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Hierarchical carrier transport 
simulator for defected nanoparticle 
solids
Chase Hansen1*, Davis Unruh1, Miguel Alba1, Caroline Qian2, Alex Abelson2, Matt Law2 & 
Gergely T. Zimanyi1 

The efficiency of nanoparticle (NP) solar cells has grown impressively in recent years, exceeding 
16%. However, the carrier mobility in NP solar cells, and in other optoelectronic applications remains 
low, thus critically limiting their performance. Therefore, carrier transport in NP solids needs to be 
better understood to further improve the overall efficiency of NP solar cell technology. However, 
it is technically challenging to simulate experimental scale samples, as physical processes from 
atomic to mesoscopic scales all crucially impact transport. To rise to this challenge, here we report 
the development of TRIDENS: the Transport in Defected Nanoparticle Solids Simulator, that adds 
three more hierarchical layers to our previously developed HINTS code for nanoparticle solar cells. In 
TRIDENS, we first introduced planar defects, such as twin planes and grain boundaries into individual 
NP SLs superlattices (SLs) that comprised the order of 103 NPs. Then we used HINTS to simulate the 
transport across tens of thousands of defected NP SLs, and constructed the distribution of the NP SL 
mobilities with planar defects. Second, the defected NP SLs were assembled into a resistor network 
with more than 104 NP SLs, thus representing about 107 individual NPs. Finally, the TRIDENS results 
were analyzed by finite size scaling to explore whether the percolation transition, separating the 
phase where the low mobility defected NP SLs percolate, from the phase where the high mobility 
undefected NP SLs percolate drives a low-mobility-to-highmobility transport crossover that can be 
extrapolated to genuinely macroscopic length scales. For the theoretical description, we adapted 
the Efros-Shklovskii bimodal mobility distribution percolation model. We demonstrated that the ES 
bimodal theory’s two-variable scaling function is an effective tool to quantitatively characterize this 
low-mobility-to-high-mobility transport crossover.

Colloidal semiconductor nanoparticles (NPs) are singularly promising nanoscale building blocks for fabricat-
ing mesoscale materials that exhibit emergent collective properties. There is a growing interest to use NPs for 
numerous optoelectronic applications1,2, including third generation solar cells3,4 light emitting diodes5, and field 
effect transistors (FET)6,7.

Electron wavefunctions are localized on the individual NPs. This “quantum confinement” makes the electronic 
parameters tunable with the NP size, and thus makes the NP solids a very versatile platform for applications8.

However, the very same quantum confinement also suppresses the transport between NPs, and thus drives 
NP solids insulating. As a result, without the application of specific transport-boosting fabrication steps, the elec-
tron mobility in NP solids is often in the range of 10−2 − 10−1 cm2/Vs9,10. These mobilities are typically measured 
in FET arrangements. This is orders of mangitude below the mobilities that would be acceptable for electronic 
applications. Therefore, increasing the mobility and transport in NP solids is one of the central challenges on 
the way to realize the promise of NP solids.

Various experimental groups managed to boost the mobility by enhancing the inter-NP transition rate with 
a variety of methods, including: ligand engineering11–13, band-alignment engineering14,15, chemical-doping9,16, 
photodoping17, metal-NP substitution18, epitaxial attachment of NPs19,20, and atomic layer deposition methods21. 
Encouragingly, these efforts recently translated into notable progress, as NP solids were reported to exhibit 
band-like, temperature-insensitive mobilities, with values exceeding 10 cm2/Vs at room temperatures9,10. It is 
important to note that the claims of band-like transport are controversial some experiments reported data that 
can be interpreted as evidence for band-like transport. One of these is the relative temperature independence 
of the observed mobilities, in contrast to hopping insulators where an activated temperature dependence is 

OPEN

1Physics Department, University of California, Davis, USA. 2Chemistry Department, University of California, Irvine, 
USA. *email: cmhansen@ucdavis.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-86790-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7458  | https://doi.org/10.1038/s41598-021-86790-2

www.nature.com/scientificreports/

expected. However, the absolute values of the mobilities remain relatively low compared to most metals, and this 
makes conservative commentators stop short of identifying this transport as metallic9,10.

On the theoretical front, there have been efforts from several groups to understand electronic transport in 
NP films and solids. Density functional theory (DFT)-based ab initio calculations of the energy levels of a single 
NP alone are already limited to only hundreds of atoms for higher-reliability methods, and a few thousands for 
more approximate methods by prohibitive CPU times. These translate to diameters less than 2–3 nm, whereas 
experimental NP diameters often exceed 5–6 nm. Next, the accurate computation of the NP-NP transition rates 
would require the simulation of two NPs. And even if this calculation is completed, it does not address that 
the NP-NP transport is not metallic but insulating; the disorder of the parameters from NP to NP; and finally 
the defects of the NP solids. In total, ab initio descriptions alone are very far from being capable of describing 
transport in NP solids. Cleary, there is a pressing need for developing mesoscopic transport simulations that 
somehow integrate ab initio calculations.

