
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16587  | https://doi.org/10.1038/s41598-021-96057-5

www.nature.com/scientificreports

A particle swarm optimization 
approach for predicting the number 
of COVID‑19 deaths
Mohamed Haouari* & Mariem Mhiri

The rapid spread of the COVID-19 pandemic has raised huge concerns about the prospect of a major 
health disaster that would result in a huge number of deaths. This anxiety was largely fueled by the 
fact that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the 
disease, was so far unknown, and therefore an accurate prediction of the number of deaths was 
particularly difficult. However, this prediction is of the utmost importance for public health authorities 
to make the most reliable decisions and establish the necessary precautions to protect people’s 
lives. In this paper, we present an approach for predicting the number of deaths from COVID-19. This 
approach requires modeling the number of infected cases using a generalized logistic function and 
using this function for inferring the number of deaths. An estimate of the parameters of the proposed 
model is obtained using a Particle Swarm Optimization algorithm (PSO) that requires iteratively 
solving a quadratic programming problem. In addition to the total number of deaths and number of 
infected cases, the model enables the estimation of the infection fatality rate (IFR). Furthermore, 
using some mild assumptions, we derive estimates of the number of active cases. The proposed 
approach was empirically assessed on official data provided by the State of Qatar. The results of our 
computational study show a good accuracy of the predicted number of deaths.

In the last days of December 2019, a mysterious disease was first diagnosed in Wuhan City, Hubei Province, 
China. Within days, a genomic analysis revealed the disease was caused by a new coronavirus called severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2. Shortly after, the World Health Organization (WHO) 
named the new disease COVID-19, and assessed the on-going outbreak as a pandemic. Since January 2020, and 
like a tsunami, a SARS-CoV-2 wave has rapidly spread across the world and has silently claimed in its wake the 
lives of millions of people. Public health authorities around the world had to face a very serious situation that 
was extremely complicated by the lack of important key facts related to the characteristics of SARS-CoV-2. In 
this article, we address three critical (related) questions that policymakers around the world have faced since the 
start of the pandemic. These questions are the following:

•	 Q1: What is the extent of the pandemic in the population?
•	 Q2: What is the infection fatality rate (IFR)?, which is defined as the ratio between the number of deaths due 

to the disease and the number of infected individuals (this rate should not be confused with the so-called 
case fatality rate (CFR), which is equal to the death rate of individuals who test positive).

•	 Q3: What is the expected number of deaths?

Clearly, answering to Q1 will provide a key to Q2 and thereby will make Q3 pretty easy. However, the former 
question is extremely challenging because a significant portion of positive cases are asymptomatic and therefore 
remain largely undetected. For instance, a recent study by Anand et al.3 found that in the US, the number of 
individuals who formed antibodies against SARS-CoV-2 (which is an evidence that they contracted the disease) 
represents about ten times the number of those that were tested positive. However, answering these questions 
is of utmost importance for public health authorities in order to design the most effective response policies to 
contain the epidemic, mitigate its devastating impact, and save lives. Obviously, testing an entire population for 
infected cases is, in most cases, out of the question. Therefore, sampling is widely used to obtain estimates of the 
extent of the epidemic. In particular, measures of the prevalence of SARS-CoV-2 antibodies in large population 
samples has been used by many authors for deriving estimates of the rate of infection3. In this article, we take a 
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purely mathematical/algorithmic approach to answer the aforementioned questions. Our main goal is to derive 
a mathematical model to predict the number of deaths from COVID-19. Moreover, the model can be used to 
obtain estimates of IFR, number of infected cases and number of active cases.

