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Abstract

Introduction

A large body of evidence has established a pattern of altered functioning in the immune sys-

tem, autonomic nervous system and hypothalamic pituitary adrenal axis in chronic fatigue

syndrome. However, the relationship between components within and between these sys-

tems is unclear. In this paper we investigated the underlying network structure of the auto-

nomic system in patients and controls, and a larger network comprising all three systems in

patients alone.

Methods

In a sample of patients and controls we took several measures of autonomic nervous system

output during 10 minutes of supine rest covering tests of blood pressure variability, heart rate

variability and cardiac output. Awakening salivary cortisol was measured on each of two days

with participants receiving 0.5mg dexamethasone during the afternoon of the first day. Basal

plasma cytokine levels and the in vitro cytokine response to dexamethasone were also mea-

sured. Symptom outcome measures used were the fatigue impact scale and cognitive fail-

ures questionnaire. Mutual information criteria were used to construct networks describing

the dependency amongst variables. Data from 42 patients and 9 controls were used in con-

structing autonomic networks, and 15 patients in constructing the combined network.

Results

The autonomic network in patients showed a more uneven distribution of information, with

two distinct modules emerging dominated by systolic blood pressure during active stand

and end diastolic volume and stroke volume respectively. The combined network revealed

strong links between elements of each of the three regulatory systems, characterised by

three higher modules the centres of which were systolic blood pressure during active stand,

stroke volume and ejection fraction respectively.
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Conclusions

CFS is a complex condition affecting physiological systems. It is important that novel analyti-

cal techniques are used to understand the abnormalities that lead to CFS. The underlying

network structure of the autonomic system is significantly different to that of controls, with a

small number of individual nodes being highly influential. The combined network suggests

links across regulatory systems which shows how alterations in single nodes might spread

throughout the network to produce alterations in other, even distant, nodes. Replication in a

larger cohort is warranted.

Introduction

Chronic fatigue syndrome (CFS) is a common condition [1], the symptoms of which include

unexplained and prolonged fatigue, post-exertional malaise, myalgia, arthralgia, swollen

lymph nodes and cognitive impairment [2]. Though historically considered a neuropsychiatric

disorder it is now established that pathology extends well beyond this domain [3]. Altered lev-

els of plasma and CSF cytokines have been shown, some elevated and some lowered [4,5], thus

the potential for B-cell therapy is being explored with some early promise [6]. Current hypoth-

eses centre on the idea of an altered Th1/Th2 inflammatory profile which possibly results from

an overwhelming immunological challenge (e.g. Epstein-Barr virus, cancer, childhood trauma

etc.) [7,8]. There is also growing evidence that a combination of autonomic and cardiac dys-

function results in orthostatic hypotension [9], reduced cardiac contractility [10] and impaired

muscle recovery after exercise [11], at least in a sub-group of patients [12]. It is unclear whether

this represents a central, (probably baroreflex mediated) or a peripheral, cardiovascular effect

(or possibly both). More recently, it has also become clear that cortisol levels in patients are fre-

quently lower compared to controls [13], and that this may be consequent on increased nega-

tive feedback of the hypothalamic pituitary adrenal (HPA) axis [14].

The findings presented above have yielded several plausible theoretical models [15, 7, 16],

though none are yet to emerge as experimentally validated. These models have tended to

emphasise the role of allostatic overload as a response to pervasive stress or focus on immune

dysregulation as a central cause. However, this ignores the role of signalling within and

between networks. For example, pro-inflammatory cytokines (in particular IL-1) invoke

increased sympathetic outflow (via indirect bottom-up signalling from the brainstem) which

reduces inflammatory cell production at lymphoid tissue and activity by direct cell surface

binding. In this way, immune homeostasis is maintained by appropriate sympatho-vagal bal-

ance. Similarly, cortisol levels are regulated by circadian CLOCK gene activity in the paraventi-

cular nucleus (PVN) and altered sensitivity of the adrenals to splanchnic sympathetic

innervation. Indeed, when challenged these systems work to return to their basal tone through

allostasis. It may, therefore, be a category error to focus models on aetiological factors as

opposed to the homeostatic alterations which they set in motion. Indeed, while certain events

may represent an initial hit, once this has been removed the consequences may well persist in

altered systems regulation. In this way, the key pathology which underpins CFS is potentially

best understood in computational terms as resulting from altered messages passing amongst

homeostatic networks [17]. Indeed, it is a curious observation that much of what has been

shown in the literature can be described as a failure of such networks to regulate themselves.