Shklovskii et al. have developed transport calculations for a NP array in a FET geometry, where they focused 
on the effects of the Coulomb interaction22. The interplay of transport and Coulomb interactions was studied 
in Refs. 23 and 24, albeit on very small samples. Over the last few years, our group developed the Hierarchical 
Nanoparticle Transport Simulator (HINTS) platform that starts with an ab initio calculation of the energetics of 
individual nanoparticles, then forms a NP solid of several hundred NPs, and finally simulates transport across 
this NP solid by a Kinetic Monte Carlo method24,25. HINTS can simulate 500–2,000 nanoparticles. A reassuring 
validation of HINTS emerged from simulating the dependence of the mobility of PbSe NP layers as a function 
of the NP diameter. The results in24,25 closely tracked the experimental results of Liu et al., who studied the elec-
tron mobility of PbSe layers in a FET geometry26. More recently, we studied commensuration effects in bilayer 
NP solids27.

However, these theoretical efforts only considered NP solids with homogeneous disorder: the NPs were 
arranged either in a close-packed glassy/jammed structure, or on an ordered superlattice (SL) with disorder 
only in the NP size. In contrast, representative scanning electron microscope (SEM) images, like in Fig. 1, taken 
of NP solids with millions of NPs, conspicuously reveal that typical NP solids are also characterized by disorder 
on much larger length scales. These defects, often on the µm length scale, have sizes well beyond the capabilities 
of any published technique, including HINTS. Therefore, there is a need for transport simulation methods that 
are capable of capturing mesoand macro-scale defects and their effect on transport.

We performed one step in this direction previously by extending our HINTS method to include percolative 
effects into homogeneously disordered NP solids25. This simulation captured physics on the longer length scales 
of percolative clusters. Our main message was that a metal–insulator transition (MIT) occurs when a percolating 
path of metallicconnected NPs develops across the entire sample. We described this MIT as a Quantum Percola-
tion Transition. However, this work still did not incorporate planar defects.

Simulation methods
To answer the above needs, in this paper we report our work that boosted the capability of our HINTS platform 
by introducing additional hierarchical layers to capture the effect of planar defects on the transport in NP sol-
ids. First, we used HINTS to individually model a NP superlattice (SL) with one planar defect that was either a 
generic grain boundary or a twin plane. Second, we simulated transport across a large number of such single-
defect SLs, and determined the distribution of the mobilities of the single-grain-boundary NP SLs and that of 
the single twin-plane NP SLs. We also determined the distribution of the mobilities of undefected NP SLs with 
only homogeneous NP disorder. Third, to reach a simulation scale approaching the scale of the NP solids in the 
experiments, we built a resistor network where the individual resistor values were taken from the three mobility 
distributions with predetermined probabilities. Motivated by our previous work25, we determined the resistance 
of the entire resistor network by changing the fraction of undefected NP SLs within the network. Finally, we 
analyzed our results by a finite size scaling method.

We call this boosted HINTS platform the TRIDENS: the “TRansport In DEfected Nanoparticle Solids” Simu-
lator. With TRIDENS, we are capable of capturing the physics from atomistic length scales up to the scale of NP 
solids in the experiments by integrating the simulations on several hierarchical layers. The complete hierarchical 
structure of TRIDENS is presented below.

(1)	 The energy levels of individual PbSe NPs are determined by adapting a k·p calculation within the NP diam-
eter range of 5–7 nm. The valence band and conduction band values have been validated via comparison 
to optical experiments28. Here we focus on PbSe NPs because they are of considerable interest for solar 
applications due to their large Bohr exciton radius and small direct bulk bandgap29, and exhibit the pos-
sibly game-changing multipleexciton generation (MEG)30. For these reasons, PbSe NPs are often thought 
to have strong promise for solar applications.

(2)	 The electron–electron interaction is included on the level of an on-site, or self-charging energy expression, 
EC, defined as:

where n is the number of electrons on the NP. Σ0 is the self-charging energy of loading the first electron 
onto a neutral NP. Σ is the extra energy it takes to load each additional electron onto the NP due to repul-
sive Coulomb interaction with the (n-1) electrons already on the NP, as well as the interaction with the 
induced image charge.
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This self-charging energy can be calculated by a variety of methods, including the semi-empirical pseudopo-
tential configuration interaction method of Zunger and coworkers31 and the single NP empirical-perturbative 
hybrid calculations of Delerue32. In this paper we report results with the latter approach. In this approach

