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Thyroid hormone (TH) is critical for adapting living organisms to environmental stress. Plasma circulating tri-iodothyronine (T3)
levels drop in most disease states and are associated with increased oxidative stress. In this context, T3 levels in plasma appear to be
an independent determinant for the recovery of cardiac function after myocardial infarction in patients.Thyroid hormone receptor
𝛼1 (TR𝛼1) seems to be crucial in this response; TR𝛼1 accumulates to cell nucleus upon activation of stress induced growth kinase
signaling. Furthermore, overexpression of nuclear TR𝛼1 in cardiomyocytes can result in pathological or physiological growth (dual
action) in absence or presence of its ligand, respectively. Accordingly, inactivation of TR𝛼1 receptor prevents reactive hypertrophy
after myocardial infarction and results in heart failure with increased phospholamban (PLB) expression and marked activation
of p38MAPK. In line with this evidence, TH is shown to limit ischemia/reperfusion injury and convert pathologic to physiologic
growth after myocardial infarction via TR𝛼1 receptor. TR𝛼1 receptor may prove to be a novel pharmacological target for cardiac
repair/ regeneration therapies.

1. Introduction

Adaptation to the environmental oxygen variations was
an evolutionary challenge and allowed life to evolve in
earth. Transition from low to high oxygen environments
can increase oxidative stress and result in tissue dam-
age. However, living organisms evolved from aquatic to
terrestrial environments by developing mechanisms that
enabled adaptation to changes in environmental oxygen.
These mechanisms have been evolutionary conserved in
mammals allowing mammalian birth to oxygen rich envi-
ronment or implicated in freeze tolerance and arousal from
hibernation [1]. Understanding the molecular basis of the
adaptive responses of living organisms to stress may be of
physiological relevance in the therapy of diseases. In this
context, recent experimental and clinical evidence shows that
thyroid hormone (TH) may be critical in stress response
and low TH in diseased states is associated with increased
oxidative stress [2, 3]. With this evidence in mind, this
review highlights the role of thyroid hormone signaling and
particularly of thyroid hormone receptor alpha1 (TR𝛼1) in
cardiac recovery following myocardial injury.

2. Adaptation to Environmental Stress:
The Role of Thyroid Hormone (TH)

Amphibian metamorphosis is the most striking paradigm
of adaptation to oxygen rich environment. This biological
process is entirely dependent on TH. TH is low during
embryonic and early larva development and increases as
larva approaches metamorphosis. A similar developmental
TH secretion pattern is observed in most species and in
humans [4]. Furthermore, distinct changes in deiodinases
and thyroid hormone receptors (TRs) expression occur and
thus, a single hormone can coordinate responses among
different cell types and regulate the temporal sequence of
remodeling events during amphibian metamorphosis. More
importantly, TH can critically determine the amphibian
phenotype (low oxygen, aquatic versus high oxygen, and
terrestrial habitats). Thus, in salamanders, low TH results
in permanent aquatic habitats, delayed metamorphic timing,
and large body size, whereas high TH has opposite effects [4];
see Figure 1.

Environmental stress appears to cause changes in the
pattern of TH secretion similar to that observed in the early
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Figure 1: Critical levels of thyroid hormone (TH) induce metamorphosis in salamanders. Low TH can adapt salamander to low oxygen
aquatic environment by inducing growth with embryonic characteristics. Addition of TH allows adaptation to terrestrial life and completes
metamorphosis. Analogies seem to exist in mammals with TH to determine the phenotypic characteristics of the myocardium (pathological
versus physiological growth) after ischemic events. Evolutionary conserved mechanisms of adaptation may be the basis for cardiac repair.
(Permission by Johnson and Voss [4].)

embryonic stages.This response is likely to be part of an adap-
tive response of the living organism to environmental stress.
Thus, exposure of air breathing perch to water-born kerosene
resulted in low TH and unfavorable metabolic changes, while
the administration of TH reversed this response [5]. Along
this line, cold stunning in sea turtles resulted in undetectable
thyroid hormone levels and recovery induced by rewarming
was associated with restoration of TH levels [6]. Similarly,
in humans, TH levels decline after various stresses including
ischemia, infection, and organ failure, but the physiological
relevance of this response in regard to post-stress adaptation
remains largely unknown [7, 8].