Investigation into this potential phenomenon is impossible under traditional statistical

techniques. Instead we require methods capable of evaluating global network structure across
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a multitude of variables. Theory driven approaches are also difficult in this context, given the

vast number of ways in which variables might interact with each other. Mutual information

based algorithms have previously been used with much success to investigate cytokine-cyto-

kine and immune-HPA axis network interactions in CFS [18,19] and are well placed to solve

these analytic problems. In this paper we use the same approach to compare the network struc-

ture of the autonomic nervous system (ANS) in patients and controls, and to describe interac-

tions across the three systems highlighted above in patients only.

Methods

Favourable ethical opinion was obtained from the Newcastle and North Tyneside Local

Research Ethics Committee North East, UK.

Participants

80 people with CFS, as defined by Fukuda criteria [20], were recruited from a specialist centre

in the North East of England as part of a Medical Research Council funded study ‘Understand-

ing the pathogenesis of autonomic dysfunction in chronic fatigue syndrome and its relation-

ship with cognitive impairment’. All CFS subjects were matched to sedentary controls

recruited via university volunteer databases, advertisements and “word of mouth”. Participants

with co-morbid hypertension or psychiatric illness diagnosed using the SCID-I for research

were excluded. Cardioactive medications were withheld for 72 hours prior to assessment.

Controls were recruited through notices in local hospital and university buildings, and

healthy relatives of patients attending local support groups were also invited to participate.

Identical exclusion criteria to that used in the CFS cohort was used in the recruitment of

controls.

Given the aim of the paper was to investigate network structure across a wide range of

parameters, only participants in which a complete data set was recorded were included in final

analysis. As such, results from 42 patients and 9 controls are reported in the autonomic analy-

sis and 15 patients for the combined network. No controls had complete autonomic, cytokine

and HPA axis data and so only a patient combined network is presented.

Autonomic assessment

Autonomic assessment was conducted at the Clinical Research Facility at the Royal Victoria

Infirmary. The Task Force Monitor (TFM, CNSystems, Medizintechnik, Graz, Austria) was

used to record and analyse continuous heart rate (electrocardiogram (ECG)),beat-to-beat

blood pressure assessment and impedance cardiography. It is reliable and reproducible

method of non-invasive autonomic assessment and derives heart rate and blood pressure vari-

ability using spectral analysis [21]. Impedance cardiography derives non-invasive cardiac out-

put, stroke volume, ejection fraction and end-diastolic volume [22].

Participants were instructed to eat a light breakfast, avoid caffeine and alcohol on the day of

testing and refrain from nicotine for two hours before assessment. All assessments were per-

formed between 9-10am. TFM recordings were taken during a ten minute supine rest a Val-

salva manoeuvre [23] and in response to orthostasis (active stand) [24].

Plasma cortisol measurements

All participants underwent a dexamethasone suppression test [25]. Blood samples were col-

lected into lithium-heparin vacutainers to measure cortisol, at half-hourly intervals from

10am. Five samples were collected on day 1 and 5 on day 2. At 11pm on day 1, participants
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took dexamethasone by mouth (0.5mg). Within one hour of collection, bloods were spun at

1600g for 10 minutes at room temperature. 2–3 1ml aliquots of plasma were extracted and

stored at -80˚C until analysis. Plasma cortisol levels were quantified using 15 lot-matched cor-

tisol ELISA kits, supplied by Abcam, which were used according to manufacturer’s protocol.

The lower limit of cortisol detection was 2.44ng/ml.

Serum inflammatory marker measurement

Gel-based specimen tubes were used to collect a day 1 serum sample at 10am for measurement

of inflammatory markers. These were spun within 3 hours at 1600g for 10 minutes at room

temperature. 2x1ml of serum were extracted and stored at -80˚C until analysis. Cytometric

bead Array (BD Biosciences) was carried out on serum samples, to measure inflammatory

markers, as per the Human Soluble Protein Master Buffer Kit Instruction Manual.

