF patients and 
control patients.59 Therefore, we speculated that ETS1 might be a 
potential biomarker of HF.

Finally, we recognized some limitations in this work. Our results 
are based on currently available data and should be interpreted with 
caution. First, our analyses are limited by the availability of pathway 
and gene expression information. Therefore, some genes with potential 
roles in HF are ignored in this work, as these genes are not detected on 
the microarray or included in the curated pathways. Second, the anal-
ysis of transcriptomes is often not enough to reflect the level of path-
way activity, this weaken the conclusions that can be drawn from our 
results. Third, further molecular biological experiments are needed to 
confirm the function of these key genes and TFs, and how they involve 
in the progression of HF.

In summary, we performed a three-tiered transcriptional data 
analysis to explore the molecular commonalities of HF from different 
aetiologies. Our analyses indicate that HF from different aetiologies is 
associated with 111 FDEGs and 19 frequently dysregulated pathways. 
It is hoped that our current analyses can provide new insight to un-
derstand the molecular mechanisms of HF from different aetiologies.
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