In addition to its simplicity, a special feature of the proposed approach is that it relies on parsimonious input 
data. More specifically, it requires the following inputs: (1) Daily number of deaths, and (2) Minimum and 
maximum time elapsed from infection to death (no distribution is required). Furthermore, to obtain estimates 
of the number of active cases, minimum and maximum time between infection and recovery are needed as well. 
The basic idea is to model the total number of infected cases using a generalized logistic function (also called 
Richards’ curve) having four parameters. These parameters are estimated by minimizing the sum of the quadratic 
errors between the actual cumulative number of deaths and the predicted ones. An approximate solution to 
the optimization problem is obtained using a Particle Swarm Optimization algorithm (PSO). The effectiveness 
of the approach is assessed through experiments that were carried out on official data provided by the State of 
Qatar. The choice of this country is motivated in particular by the fact that since the detection of the first local 
COVID-19 positive case (on February 29, 2020), the epidemic has spread on such a large scale that Qatar has 
topped the world ranking for the rate of positivity in COVID-19 (which is measured as the ratio of positive cases 
to the total population).

Literature review
As per the study carried out in4, mathematical predictive models dealing with COVID-19 can be classified into 
two main categories: transmission dynamics models and phenomenological models. The main purpose of the 
first models category is to describe the mechanisms underlying an epidemic and understand its behaviour as 
well as the effects of human interventions. These models use a large number of parameters unlike the second 
models category. Many research studies were conducted to provide a transmission dynamic model for COVID-
19. In5, an SIR (susceptible-infected-recovered) epidemic model for COVID-19 spread in Indonesia with fuzzy 
parameter was constructed by taking into account the factors of vaccination, treatment, health protocols, and 
the virus-load. In6, a conceptual mathematical model on the transmission dynamics of COVID-19 between the 
frontliners and the general public was formulated by considering an SEIR (susceptible–exposed–infected–recov-
ered) compartment model where a huge number of parameters is required (up to 23 parameters). According 
to the available infection data, authors in7 elaborate a dynamical model based on the fractional derivatives of 
nonlinear equations that describe the outbreak of COVID-19. Such a model necessitates a very large number 
of parameters. An epidemiological model whose implementation is made in Excel spreadsheets is developed 
in8. When adjusting many parameters, it was shown that the model follows the evolution of COVID-19. A new 
SIR model was developed in9 including direct and fomite transmission as well as household structure applied 
to COVID-19. The model involves many parameters such as: the infection rate related to direct transmission, 
the infection rate related to fomite transmission, the minimum contact radius and the average number of daily 
cross-household encounters between a susceptible and an infected person. In10, a fractional epidemic model in 
the Caputo sense taking into account quarantine, isolation, and environmental impacts was developed in order 
to track the dynamics of the COVID-19 pandemic. A Gaussian Process Regression model was proposed in11 to 
predict the number of COVID-19 deaths. It was compared to Artificial Neural Network model. The study exam-
ines the impact of age, number of smokers and number of diabetic patients on increasing the number of deaths.

Phenomenological models which rely on a limited number of parameters, can afford a quick epidemic forecast 
efficiently4. In this context, a bimodal lognormal distribution function is developed in4 for the prediction of the 
time distribution of COVID-19 deaths. Nevertheless, this model cannot be used for estimating the IFR nor the 
number of active cases. In12, a demographic scaling model for estimating the total number of COVID-19 infec-
tions was developed. This approach requires the following input data: the number of COVID-19-related deaths 
for the population of interest; and the age-specific infection fatality rates from a reference population, scaled to 
match the target population based on life tables. The study in13 deals with the impact of air pollution during the 
COVID-19 pandemic on public health where a linear regression analysis was conducted. It was demonstrated 
that geo-environmental conditions can speed up the spread of COVID-19 in Italy and thus contribute to higher 
number of infected individuals and deaths.