Symptom assessment outcome measures

All participants completed self-rated phenotype measures assessing functional disease

impairment. The Cognitive Failures Questionnaire (CFQ) is a 25 item questionnaire com-

prised of four domains- memory, names, blunders and distractibility [26]. Participants rate on

a five point Likert scale (0 = “never”- 4 = “very often”) the severity of their everyday cognitive

failures. The CFQ possesses good psychometric properties [27]. For the purposes of this study

the total questionnaire score was used as a measure of self-rated cognition to provide a more

general picture of self-rated impairment across a variety of domains. The Fatigue Impact Scale

(FIS) records the impact of fatigue symptoms on daily functioning across cognitive, physical

and psychosocial domains [28]. Responses are on a 5 point Likert scale from 0 = “no problem”
to 4 = “extreme problem” and psychometric properties of the FIS are robust [28].

Analysis

As stated in the introduction, our analytic strategy must be capable of revealing highly interde-

pendent, non-linear relationships between several variables as well as evaluating global net-

work structure. As such, traditional approaches based on shared variance are inappropriate.

Instead we used the mutual information (MI) based algorithm ARACNE [29], as implemented

in the Cytoscape environment [30], to construct networks which describe information passing

in each system. Each outcome measure is treated as a node and edges are constructed based on

MI. Thus a network consists of a collection of variables and the interactions between them.

Formally,MI between two continuous random variables, X and Y is defined by:

MIðX;YÞ ¼
ZZ

pðx; yÞln
pðx; yÞ
pðxÞpðyÞ

dxdy

We might also note that this is equal to a Kullback-Leibler divergence between the joint and

the product of the marginal densities:

MIðX;YÞ ¼ KL½pðx; yÞjjpðxÞpðyÞ�

This meansMI will be low (near 0) in cases where two variables are statistically independent

and high (near 1) when they are likely to occur together. Networks constructed usingMI there-

fore describe the statistical dependencies amongst nodes [31].

In order to construct a network, ARACNE creates all possible edges before eliminating

edges according to certain criteria [31]. The first is the data processing inequality (DPI) which
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states that if the link between two nodes is mediated by a third node then:

MIðX;ZÞ � min½MIðX;YÞ;MIðY;ZÞ�

[31]

This means that direct links between indirectly interacting nodes will be removed from the

final network in favour of higher information yield from indirect paths. The second criterion

is anMI threshold for edges based on a specified p-value threshold. This is calculated by:

MI0 ¼
1:062 � lnP0

0:634N þ 48:7

[29]

This equation is based on empirically derived values as specified in Margolin et al. (2006b).

In the comparison of ANS networks a p-value of 0.01 was used as a modest threshold, though

in networks as small as specified here we should not expect a large number of false-positives.

In the CFS/ME sample this results in anMI threshold of 0.075 and in the control sample a

threshold of 0.104. In the combined CFS/ME network, due to the increased number of com-

parisons a Bonferonni correction was applied resulting in a p-value threshold of 0.0002 result-

ing in anMI threshold of 0.16. The performance of the ARACNE algorithm is adequate for

data sets containing 100–125 data points [31]. The CFS ANS data contains 462 data points, the

controls ANS data 99 data points and the CFS combined network contained 345 data points.

Our analysis should therefore be valid and the number of false-positives kept to a minimum.

The modularity of constructed networks was evaluated using the ModuLand family of algo-

rithms [32]. First the influence function for each node(s) over each link (i,j) in the network

(fs(i,j)) s calculated via the LinkLand algorithm [33]. Here a set of nodes, A, is iteratively

expanded, beginning with the nodes k and l lying either side of the link (k,l), until nodes

strongly influenced by k and l are discovered. This is achieved by calculating the set density:

d ¼
P
ði;jÞ2Awi;j
jAj

HereWi,j is the weight of the link (in this case theMI) between nodes i and j and |A| is the

number of nodes in the set A [33]. The density therefore represents the averageMI of links

between the nodes in A. The density is then updated by calculating the potential density

achieved by adding neighbours of nodes in A [33].

If the density of A can be increased by doing this then the node which maximises d’ is
added to the set and the processes begins again. This continues in the same fashion until the

set density can no longer be increased. The influence function of s over elements of A is then

calculated based on the strength of its links to the other elements and is zero for nodes not in

A [33]. This is then used to establish a centrality value for each node within a set.