3. TH Is Critical for the Recovery after
Myocardial Injury

Adecline in T3 levels occurswithin 48 hours(h) aftermyocar-
dial infarction (AMI) or 6–24 h after cardiac surgery [9, 10].
Low T3 syndrome is present in nearly 20% of patients with
AMI, despite primary percutaneous coronary intervention
(PCI). Low fT3 levels are associated with lower survival
rate particularly in patients with age less than 75 years [11],
indicating that TH may have a role in adapting the heart to
myocardial injury. In fact, a link of TH to cardiac recovery
after myocardial infarction has been recently established in
humans and in experimental studies.

In a series of patients with AMI and primary PCI, left
ventricular ejection fraction (LVEF%) 48 hours after the
index event was strongly correlated with T3 and not T4 levels
in plasma. Furthermore, at 6 months, recovery of cardiac
function was correlated with T3 plasma levels and T3 was
shown to be an independent determinant of LVEF% recovery
[12].

In accordance with this clinical evidence, acute T3
(and not T4) administration after ischemia/reperfusion in

isolated rat hearts resulted in significant improvement of
postischemic recovery of function [13, 14]. Furthermore,
in an experimental model of coronary ligation in mice,
cardiac function was significantly decreased and this was
associated with a marked decline in T3 levels in plasma. T3
replacement therapy significantly improved the recovery of
cardiac function [15, 16].

On the basis of these data, it appears that the active T3 and
not T4 is critical for the response to stress. In fact, T4 therapy
in patients with euthyroid syndrome due to severe illness was
not shown to be beneficial [17, 18].

4. TR𝛼1 Receptor and Its Physiologic Actions

T3, the active form of TH, exerts many of its actions through
its receptors (TRs): TR𝛼1, TR𝛼2, TR𝛽1, and TR𝛽2. TRs,
with the exception of TR𝛽2, are expressed in all tissues and
the pattern of expression varies in different types of tissues
[19]. TR𝛼1 is predominantly expressed in the myocardium
and regulates important genes related to cell differentiation
and growth, contractile function, pacemaker activity, and
conduction [20–22].

The importance of TH in organ maturation during
development and its implication in cell differentiation has
long been recognized.This unique action seems to be of phys-
iological relevance in stem cell biology and cancer [23, 24]. T3
can promote differentiation of human pluripotent stem cell
derived cardiomyocytes (hips-CM) [23] and glioma tumor
cell lines [24]. The implication of TR𝛼1 in cell differentiation
is shown in embryonic myoblast cultures (H9c2), which
is considered a suitable model to study cell differentiation.
Maturation of H9c2 is TH dependent process [25, 26]. TR𝛼1
expression is increased in parallel with the intracellular
T3 at the stage of cell differentiation and pharmacological
inactivation of TR𝛼1 significantly delays cardiac myoblast
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maturation [27]. Along this line, TR𝛼1 is shown to play
a critical role in pancreatic 𝛽-cell replication and in the
expansion of the 𝛽-cell mass during postnatal development
[28].

T3 can induce physiologic growth and this action involves
the activation of PI3 K/Akt/mTOR pathway. T3 regulates this
pathway by the interaction of the cytosol-localized TR𝛼1 with
the p85𝛼 subunit of PI3 K [29, 30].

TR𝛼1 appears to be required to repress basal expression of
𝛽-isoform of myosin heavy chain (𝛽-MHC) and T3 induced
𝛽-MHC repression [31]. Deletion of TR𝛼1 results in lower
levels of 𝛼-MHC and SERCA mRNA [32], whereas phos-
pholamban (PLB) expression is greater in the myocardium
of animals with mutated TR𝛼1 [33]. TR𝛼1 directly binds
at the PLB promoter region. T3 can trigger alterations in
covalent histone modifications at the PLB promoter which
are associated with gene silencing with lower histone H3
acetylation and histone H3 lysine 4 methylation [34]. In line
with this evidence, contractile dysfunction is a consistent
observation in all studies using animals with mutated or
deleted TR𝛼1 receptor [32, 33].