Numerous research studies were conducted to investigate the influence of socioeconomic, demographic, 
climatological and environmental factors on the spread on COVID-1914. The idea in14 consists in proposing an 
index quantifying the environmental risk of exposure of cities or regions to future epidemics of the COVID-19 
and similar pandemics. Such an index helps policymakers in preventing future epidemics. In15, the study investi-
gates correlation of the spread and decay durations with population density, temperature, and absolute humidity 
in four countries. In16, the study shows how the duration of lockdownd due to the COVID-19 pandemic, has 
an impact on the rates of infected people and deaths, as well as the growth of Gross Domestic Product (GDP) 
of nations. A comparative analysis of the first and second wave of COVID-19 was made in17. This study helps in 
establishing adequate decisions regarding the public health versus next COVID-19 waves or other pandemics. 
The approach of18 analyzes the impact of socio-economic factors on the reduction of the COVID-19 fatality rate. 
It suggests that high GDP per capita, high healthcare spending and low levels of air pollution can reduce the fatal-
ity rate. An estimation study of the dispersion parameter was developed in19. This parameter helps in measuring 
the heterogeneity in COVID-19 transmission. The distribution of the number of secondary cases is considered 
as a negative binomial (NB) distribution with the dispersion parameter. In20, an estimation study of the excess 
of deaths in the United States due to the COVID-19 pandemic from March to May 2020 was conducted. The 
approach was based on data on all-cause deaths and pneumonia/influenza/COVID-19 deaths. An estimation 
study of age and sex-specific excess mortality risk and deaths due to COVID-19 was elaborated in21. The study 
involves the estimation of life expectancy at birth and lifespan inequality too.
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Unlike the aforementioned studies, our approach describes a novel phenomenological model that enables 
to derive an estimate of the number of positive cases (including the undetected cases) along with the IFR. Our 
work is in line with many mathematical approaches developed so far to model various epidemics such as severe 
acute respiratory syndrome (SARS)22–24, Ebola25, Middle East respiratory syndrome (MERS)24,26, etc. Indeed, the 
authors of22 proposed a simple mathematical model to predict the number of cases and deaths of SARS. Unlike 
the algorithmic estimation methods, the developed model consisted in trying out several values of the parameters 
enabling the best fitting that matches the observed data. This modelization is considered simple to help the front 
line public health practitioners. In25, the study was about modeling the transmission dynamics of Ebola virus 
disease in Liberia and estimating the basic reproduction number when there is no control measures. It has been 
shown that the epidemic can be well contained if isolation and safe burial measures are taken. The provided 
results help in establishing guidance and allow the spread control of the virus. A compartmental model for the 
outbreak of MERS similar to SARS models was studied in26. A coupled system of non linear ordinary differential 
equations was considered. The study showed that the contact coefficients, the isolation rate constant and the 
transmission factor have a huge impact on the containment time and the outbreaks severity. In23, an SEIJR model 
(susceptible, exposed, infected, diagnosed, recovered) is considered for the study of SARS epidemic by including 
diffusion in the system in order to examine the spacial spread of the disease. The diffusion impact on the dis-
ease spread was investigated for different initial population distributions and interventions effect was analyzed. 
Authors in27 modeled the interaction between the epidemic spreading and information diffusion by developing 
a two-layer network. The study showed that the knowledge diffusion has a significant impact on controlling not 
only rumor but also epidemic. The purpose of28 consisted in developing a global threshold dynamics for several 
SVEIS (susceptible, vaccinated, exposed, infectious) epidemic models with temporary immunity, vaccination, 
latency and nonlinear incidence. The study revealed that reducing the outbreak peaks (such as: global seasonal 
influenza burden, measles cases surge and COVID-19 pandemic) can be efficient and ensured with timely vac-
cination more than other measures.