This method will therefore establish a small number of highly influential variables, each in

dissociable sets which will form the basis for constructing modules. Indeed, the most influen-

tial nodes will form the centre of each module. This centre represents the local maximum of

link centrality values and so module number is determined by the number of local maxima

within the network. The maxima are then treated as peaks of a hill, where nodes with some

influence form the slope and are retained in the module. In determining membership, the Pro-

portional Hill algorithm is used which establishes a set of hill membership values (Hm(i,j)) for

each network link (Kovács et al., 2010). If the link forms part of the centre of module K then its

hill membership value is equal to its centrality value and zero for other modules. For all other

links, a link will have a high membership value for K when neighbouring links also do. If the
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neighbours of (i,j) belong to different modules, then their centrality will determine which

module (i,j) becomes a member of. The link membership values are then used to assign mem-

bership values to nodes.

Modules are presented graphically by assigning node members a given colour. Given the

potentially small number of nodes in modules constructed here, analytic comparison of

parameters is not possible.

In evaluating the global structure of networks various parameters for diagnostics are avail-

able. Descriptive statistics include number of nodes retained, network diameter (the largest

distance between two nodes) and network radius (the maximum length of a shortest path). Sta-

tistics used for analytic comparison are described in further detail below.

The statistics used are all measures of the influence of a node over the distribution of infor-

mation throughout the networks, or the connectivity of a node. In measuring the former we

use betweenness (Bc) of a node, which measures its influence over the interactions between

other nodes in a network and stress (Sc) which describes the number of shortest paths passing

through each node. Connectivity was measured using closeness (Cc), which reflects the speed

at which information is distributed through a network by each node, neighbourhood connec-

tivity (Nc) which is the average connectivity of all the neighbours of a node and topological

coefficient (Tc) which measures the extent to which each node shares neighbours with other

nodes in a network. All parameters were calculated using the Network Analyzer plugin [34]in

Cytoscape.

Analytic comparison of diagnostic parameters in the CFS/ME and control ANS networks

was carried out using independent t-test implemented in the R statistical environment [35].

The same parameters were compared to one another via within-subjects t-test in the combined

CFS network.

Results

Autonomic function in CFS and healthy controls

The CFS network is shown in Fig 1A. 10 nodes were retained, forming two clearly distinct

modules. A large volume of information was directed through mean systolic blood pressure

during active stand (Cc = 0.71, Sc = 16) which also exerted significant influence over other

nodes (Bc = 0.8). This is further reflected in a lower topological coefficient for this node (Tc =

0.33) indicating a central, moderating influence. Within module 2, end diastolic volume (Cc =

0.75, Sc = 8, Bc = 0.67) and stroke volume (Cc = 0.75, Cs = 8, Bc = 0.67) exerted primary control

over other nodes. Other nodes in the network were generally less well integrated, and very little

information was directed through them (see S1 and S2 Tables for a full list of network

parameters).

The healthy control network is shown in Fig 1B, and has a visibly different structure con-

sisting of 11 total nodes. In this network, three modules were apparent. In contrast to the CFS

network, however, there were still significant connections between modules indicating a more

evenly distributed structure. This is further supported by a relatively uniformMI weighting

amongst edges (S3 Table and Fig 2) and by diagnostics (S4 Table) which show no single node

was particularly influential or central to the flow of information through the network.

Comparing mean diagnostic values in CFS and controls (Table 1) also suggests a more well

connected and evenly distributed network amongst controls. Mean neighbourhood connectiv-

ity was significantly higher (p<0.0001) as was mean stress (p = .01), and there was a trend

towards higher mean topological coefficient (p = .07). However the average edgeMI value was

significantly higher in the CFS network (p = .04).
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The relationship between different regulatory systems in CFS

The final network is displayed in Fig 3. 18 nodes were retained which clustered into 3 related

modules. The central nodes in these modules were ejection fraction, stroke volume and systolic

blood pressure during active stand respectively and these nodes had the three highest between-

ness values and were in the four highest nodes for closeness (see S6 Table). The distribution of

MI values shows a range of link strengths between nodes (Fig 4 and S6 Table) and average link

value was high (0.62), though this may be due to the particular influence of the above variables

in their respective modules. Mean closeness of each node was significantly higher than

Fig 1. Network structure of autonomic function in a) CFS and b) healthy controls.

https://doi.org/10.1371/journal.pone.0213724.g001

Systems approach to understanding CFS

PLOS ONE | https://doi.org/10.1371/journal.pone.0213724 March 25, 2019 7 / 17

https://doi.org/10.1371/journal.pone.0213724.g001
https://doi.org/10.1371/journal.pone.0213724


betweenness (p = .000), and topological coefficient (p = .04). Topological coefficient was signif-

icantly higher than betweenness (p = .02) (Table 2).