 and

For the dielectric constant inside the NP, we assume that it equals the bulk high frequency dielectric constant 
of PbSe, taken to be 22.0. To model the dielectric constant of the medium surrounding the NP, we account for 
both the organic ligand shell of the NP as well as the presence of neighboring NPs. We assume that the ligands 
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Figure 1.   Common planar defects in PbSe nanoparticle superlattices. (a) Grain map of a typical region of an 
PbSe NP superlattice film showing the location of several types of planar defects. Blue, yellow, and red lines 
denote wide-angle grain boundaries, twin planes, and more complex, unclassified planar defects and defect 
clusters, respectively. The image is a montage of fifteen low-magnification, high-resolution SEM images. 
Voids, step edges, vacancies, and other types of non-planar defects are also visible in the montage. (b) Higher-
magnification secondary electron image of a bicrystalline region of an epi-SL film with two (100)SL-oriented 
SL grains meeting at a twin plane. (c) Image of another region of the same epi-SL film showing multiple grain 
boundaries between (100)SL- and (01¯1)SL-oriented grains, as well as several other planar defects.
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themselves have a dielectric constant of 2.0. The dielectric constant of the entire solid is then calculated using 
the Maxwell–Garnett (MG) effective medium approximation:

where κ is 2 for spherical NPs, and f is the filling factor.
We note that the long range part of the Coulomb interaction can be easily included into the calculation. The 

long range interactions change the nature of transport from activated hopping to Efros-Shklovski type variable 
range hopping. However, many experiments show that while this Efros-Shklovskii hopping dominates at low 
temperatures, as the temperature is raised past 150–200 K, the transport becomes dominated by nearest neighbor 
hopping33 Since our work focuses on temperature ranges around ambient room temperature, representing the 
Coulomb interactions with the on-site term only is appropriate.

(3)	 We modelled the electron transitions between neighboring NPs via a Miller–Abrahams phonon-assisted 
hopping mechanism:

where ν is an attempt frequency, chosen to be 1012 s−1, gij is the product of the initial density of states on 
NPi and the final density of states on NPj, and βij is the tunneling amplitude. βij is calculated using the 
WKB approximation as:

Here ∆x is the NP-NP surface-surface separation distance. m* is the effective mass of the electrons in the tun-
neling medium, approximated as 0.05me, the effective mass of electrons in bulk PbSe. It is noted that m* was 
estimated to be 0.3me in NPs26. Evac is the vacuum energy level, set to be zero as all other energy levels are 
defined relative to the vacuum. Eij is the tunneling energy, taken to be the average of the initial and final states 
of the hopping transition: Eij = (Ei + Ej)/2, where Ei is the energy level of NPi.

(4)	 To reach the length scale of hundreds of nanometers, we generated triclinic NP superlattices, of PbSe NPs 
with a 20 × 20x2 geometry, inspired by the 2D channel geometries of FETs used in transport experiments34. 
The triclinic unit cell was described with lattice constants a1 = a2 = a3 = 6.9 nm and angles α = β = γ = 99◦. 
The average NP diameter was 6.0 nm. Size and location disorder were introduced by assigning the NPs a 
diameter and lattice displacement vector according to Gaussian distributions of widths σ(diameter) = 0.4 nm 
and σ(location) = 0.3 nm respectively. See Fig. 2a for an example of one of these SLs. In our undefected SLs, 
these parameters yield a hβiji ’ 0.015 ± 0.02.

Layers (1)–(4) are the main constituents of our HINTS platform. HINTS is suitable for capturing the effects 
of homogeneous disorder, i.e. disorder associated with the size and location of the NPs that varies from site to 
site of the NP superlattice, but does not involve planar defects. Next, we describe the additional layers of the 
TRIDENS that enable us to access length scales well beyond the reach of HINTS.

(5)	 As a first step, we introduced a single planar defect into each generated NP superlattice (SL). We carefully 
analyzed SEM images of NP solids with millions of NPs of the type of Fig. 1, and determined the predomi-
nant types of defects and their statistics, such as the lengths and densities of the planar defects. Based on 
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Figure 2.   Top down views of the three types of the simulated NP SLs: (a) An undefected NP SL, characterized 
by the NPs having only size and location disorder; (b) A NP SL, containing a twin plane, as denoted by the 
dashed line, also with NP size and location disorder; and (c) An NP SL, containing a grain boundary, also with 
NP size and location disorder. NP color corresponds to NP diameter, as indicated in the colorbar on the left.
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the SEM image analysis, the most relevant and oft-occurring planar defects were twin planes and grain 
boundaries.

(a)	 Twin planes: the NP superlattice is mirrored across a boundary plane, creating two crystallites, or 
grains,which have reflected in-plane unit cells. Twinned grains can also be related by a 180◦ rotation nor-
mal to the twin plane. The twin plane is always parallel to a possible crystal face (but not any planes of 
complete symmetry, e.g. it is distinct from all space group symmetries), and thus requires the two grains to 
share some NP lattice sites along the boundary plane. See Fig. 1b and Fig. 2b. The high symmetry nature of 
twin planes makes them a low disorder defect, compared to the more highly disordered grain boundaries 
discussed below. In our generated samples the twin planes were created in a (100) in-plane oriented SL, 
and the orientation of the twin plane itself was randomly selected on a sample-by-sample basis from all 
possible crystal planes which would span the entire NP simulation SL in the x-direction (in order to bisect 
the SL). As an example, one such boundary orientation is that of a (01¯2)/(02¯1) twin boundary, where 
(01¯2) is the orientiation of the boundary plane in grain 1, and (02¯1) is the orientiation of the boundary 
plane in the mirrored grain 2.