TH regulates the transcription of pacemaker channel
genes such asHCN2 andHCN4 and this action involves TR𝛼1
receptor [32]. Deletion of TR𝛼1 results in bradycardia [32, 35].
TR𝛼1 is also shown to bind to an element of rat connexin
43 promoter region which may be of physiological relevance
regarding electrical conduction [36].

TH can control glucose metabolism in the heart via
TR𝛼1 receptor. Thus, glucose utilization in the myocardium
is impaired in mice with mutated TR𝛼1 [37]. Furthermore,
pharmacological inhibition of TR𝛼1 in rats resulted in
increased glycogen content in the myocardium [38].

TR𝛼1 is the predominant TR isoform in mouse coronary
smooth muscle cells (SMCs) and seems to have a regulatory
role in the coronary artery contractile function. Coronary
SMCs from TR𝛼1 knock-out mice exhibit a significant
decrease in K+ channel activity. Furthermore, in those arter-
ies, vascular contraction is significantly enhanced [39].

Collectively, it appears that TR𝛼1 has a regulatory role in
cardiac homeostasis and thus, it is likely to be implicated in
the pathophysiology of cardiac disease. This hypothesis has
not, until recently, been explored.

5. TR𝛼1 and Response of
the Myocardium to Stress

The potential link of TH signaling to cardiac pathology
and particularly of TR𝛼1 receptor has been investigated in
several studies withmuch controversy surrounding this issue.
Initial observations showed that TR𝛼1 mRNA is suppressed
in left ventricles of patients with dilated cardiomyopathy
in comparison with donor hearts [40]. Accordingly, TR𝛼1
mRNA was found to be downregulated in the myocardium
of animals with ascending aortic constriction (TAC) [41, 42].
Furthermore, TR𝛼1 mRNA was found to be suppressed after
phenylephrine (PE, an alpha1-adrenergic agonist, which is a
stimulus for pathologic growth) administration in neonatal
cardiomyocytes [42]. Overexpression of TR𝛼1 was shown to

reverse PE and TAC induced hypertrophic phenotype [41,
42]. However, this was not a consistent result in all studies.
Overexpression of TR𝛼1 resulted in physiologic growth in
one study [42] and pathologic growth in another study [43].
Here it should be noted that, in all those studies, TR𝛼1 was
measured at mRNA level and not at protein level. TR𝛼1
protein expression was measured in subsequent studies in
cardiac specimens from patients with heart failure. TR𝛼1 was
found to be upregulated in one study [44] and downregulated
in another study [45]. To add to the controversy, TR𝛼1
was shown to be overexpressed [46] or downregulated [47]
in animal models of cardiac remodeling after myocardial
infarction. On the basis of this conflicting evidence, it is
conceivable that clear conclusions cannot be drawn regarding
potential role of TR𝛼1 receptor in stressed myocardium.