Fig 2. Mutual information distribution in a) the CFS network b) control network. Edge shade is related to MI between

nodes. Darker edges indicate a stronger link. Abbreviations: BEI- Baroreflex effectiveness index, BPV- Blood pressure

variability, EDV- End diastolic volume, EF- Ejection fraction, HR- Heart rate, HRV- Heart rate variability, MASS- End

diastolic wall mass, SBPa- Mean systolic blood pressure during active stand, SBPv- Mean systolic blood pressure

during Valsalva, SV- Stroke volume.

https://doi.org/10.1371/journal.pone.0213724.g002
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Discussion

Our results show significant differences in the network structure underlying autonomic func-

tion in a group of patients with CFS/ME and controls in both general topology and amongst

specific nodes and their interactions. Furthermore, in a smaller group of patients the relation-

ships between separate regulatory systems were explored, revealing the network structure

underpinning these relationships.

Autonomic comparison between CFS/ME and controls

In the control group a well distributed, evenly balanced network emerged showing weak to

moderate connections amongst modules. This is broadly in keeping with validated, theory-

driven computational models [36, 37] and studies on the functional anatomy of the autonomic

and cardiovascular systems [38]. This concordance speaks to the validity of our analytic

approach and suggests it is capable of establishing underlying network structures in this con-

text, even in a small cohort.

In contrast to the control group, each node in the CFS network was, on average, signifi-

cantly less well connected to such an extent that one node (end diastolic wall mass) was actu-

ally excluded. Despite this, the average edge in the network had a higherMI value than in the

control network. Furthermore the CFS network was composed of two statistically independent

modules the focus of which were three highly influential single nodes (mean systolic blood

pressure during active stand, end diastolic volume and stroke volume). This indicates a shift in

the quantity of information in the system as well as its distribution, possibly indicating a failure

of the system to regulate itself. This view is supported by the loss of direct connections between

systolic blood pressure during active stand and baroreflex effectiveness, ejection fraction and

end diastolic volume and systolic and diastolic blood pressure during active stand. In the con-

trol network these parameters are directly linked. Interestingly, in health these nodes work to

maintain adequate perfusion during orthostatic challenge.

Table 1. Comparison of ANS network diagnostics between CFS and controls.

Interaction Mutual Information

HRV—DBPa 0.17

MASS—SBPv 0.12

BPV—SBPv 0.11

SV—DBPa 0.11

SV—SBPv 0.11

SV—BPV 0.14

SV—EDV 0.16

EDV—DBPa 0.11

EDV—MASS 0.12

BEI—SBPv 0.12

HR—BEI 0.11

HR—BPV 0.11

EF—EDV 0.11

SBPa—DBPa 0.12

SBPa—BEI 0.11

SBPa—HR 0.12

SBPa—EF 0.16

https://doi.org/10.1371/journal.pone.0213724.t001
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Of particular interest is the dissociation between baroreflex and blood pressure, which is

crucial in maintaining cerebro-perfusion against gravity. Postural hypotension is frequently

reported by patients [39] and a sub-group meet criteria for postural orthostatic tachycardia

syndrome (POTS) [12]. Our results might, therefore suggest this is the output of general alter-

ations in autonomic network structure. The visibly stronger link between systolic blood pres-

sure and heart rate in CFS also lends support to this claim- it is possible this is a compensatory

Fig 3. Interactions between the ANS, immune system and HPA axis in CFS. Edge shade is related to MI between nodes. Darker

edges indicate a stronger link. Abbreviations: AUCg- Area under the curve with respect to ground, BEI- Baroreflex effectiveness

index, BPV- Blood pressure variability, CFQ- Total Cognitive Failures Questionnaire score, DEX10- in vitro glucocorticoid receptor

response to 10% dexamethasone solution, DEX100- in vitro glucocorticoid receptor response to 100% dexamethasone solution, EF-