(b)	 Grain boundaries: the NP superlattice is again fractured by a boundary plane. However, unlike with twin-
planes, the superlattice is not mirrored across the boundary plane. There are two main types of grain 
boundaries. 1) Tilt grain boundaries, where the in-plane SL orientation is the same in the two grains, but 
they are spatially rotated in-plane relative to each other. The angle of rotation can be divided into “low 
angle” and “high angle” regimes, where the higher the angle of rotation, the more disordered the grain 
boundary (with large areas of poor fit). 2) Twist grain boundaries, where the in-plane superlattice orienta-
tions of the two grains are different (rotation occurs along an axis perpendicular to the boundary plane). 
Such grain boundaries will result in two crystallites/grains with different in-plane superlattice orientations 
(e.g. a boundary between a (100)SL in-plane orientation and a (101)SL in-plane orientation).

In our generated samples, we simulated grain boundaries with a combination of tilt and twist mismatching. 
Specifically, the boundary plane separated grains of (100)SL in-plane orientation and (01¯1)SL in-plane orienta-
tion respectively, with the relative in-plane spatial orientation of the two grains depending on the angle of the 
boundary plane (chosen at random on a sample-by-sample basis). The boundary plane was always limited to 
angles which would span the entire NP simulation SL in the x-direction (in order to bisect the SL). This results in 
grain boundaries which are much more extensively disordered than twin planes, particularly when the boundary 
plane results in a high-tilt grain boundary. See Figs. 1c and 2c. Hereafter, we will refer to our specific combination 
of boundary mismatching as simply a “grain boundary”.

In total, we generated 30,000 NP superlattices, containing either one or two grains, where we varied the 
disorder of the NP diameters (see color code in Fig. 2), the on-site NP location disorder, and the orientation of 
the planar defects as viewed out-of-plane. Of these 30,000 NP SLs, 10,000 NP SLs had no planar defects, the next 
10,000 NP SLs contained one twin plane, and the last 10,000 NP SLs contained a grain boundary.

Figure 1 shows other types of defects as well. We determined that point vacancies have minimal effect on 
the mobilities in the insulating phase. One can also see tears/rips/voids/cracks in the SEM image. NP superlat-
tice fabrication technologies will be ready for technical application when they can minimize or eliminate such 
disruptive tears. For these reasons, we did not model either of these defects.

(6)	 Next, we determined the electron mobility across each of the 3 × 10,000 defected NP SLs. To do this, each 
NP SL was populated with electrons, randomly placing them on NPs, using the Mersenne Twister, until 
a predetermined electron density was reached. The chance of an electron being placed on any particular 
NP was uniform, independent of electron occupation and NP parameters. Data was only taken well after 
the system achieved equilibrium. A small voltage was applied across the sample to induce transport in the 
linear I-V regime, with periodic boundary conditions. Finally, the electron transport was simulated by 
evolving time via a kinetic Monte Carlo (KMC) algorithm. The sodetermined mobilities of the 3 × 10,000 
NP SLs were used to create the mobility distributions for the homogeneously disordered NP SLs, the twin-
plane-supporting NP SLs, and the grain-boundary-supporting NP SLs. The first class of NP SLs will also 
be referred to as “undefected NP SLs”, the latter two classes as “defected NP SLs”.

(7)	 To simulate NP solids on mesoscopic length scales of the order of 10 µm or longer, we generated a network 
of thousands of these NP SLs, some with planar defects, some without planar defects. In the present work, 
we filled the network with these NP SLs at Random. Each defected NP SL classical resistor network, with 
resistors chosen at random from the distributions determined in step 6. Which distribution the resistors 
were chosen from was also randomly determined, according to a pramaeter that describes the fraction of 
defected resistors Random numbers were generated using standard numpy libraries. Each resistor repre-
sents an NP SL with an L = 20 length planar defect. One notes that in Fig. 1 many of the planar defects are 
considerably longer than L = 20. Representing planar defects with longer lengths is possible in TRIDENS 
by placing defected NP SLs correlated along the lines of the network. Such longer range defect-correlations 
were not pursued in the present work, but will be included in future work. The mobilities of the individual 
NP SLs were drawn from the distributions determined in step (6).

With these preparations, the mobility of the overall NP solid was determined by treating this NP SL network 
as a resistor network. We used the Laplacian method of F. Y. Wu et al. to calculate the overall resistance across 
the entire network35. The electrodes were modeled as equipotential metallic strips spanning the entire length of 
the sample edge and, thus making them equivalent to a single node on a resistor network. These electrodes were 
coupled to the sample by contact resistors that were chosen according to the same rules as the bulk resistors.
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(8)	 Having determined the overall mobility of the network of defected NP SLs, we adapted finite size scaling 
methods to analyze whether this resistor network model built from defected NP SLs had a phase transi-
tion, or a crossover, and if so, what are the properties of this transition. To this end, we repeated step (7) 
for resistor networks of various sizes, including 32 × 32, 64 × 64, and 128 × 128. As detailed below, our finite 
size scaling found a percolation transition that separates a low mobility insulator from a high mobility 
insulator. We used finite size scaling to determine the critical properties of this transition, including the 
critical point, the critical exponents and the universal scaling function.