6. TR𝛼1: A Component of Stress Induced
Growth Signaling Pathways

Recent experimental studies have shed more light regarding
the role of TR𝛼1 in the response of the myocardium to stress
and seem to resolve the controversy. Thus, a distinct pattern
of TR𝛼1 expression is shown to occur in the myocardium
after acute myocardial infarction, indicating a potential link
of TR𝛼1 to reactive cardiac hypertrophy. TR𝛼1 (nuclear
part) was shown to be upregulated during the development
of compensatory pathological hypertrophy in parallel with
a greater activation of ERK and mTOR growth signaling.
Consequently, TR𝛼1 declines along with a marked reduction
in ERK and mTOR signaling activation on the transition
of pathological hypertrophy to congestive heart failure [48].
Studies in cultured cardiomyocytes further showed that TR𝛼1
receptor can be overexpressed in cell nucleus in response
to growth stimuli such as phenylephrine (PE) [27]. This
response was shown to be due to redistribution of TR𝛼1
from cytosol to nucleus. This process is regulated via ERK
andmTOR signaling. In those experiments, overexpression of
TR𝛼1 receptor was shown to be associated with pathological
growth (with dominant 𝛽-MHC expression) only in the
absence of TH in culture medium Figure 2. Furthermore,
inhibition of ERK andmTOR signaling abolished TR𝛼1 accu-
mulation in cell nucleus and prevented the development of
PE induced pathological growth; see Figure 2. This response
could be elicited by 𝛼1 adrenergic and not 𝛽2-adrenergic
stimulation (unpublished data) while treatment of neonatal
cells with inflammatory mediators, such as TNF-alpha, had
no effect on nuclear TR𝛼1 expression [49]. Collectively, these
data provide substantial evidence that stress induced accu-
mulation of TR𝛼1 in cell nucleus may be an important com-
ponent of the mechanisms involved in compensatory growth
response after myocardial infarction. This hypothesis has
recently been tested in studies in which debutyl-dronedarone
(DBD), a TR𝛼1 inhibitor, was administered after AMI inmice
[50]. DBD treatment was shown to reduce recovery of cardiac
function, prevent compensatory hypertrophy, increase PLB
expression (TR𝛼1 responsive gene), and result in marked
activation of p38 MAPK [51]. The latter may be of important
physiological relevance. Stress induced activation of p38
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Figure 2: Thyroid hormone (TH) determines the growth response
to stress. Stress induced (by PE, a growth stimulus) overexpression
of TR𝛼1 in neonatal cardiomyocytes resulted in pathologic growth
with dominant beta-MHC expression only in the absence of TH
in the cultured medium (PE-T3) (B). This response was abolished
after PD98059 administration (an ERK inhibitor) which prevents
PE induced TR𝛼1 accumulation in nucleus (PE-T3 + PD) (C). In the
presence of TH in culturedmedium, PE inducedTR𝛼1 accumulation
in nucleus resulted in physiologic growth with suppressed beta-
MHC and increased alpha-MHC (PE + T3) (D) ∗𝑃 < 0.05 versus
A, ∗∗𝑃 < 0.05 versus B, #

𝑃 < 0.05 versus A, B, and C, PE =
phenylephrine, MHC = myosin heavy chain.

MAPK can cause apoptosis, low proliferative activity, and
impaired tissue repair/regeneration [52–54].

7. TR𝛼1: A Molecular Switch to Convert
Pathologic to Physiologic Growth

The potential link of TR𝛼1 to growth response has been
revealed in neonatal cardiomyocytes cultures in which
phenylephrine (PE) was administered in the presence or
absence of TH in culture medium. In this series of exper-
iments, PE administration resulted in increased nuclear
TR𝛼1 content and in pathologic growth (dominant 𝛽-MHC
expression) in the absence of T3 and physiologic growth in
the presence of T3 in culture medium [27]; see Figure 2.
Thus, TR𝛼1 receptor appears to act as a molecular switch
to convert pathologic to physiologic growth. Consistent with
this evidence, TH replacement therapy following myocardial
infarction in mice resulted in compensatory hypertrophy
with adult pattern of myosin isoform expression [16]. Fur-
thermore, increased expression of liganded TR𝛼1 in the
myocardium after physical training in patients with heart
failure and mechanical support devices was associated with
upregulation of physiologic growth kinase signaling [55].
Similarly, TH restoredmyelination and clinical recovery after
intraventricular hemorrhage by converting the unliganded,
aporeceptor TR𝛼1 to holoreceptor [56].