Ejection fraction, HRV- Heart rate variability, LPS- in vitro glucocorticoid receptor response to lipopolysaccharide, MASS- End

diastolic wall mass, Null, in vitro glucocorticoid receptor response without stimulation, SBPa- Mean systolic blood pressure during

active stand, SV- Stroke volume.

https://doi.org/10.1371/journal.pone.0213724.g003
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effect. The dissociation between systolic and diastolic blood pressure is also intriguing in this

regard. We have previously shown both to be significantly reduced at rest in this patient cohort

Fig 4. Mutual information distribution for the ANS, immune system, HPA axis network in CFS.

https://doi.org/10.1371/journal.pone.0213724.g004

Table 2. Differences between CFS and control networks.

CFS Network Control Network Mean Difference P-Value

Number of Nodes 10 11 - -

Network Diameter 4 3 - -

Network Radius 2 2 - -

Betweenness Centrality 0.29 0.10 0.19 (0.05, -0.43) 0.10

Closeness Centrality 0.56 0.53 0.03 (0.08, -0.13) 0.65

Neighbourhood Connectivity 1.97 3.52 -1.55 (-1.93, -1.67) 0.00

Stress 4.00 14.54 -10.54 (-17.98, -3.11) 0.01

Topological Coefficient 0.23 0.41 -0.18 (-0.38, 0.02) 0.07

Mean Edge MI value 0.58 0.13 0.45 (0.17, 0.74) 0.01

Brackets indicate 95% confidence interval of the mean difference

https://doi.org/10.1371/journal.pone.0213724.t002
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[40] though our results here may suggest different pathological mechanisms. Importantly, this

also has implications for targeting of therapeutic intervention- though this can only be fully

explored in larger studies.

The dominance of systolic blood pressure during active stand in influencing the CFS net-

work is also in line with previous research highlighting blood pressure abnormalities during

orthostatic challenge [41] and may indicate a specific failure to regulate blood pressure is criti-

cal to autonomic dysfunction in this patient group. This is in line with observations of height-

ened sympathetic tone at rest which is reduced during orthostatic challenge [42]. It is possible

that when left unchecked by the reflexes which moderate it, failure of blood pressure to

respond to orthostatic stress results in a pervasive dysregulation which spreads throughout the

ANS, or it may be that some un-regulated external factor inappropriately drives an abnormal

blood pressure (e.g. dysregulation on the immune system).

The relationship between the ANS, immune system and HPA axis in CFS/

ME

The broader network examining the interaction between systems showed a wide distribution

ofMI links and the average dependency amongst nodes was high, although this might be the

result of a large amount of information flowing through three, well connected nodes. Despite

this we found that average closeness was significantly higher than average betweenness and

topological coefficient indicating a fast information flow with no node being particularly influ-

ential in the network considered as a whole. An explanation for this lies in the fact that these

three nodes were highly influential in their respective modules, but with only moderate con-

nections to other nodes. It is important to note that without comparison to a control group we

cannot comment on whether this structure is, itself, abnormal. Future work, in a larger group

with comparison would shed light on whether topological changes are restricted to single net-

works (as we have shown in the ANS and has previously been shown in cytokine networks), or

whether this also extends to inter-network interaction.

Nevertheless, there are still aspects of the CFS network that warrant consideration. The

finding that all the retained cytokines had strong links to systolic blood pressure during active

stand is intriguing, particularly given the influential role of this node in the ANS specific net-

work described above. Interactions between the sympathetic system and lymphoid organs are

extensive, with reflex anti-inflammatory sympathetic activity occurring after an immune chal-

lenge [43]—a phenomenon which is ameliorated via splanchnic lesion in animal models [44].