Experimental methods
Materials.  Lead oxide (PbO, 99.999%), oleic acid (OA, technical grade, 90%), diphenylphosphine (DPP, 
98%), 1octadecene (ODE, 90%), ethylene glycol (EG, 99.8%, anhydrous), acetonitrile (99.99%, anhydrous), hex-
anes (≥ 99%, anhydrous), toluene (99.8%, anhydrous), and (3-mercaptopropyl)trimethoxysilane (3-MPTMS, 
95%) were purchased from Sigma Aldrich and used as received. Trioctylphosphine (TOP, technical grade, > 90%) 
and selenium (99.99%) were acquired from Fluka and mixed for 24 h to form a 1 M TOP-Se stock solution. Eth-
ylenediamine (EDA, > 98.0%, anhydrous) was purchased from TCI and mixed with acetonitrile in a 1:1 volume 
ratio to make a 7.5 M EDA stock solution, this is a slight modification to a published procedure34.

Quantum dot synthesis.  In this experimental section we adopt the alternative terminology of “quantum 
dots” to refer to the nanoparticles, to accommodate alternative terminologies preferred by different communi-
ties. PbSe QDs were synthesized and purified air-free using a slight modification of a published procedure34. 
Briefly, PbO (1.50 g), OA (5.00 g), and ODE (10.00 g) were mixed and degassed in a three-neck round-bottom 
flask at room temperature. The mixture was heated to 120 °C under vacuum to form dissolved Pb(OA)2 and 
dry the solution. After 1 h at 120 °C, the Pb(OA)2 solution was heated to 180 °C under argon flow and 9.5 mL 
of a 1 M solution of TOP-Se containing 200 µL of DPP was rapidly injected into this hot solution. An immedi-
ate darkening of the solution was observed, and the QDs were grown for 105 s at ∼160 °C. The reaction was 
quenched with a liquid nitrogen bath and injection of 10 mL of anhydrous hexanes. QD purification and SL 
fabrication were performed in glove boxes with < 0.5 ppm O2 content. The QDs were purified by two rounds of 
precipitation/redispersion using acetonitrile/toluene and stored as a powder in the glove box.

Substrate preparation.  Following and slightly modifying the procedure seen in34, a single-side polished Si 
substrate was cleaned using 10 minutes of sonication in acetone, Millipore water, and then isopropanol, followed 
by drying in a stream of flowing air. The cleaned substrate was immersed in a 100 mM solution of 3-MTPMS in 
toluene for 1 hour to functionalize its native SiOx surface for improved QD film adhesion, then rinsed with neat 
toluene and dried in flowing air.

Superlattice fabrication, electron microscopy imaging.  Quantum dot superlattice films were fab-
ricated and imaged using (modified) published procedures34. An oleate-capped superlattice was prepared in a 
glovebox (<2 ppm O2) by drop casting 60 µL of 20 g/L dispersion of PbSe QDs in hexanes onto 7 mL of ethylene 
glycol (EG) in a Teflon well (3.5 × 5 × 1 cm). After depositing the QD solution, the well was immediately covered 
with a glass lid. The hexane evaporated over 30 minutes, resulting in a smooth, dry QD film floating on the 
EG surface. The glass lid was then removed and 0.1 mL of a 7.5 M solution of EDA in acetonitrile was slowly 
injected (5–10 sec) into the EG under the QD film using a 1 mL syringe. After 30 seconds of exposure to EDA, 
the resulting epi-SL film was stamp transferred to the Si substrate using a vacuum wand, rinsed vigorously with 
acetonitrile, and dried under flowing N2.

Scanning electron microscopy (SEM) imaging was performed on an FEI Magellan 400 XHR SEM operat-
ing at 10 kV. Grain maps were produced by stitching together fifteen 6144 × 4415 pixel images acquired at 
50,000 × magnification, providing the ability to resolve individual QDs in the sample. Image stitching was per-
formed in Adobe Photoshop. Grain boundaries, twin planes, and other planar defects were then located by eye 
and drawn in manually.

Superlattice samples for TEM analysis were prepared by stamping QD films from the EG surface onto holey 
carbon TEM grids without a carbon film coating. The use of TEM grids free of a carbon film was critical for 
high-quality secondary electron imaging (SEI) in the TEM. SE imaging was performed on a JEOL JEM-2800 
TEM operating at 200 kV using a probe size of 1.0 nm.