8. TR𝛼1 and Ischemia/Reperfusion Injury

TH has long been considered to be detrimental for the
response of themyocardium to ischemic stress. However, this
long standing belief has been challenged over the past years.
In fact, in a series of studies using isolated rat heart models
of ischemia/reperfusion, TH pretreatment was shown to be
beneficial and mimic the effect of ischemic preconditioning
[57]. Furthermore, T3 (and not T4) administration at reper-
fusion suppressed apoptosis, limited necrosis, and improved
postischemic recovery of function [13, 14]. Similarly, TH
treatment after myocardial infarction limited infarct size [58]
and reduced apoptosis in the border zone of the infarcted
area [59]. The reparative effect of TH seems to be mediated
via activation of prosurvival signaling pathways. Thus, TH
activates Akt [16, 59–61] and regulates PKC isoforms expres-
sion [62, 63], HSP70 expression [64], and HSP27 expression
and phosphorylation and translocation [65]. Furthermore,
TH suppresses ischemia/reperfusion induced p38MAPK and
JNK activation [14, 66]. TH reparative action is shown to be
mediated via TR𝛼1 receptor [13]. Here, it is worthmentioning
that T3 can also limit streptozotocin (STZ) induced beta
pancreatic cell apoptosis via TR𝛼1 receptor.Thus, TH admin-
istration in STZ treated animals with myocardial infarction
resulted in increased insulin levels in plasma and significant
improvement of the postischemic cardiac dysfunction [61].

9. Clinical and Therapeutic Implications

Reperfusion injury and postischemic cardiac remodeling
remain still a therapeutic challenge in the management
of patients with heart disease [67, 68]. The discovery of
novel pharmacological targets such as TR𝛼1 receptor may
be of important clinical and therapeutic relevance. TH
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Figure 3: Schematic showing TR𝛼1 involvement in the response of
the myocardial tissue to injury.

has already been tried in clinical settings of controlled
ischemia/reperfusion, such as CABG or heart donors preser-
vation. Thus, T3 treatment postoperatively limited reper-
fusion injury and improved haemodynamics in patients
undergoing CABG [69]. Furthermore, T3 treatment initiated
one week before GABG resulted in improved cardiac index
and reduced requirements of inotropes [70]. Similarly, TH
has been used in heart donors to increase the probability
of success in donor organ transplantation. However, a clear
benefit of this treatment has not been demonstrated [71].
This may be due to the fact that most of the patients were
receiving T4 instead of the active T3 and TH treatment
was used in nonischemic stable donor hearts. In fact, when
T3 was administered in a series of 22 unstable (ischemic)
heart donors (considered unsuitable for transplantation), 17
of those patients progressed to successful transplantation
[72]. Here it should be noted that TH was shown to facilitate
recovery in patients with end-stage heart failure andmechan-
ical support devices [73].

On the basis of these preliminary clinical data, large-scale
clinical trials may be needed to demonstrate the beneficial
effect of TH in clinical settings of ischemia/reperfusion.
Furthermore, the recognition that TH canmediate important
physiological and pharmacological actions via TR𝛼1 receptor
may allow selective pharmacological manipulation of TH
signaling via TR𝛼1 agonists. Currently, only TR𝛽 analogs
have been synthesized to control cholesterol metabolism.
However, a chemical compound (CO23) which is assumed
to be a TR𝛼1 selective agonist has recently been synthesized.

This compound, although it was shown to be selective for
TR𝛼1 receptor in amphibian models, it lost its selectivity in
rat [74, 75]. This may be due to differences in TR expression
in developing and mature tissues. This issue is of important
therapeutic relevance and merits further investigation.

10. Concluding Remarks

TH is long known to be critical in organmaturation and regu-
lation ofmetabolism.However, recent accumulating evidence
shows that TH is crucial for the response of living organisms
to environmental stress. In particular, TR𝛼1 receptor seems
to be an important determinant for the reactive growth
response which occurs after myocardial injury. TR𝛼1 can act
as a molecular switch to convert pathological to physiologic
growth; see Figure 3. Due to this dual action, TH, via TR𝛼1
receptor, can limit myocardial injury and rebuild the injured
myocardium. It is likely that TR𝛼1 receptormay prove a novel
pharmacological target for cardiac repair/regeneration.
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