At the cellular level, Th1 cytokines express β2 adrenoceptor to a greater extent than Th2 cells

[45] and receptor binding brings about inhibition of IL-12 and IFN-γ [46]. These two cyto-

kines inhibit the production of Th2 cells and so sympathetic activation brings about a relative

anti-inflammatory Th2 profile. This process is centrally mediated in a top-down way by the

paraventricular nucleus (PVN) [47] forming a classical negative feedback loop. This is in keep-

ing with our results which reflect these dense connections, and show how failure within this

loop might spread throughout the broader regulatory network. It is plausible that this might

occur either through persistent immune activation which particularly targets the ANS or that

there is some failure of the sympathetic system to modulate inflammation properly. Previous

findings of elevated pro-inflammatory cytokines [4] and orthostatic hypotension [39] support

the former as does our finding that systolic pressure is only linked indirectly to stroke volume

and ejection fraction through the effects of IL12 and IL17 respectively. However, the finding

that HPA axis nodes are related only to ANS nodes would be expected by a failure of negative

feedback at the PVN. Direct comparison of these hypotheses is warranted, in a larger cohort,

for conclusions to be drawn.
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The place of self-rated cognitive impairment, as measured by CFQ score is also interesting

to note. Its only direct links were to three autonomic variables (blood pressure variability, ejec-

tion fraction and systolic blood pressure after active stand) which may provide further evi-

dence of a centrally driven autonomic dysregulation- the long term central consequences of

which may include cognitive difficulties. A particularly strong link with ejection fraction has

been reported in cardiovascular diseases [48], though not in CFS. Ejection fraction is typically

preserved in CFS [40] though its place in the autonomic network is different raising the possi-

bility of alterations in processes underlying a normal value. The finding that ejection fraction

aligned with a separate module to stroke volume and end diastolic wall mass also lends support

to this claim. The direct link with heart rate variability (an indicator of sympathovagal balance)

suggests altered sympathetic tone may play a role. Although the relationship between cognitive

difficulties and ANS dysregulation is yet to be directly evaluated, there are studies which do

provide preliminary evidence for a link. In particular, recent imaging studies have shown

altered white matter connectivity in key brain regions [49] and there is evidence for altered

brain stem grey matter associated with autonomic dysregulation [50]. The computationally

driven network approaches used in this study would prove particularly useful in modelling

these relationships.

It is also important to compare our network to the only previous studies using a similar

technique to investigate cytokine-cytokine and immune-HPA axis interactions [18,19]. These

studies found close relationships between IL12, IFN-γ and IL1β [19] which is in line with our

study, though our network may suggest a spurious link via a shared interaction with systolic

blood pressure. However, the role of IL17 is quite different, being indirectly linked to these

other cytokines in Broderick et al. It is unclear why this might be, though its link to the stroke

volume centred module may indicate a slightly different role to the other cytokines included

here. Further work on this cytokine in CFS may prove fruitful in establishing its exact role.

The finding of no direct links between HPA axis and immune variables is quite in contrast to

Fuite et al. though a mediating role of the ANS in these relationships may offer some explana-

tion. It is also important to acknowledge these differences may be the result of different sample

sizes which can only be evaluated via larger cohorts.

Limitations

The primary limitation of our study is the small sample sizes used. This represents a practical

limitation consequent on incomplete data in a large number of study participants. Whilst the

validity of the methodology is unaffected by this, it does mean our results cannot be general-

ised to the wider CFS population. The fact that our results are in line with existing evidence

and theoretical models is encouraging but future studies should focus on a more specific set of

variables in a large group of patients and controls. Our sample size is also likely to increase the

probability of false-negative results, particularly given the quite strict p-value threshold applied

in the combined network. It is difficult to guard against this without tipping the threshold in

favour of false-positives and so, again, larger cohorts are warranted.

It is also important to acknowledge that the particularly small control sample size in the

autonomic comparison is likely to impact on our results. Whilst the control network is very

much in line with what we would expect, there is still the strong possibility that average MI val-

ues taken from a sample of nine may not be representative of the wider population. This

increases the likelihood of type 1 errors in our comparison of patient and control autonomic

networks.

Again, it is also important to note that the lack of control group in our combined network

means we cannot comment on whether the structure is abnormal. Although we can draw
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conclusions based on comparison with existing data, further work with well-defined, larger

sample cohorts is required.

Conclusions

In this study we examined the underlying network structure of the ANS in CFS and controls.

We then examined the relationship between the ANS, immune system and HPA axis in CFS

only. Our results showed a fundamental shift in the relationships between components of the

ANS, as well as the influence of particular variables, possibly pointing to a failure of the ANS to

regulate itself. Furthermore, we found close links between the three regulatory systems in CFS

which may show how failures in homeostasis manifest with diffuse changes in a wide variety of

outcome measures. Our results raise interesting questions and hypotheses which should be

tested in larger cohorts.
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