Results and discussion
TRIDENS simulations.  We laid the foundation of our simulation by carrying out steps (1)–(4), as done in 
a standard HINTS study. To carry out step (5), we generated 3 × 10,000 defected NP SLs by starting with homo-
geneously disordered but undefected 20 × 20 × 2 NP SLs whose shape broadly corresponded to FET geometries, 
and then inserted a twin plane planar defect into 10,000 NP SLs, and a grain boundary planar defect into another 
10,000 NP SLs. The latter sometimes involved removing a few NPs to keep the shape of the NP SLs largely 
unchanged.

Next, we executed step (6) by determining the mobility distribution of the defected NP SLs. The mobility 
distribution for the homogeneously-disordered, undefected NP SLs is shown in Fig. 3a. The mobility distribution 
of the twin-plane NP SLs is shown in Fig. 3b. Finally, the mobility distribution of the grain-boundary NP SLs is 
shown in Fig. 3c. All three distributions were approximately normal, and could be well characterized by a mean 
and a standard deviation. The mobility of the undefected NP SLs was 0.42 ± 0.1 cm2/Vs, the mobility of the NP 
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Figure 3.   Mobility distributions of the 3 types of NP SLs: (a) Undefected NP SLs, the NPs having size and 
location disorder; (b) NP SLs, each containing a twin plane, also with NP size and location disorder; (c) NP 
SLs, each containing a grain boundary, also with NP size and location disorder. Displayed in each panel is the 
average mobility and standard deviation of Gaussians fitted to the distributions. All simulations were performed 
at a temperature of T = 300 K.
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SLs containing twin planes was 0.16 ± 0.06 cm2/Vs, and the mobility of the NP SLs containing grain boundaries 
was 0.09 ± 0.05 cm2/Vs, as shown.

We then performed step (7) by assembling a resistive network whose individual links had mobilities selected 
from the above determined mobility distributions. To identify the paradigmatic aspects of the behavior of the 
mobility of the NP solid, we selected the links from the highest mobility undefected NP SL distribution with a 
probability p, and from the lowest mobility grain boundary NP SL distribution with a probability (1 − p). We 
used this p, the fraction of the high mobility undefected NP SLs/links as the control parameter of our study. 
Initially we expected that when the probability (1 − p) of the low mobility defected NP SLs becomes small, then 
the electrons will be able to “flow around” the low mobility links through the high mobility links. Put differently, 
the high mobility links will be able to approximately short out the low mobility links. Had this expectation been 
true, then the mobility of the NP solid should have exhibited a saturation as p approached 1.

Figure 4 shows the evolution of the mobility of NP solids with p. Visibly, our initial expectation was not 
confirmed as the mobility did not show a saturation as the fraction p of the undefected NP SLs approached 1.0. 
The high mobility links did not “short out” the low mobility links. A possible explanation is that the mobilities 
of the different NP SLs were not different enough for such a short-out. We checked the robustness of this result, 
and found the same characteristic non-saturating shape in other 2D geometries, as well as in 3D bulk networks.

Bimodal percolation transition: Next, we investigated whether there is a percolative critical behavior as the p 
fraction of high mobility links is varied. The simple case of a resistor network, where the links either have a finite 
(electronic) mobility µ with probability p, or a non-conductive zero mobility with probability (1 − p), has been 
extensively analyzed. The conductivity of such a resistor network exhibits a critical behavior across the percola-
tion critical point pc with a power law dependence µ ∝ (p − pc)t, where the critical exponent t > 1 is universal, 
and pc is the percolation threshold.

Remarkably, the closely related bimodal problem of the links of a network having a high conductivity σ(high) 
with probability p, or a low but finite conductivity σ(low) with probability (1 − p) has been rarely analyzed. Efros 
and Shklovskii (ES) established the broad framework for the analysis, when they made the analogy between this 
bimodal distribution problem and the problem of how the critical behavior of a spin system gets modified by 
the presence of a symmetry breaking magnetic field36. They hypothesized a power law critical behavior for the 
network conductivity, where the universal scaling function at the critical point p = pc is anchored by the ratio of 
the high and low conductivities. However, they did not determine either the critical exponents, or the universal 
scaling function.

Finite size scaling: Next, we attempt to adapt the ES bimodal framework to describe our TRIDENS-simulated 
results. The finite size L of the simulated samples makes it necessary to analyze the results by finite size scaling. 
Normally this is handled by the introduction of a scaling function with a single variable: the ratio of the sample 
size L to the correlation length ξ = ξ0P−ν,where p =

|p−pc|
pc  that smoothes over the non-analytic critical behavior.

However, for the present, bimodal mobility distribution problem ES argued that the ratio of conductivities 
plays the role similar to an external magnetic field in a critical magnetic system: σlow

σhigh
= h , and already smoothes 

Figure 4.   Mobility of a 32 × 32 resistor network whose resistors/links are chosen from two distributions, the 
low mobility grain boundary NP SLs mobility distribution and the high mobility undefected NP SLs mobility 
distribution. The fraction p of the high mobility NP SLs sweeps the 0 to 1 region. The error b ars are smaller 
than the data points.
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over the critical behavior. Therefore, the model needs to be analyzed by a two variable finite size scaling form, 
where the ratio L/ξ is a second factor that smoothes the critical behavior:

where µ(x,y) is the universal finite size scaling function, and α,ν and ∆ are critical exponents. The analysis is more 
tractable if the singular P dependence is absorbed by factoring out hp−α/� from µ, leaving us with:

Since µ0(x,y) is a two-variable function, the full testing of the finite size scaling hypothesis would require a 
quite extensive computational effort. Therefore, we narrowed our analysis of the finite size scaling assumption 
to the first variable, hP−∆, while keeping the second variable, LPν, constant. As the lattice sizes were varied from 
L = 32 to L = 128, keeping LPν constant required the appropriate modification of P. We then chose the h values 
so that the critical regime on either side of the critical point pc was well sampled.

Figure 5 shows the scaled mobility hα/∆ as a function of h−1P∆ for a fixed value of LPν, for three lattice sizes, 
varying from L = 32 to L = 128. Reassuringly, we were able to achieve very good data collapse within the (− 0.1,0.1) 
critical regime around the critical point at P = 0, which remained acceptable out to (− 0.2,0.2). Using the literature 
values of v = 4/3 and pc = 0.5, the best collapse was reached with exponents α =  − 0.99 ± 0.02 and ∆ = 2.02 ± 0.02.

The success of the finite size scaling shows that the Efros Shklovskii analogy to critical spin systems in an 
external magnetic field is indeed appropriate for this bimodal percolation problem: as the fraction p of the high 
mobility undefected NP SLs increases, one can think of the evolution of the overall mobility as a modified per-
colation transition, rounded by the finiteness of the mobility of the low mobility NP SLs. As far as the authors 
know, this is the first report of the critical exponents and the universal scaling function of the bimodal distribu-
tion resistor network problem.

The following points are worth making. Figure 5 shows that the overall network electron mobility, or con-
ductivity, displays a marked transition from a low mobility insulator behavior when the high mobility NP SLs 
do not percolate yet, to a high mobility insulator behavior once the high mobility NP SLs percolated. Of course, 
both of these regimes are insulators, so while the geometry of the NP solid undergoes a genuine percolation 
transition, the conductive properties exhibit only a low mobility insulator-to-high mobility insulator transport 
crossover, not a genuine phase transition.

We have studied a version of this problem recently on the level of our HINTS code25, where the NPs were 
connected with either low mobility activated insulating links, or high mobility, non-activated metallic links. In 
that version of the problem, the underlying percolation transition of the metallic links of the NP solid drove a 
genuine metal–insulator-transition (MIT), as the percolation of the metallic links created a genuine metallic 
phase. We conceptualized that MIT as a Quantum Percolation Transition, and adapted the ES bimodal mobil-
ity distribution percolation model for its description, as at any fixed temperature that version of the problem 
also consisted of a bimodal mobility distribution with low mobility links and high mobility links. Whether the 
high mobility phase is a metal or a high mobility insulator can be identified from the temperature dependence 
of its conductivity. In the absence of the present detailed finite-size scaling study, in25 we developed a simple, 

(7)µ(P, L, h) = P−αµ
(

hP−�, LPν
)

(8)µ(P, L, h) = h−α/�µ0
(

hP−�, LPν
)

Figure 5.   Scaled data of µhα/∆ vs. h−1P∆ for 3 different lattice sizes. The product LPν is held constant.
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mean-field model form for the scaling function that described the mobility’s evolution from the low mobility 
insulator to the high mobility metal. With the notation of the present paper, the mean field exponents were α =  − 1 
and ∆ = 1. This enabled us to create the dynamical phase diagram of the model on the electron filling—disorder 
plane, where the MIT separated the insulating phase with activated conductivity from the metallic phase with 
non-activated conductivity.

The present bimodal TRIDENS study scales up our previous bimodal HINTS work to much larger length 
scales. The key distinction is that the building blocks of the HINTS network were the individual NPs, whereas in 
TRIDENS the building blocks are the NP SLs with around a thousand NPs (in the present work, with 800 NPs). 
Further, in HINTS the origin of the bimodal mobility distribution was the presence or absence of metallic links 
between individual NPs, whereas here the origin of the bimodal mobility distribution is the presence or absence 
of an planar defect across the individual NP SLs. Obviously, the HINTS transport modeling that tracks individual 
electrons transitiong between individual NPs is more detailed than the resistor network of the present TRIDENS 
work. Nevertheless, since the building blocks of both the bimodal HINTS and the bimodal TRIDENS are low 
mobility links and high mobility links, we expected that the same ES bimodal percolation model with the same 
universal scaling function and exponents will capture the critical behavior of the bimodal TRIDENS results. 
The success of the data collapse with the ES finite size scaling form validated this expectation. While, of course 
several different analytic forms can be fitted to the universal scaling function that emerged in Fig. 5, nevertheless 
it was reassuring that in particular the mean-field function of the bimodal HINTS study:

was also consistent with it. Further, the α =  − 0.99 exponent of the TRIDENS scaling is approximately equal to 
the α =  − 1 mean field value within the margin of error. We noted that there was a difference regarding the ∆ 
exponent: TRIDENS gave a ∆ = 2.02, whereas in the mean field theory ∆ = 1. However, such differences occur 
typically between mean-field and numerically determined exponents. All in all, the substantial correspondence 
between our HINTS and TRIDENS works demonstrated that the ES bimodal percolation model is a good, 
quantitative description of how the underlying percolation transition of the NP solid drives a low-mobility 
insulator-to-high-mobility insulator transport crossover.

For completeness we mention that we implemented TRIDENS with randomly selecting high or low mobility 
NP SLs for the links. This corresponds to planar defects with a length of tens of NPs. However, the sample in Fig. 1 
has many defects that are much longer. Such long defects can be modelled by selecting defected SLs along lines of 
links in TRIDENS, in a correlated manner. Such correlated TRIDENS models will be pursued in a future work.

Conclusions
Transport in nanoparticle solids must be simulated on extremely large length scales, corresponding to millions 
of NPs, because NP solids exhibit spatial structures on several length scales, from the subtleties of individual NPs 
through the sensitive modeling of inter-NP transitions and through transport across homogeneously disordered 
SLs all the way to transport in NP SLs with large planar defects. Single-level computational methods are mani-
festly unable to span these length scales. This is why in our previous work we developed the multi-level HINTS 
method that was capable of simulating transport across NP solids with up to a thousand NPs. However, even 
HINTS is unable to capture the effect of planar defects on transport in NP solids of the size of tens of microns.

In this paper, we reported the development of the TRIDENS method that adds three further hierarchial 
layers on top of the HINTS method. In TRIDENS, we first introduced planar defects into individual NP SLs 
that comprised the order of about a thousand NPs. Then we used HINTS to simulate the transport across these 
defected NP SLs. We performed these HINTS transport simulations for tens of thousands of defected NP SLs, 
and constructed the distribution of the NP SL mobilities with planar defects. Second, the defected NP SLs were 
assembled into a resistor network with more than 104 NP SLs, thus representing about 107 individual NPs. This 
translated to length scales of tens of microns, approaching the experimental scales for NP solids. Third, and 
finally, the TRIDENS results were analyzed by finite size scaling to explore whether the percolation transition, 
separating the phase where the low-mobility-defected NP SLs percolate from the phase where the high-mobility-
undefected NP SLs percolate, drives a low-mobility-insulator-to-high-mobility-insulator transport crossover 
that can be extrapolated to genuinely macroscopic length scales.

Our extensive TRIDENS analysis generated the following results. On the level of individual NP SLs, we found 
that the average of the mobility for undefected NP SLs was 0.42 ± 0.1 cm2/Vs, for twin-plane-defected NP SLs 
0.16 ± 0.06 cm2/Vs, and for grain-boundary-defected NP SLs 0.09 ± 0.05 cm2/Vs. On average, grain boundary 
defects hinder transport about twice as much as twin planes. This result makes sense, as grain boundaries are 
more disruptive to lattice periodicity than twin planes, and transport across the grain boundaries involves longer 
hops between more distant NPs, whereas transport across twin planes proceeds across many NPs shared by 
the grains on the two sides of the twin plane, and thus it involves regular hop lengths. It is noteworthy that the 
introduction of planar defects into NP SLs reduced their mobility by a factor of up to 5. On one hand, this is a 
substantial suppression of the mobilities that drives a transport crossover, and thus demonstrates the imperative 
of minimizing the density of planar defects in NP solids to help their suitability for applications. On the other 
hand, this is not a qualitative, order-ofmagnitude suppression of the transport that indicate a Metal–Insulator-
Transition: those are driven by the loss of phase coherence.

On the highest, resistor network-level analysis of TRIDENS, we observed that the introduction of the planar 
defects immediately started to reduce the network mobility. This finding suggests that even small concentrations 
of planar defects are not shorted out in NP solids, and thus every reduction of the density of planar defects will 
lead to further improvements of the transport in NP solids. Among the planar defects, the elimination of grain 
boundaries pays more dividends than that of twin planes.

(9)µ0
(

hP−�, LPν → ∞
)

= 1/(1 + P/h)



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7458  | https://doi.org/10.1038/s41598-021-86790-2

www.nature.com/scientificreports/

For the theoretical description, we adapted the Efros-Shklovskii bimodal mobility distribution percolation 
model. We performed a finite size scaling analysis of the TRIDENS network mobilities. We demonstrated that 
increasing the density of the undefected NP SLs drives an underlying, structural/geometric percolation transition 
in the NP solid, which in turn drives a low-mobility-insulator-to-high-mobility-insulator transport crossover. 
We demonstrated that our adaptation of the ES bimodal theory’s two-variable scaling function is an effective 
tool to quantitatively characterize this low-mobility-insulator-to-high-mobility-insulator transport crossover. 
For context, we discussed the analogies with the Quantum Percolation Transition we developed in our earlier, 
MIT-focused work25.
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