Since the first weeks of the COVID-19 epidemic, multiple research studies were elaborated aiming at predict-
ing the new virus evolution and dynamics in order to guide public health authorities to take the most reliable 
decisions to protect people. A comparison study of the epidemics spread has been elaborated in24 between the 
new virus COVID-19, SARS and MERS. A propagation growth model was established for the three epidemics 
and a nonlinear fitting was considered for the determination of their parameters. The obtained results confirmed 
that the COVID-19 presents the highest growth rate and the shortest multiplication cycle versus SARS and 
MERS. Authors in29 investigated two models to predict the COVID-19 confirmed cases in the most affected 
countries: the autoregressive integrated moving average (ARIMA) and the least square support vector machine 
(LS-SVM). It has been concluded that the LS-SVM contributes to more accuracy than the ARIMA model. The 
provided predictions enable authorities to take the most convenient decisions and precautions. In30, the main 
idea consisted in predicting the number of positive cases of the COVID-19 pandemic in Italy with time evolu-
tion. The mathematical model is based on official data as well as on the use of a cumulative distribution function 
by referring to the Gauss error function with four parameters. The proposed approach provided very good fit 
with the China case when plotting the cumulative number of cases and the cumulative number of fatalities. The 
number of positive cases in Italy is then predicted by performing a number of fits of the available data. The fit flex 
point and the day in which a substantial attenuation of daily cases are both determined. The latter results were 
confirmed by performing Monte-Carlo simulations. Authors in31 provided estimating models to characterize the 
dynamics of SARS-CoV-2 transmission in France. Delays from hospitalization to death and from hospitalization 
to ICU (Intensive Care Unit) are estimated by age range according to collected data. The infection fatality ratio 
is calculated from the Diamond Princess and the age distribution of the French hospitalized population. The 
risk of hospitalization, ICU admission and death are modeled and the impact of the lockdown has been taken 
into account to compute the transmission rate. Authors in32 developed prediction models based on Genetic 
Programming to estimate confirmed cases (CC) and death cases (DC) of COVID-19 in three states of India as 
well as whole India. The gene expression programming model used simple linkage function and provided robust 
and reliable results (for CC and DC). It relied on daily situation reports of COVID-19 published by the Indian 
government. It was shown that proposed models are less sensitive to variables, based on experimental data and 
can be used to predict future cases. The expression trees simplicity introduced basic mathematical equations 
that can be implemented without time consuming. The main idea of33 consisted in estimating the COVID-19 
evolution in terms of cumulative number of infected cases, daily infected cases and the Fisher–Pry. The predictive 
model was based on the SIR model (SIR stands for Susceptible, Infected and Recovered) reduced to the Verhulst 
equation. It provided a reliable and accurate prediction of the epidemic for a whole country. According to the 
Fisher–Pry plots for different countries, the SIR-Verhulst modelization proved its efficiency in quantifying public 
health measures. That’s why relying only on such a plot can be sufficient to reveal significant conclusions about 
the epidemic evolution in different countries.

In34, an estimation of the time between symptoms onset and outcome (death or recovery) is made based on 
individual-case data for infected cases dying due to COVID-19 in Hubei, Wuhan. This parameter was estimated 
as 17.8 days from onset-to-death and as 24.7 days from onset-to-recovery. Overall case fatality ratio (CFR) in 
China was estimated as 13.8% while the estimated overall infection fatality rate (IFR) was 0.66%. Authors pro-
vided detailed estimates of the two latter parameters for different age groups and showed higher ratios estimates 
for older persons (CFR: 13.4% and IFR: 7.8% for persons aged more than 80 years-old). In35, authors developed 
a modified SIR model to predict COVID-19 evolution in Italy. The idea consisted in considering the initial 
number of susceptible individuals as well as a proportionality between the detected number of positive cases 
and the actual/unknown number of infected individuals. The model parameters were determined for many 
Italian regions using a standard weighted least-squares optimization problem. The main idea in36 consisted in 
developing a prediction model of COVID-19 enabling a good fitting of data with a high regression coefficient 
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and predicting the total infections and the day of the infection peak. The model provided reliable predictions 
for China, Italy and Spain. The impact of partial/total lockdown on the pandemic spread was studied through 
the curves interpretation and it was concluded that the epidemic lifespan is lockdown independent. Authors in37 
proposed a generalized SEIR (susceptible, exposed, infectious, recovered) model including insusceptible cases, 
exposed cases and quarantined cases in order to predict inflection point and possible ending time of the COVID-
19 in 24 provinces in Mainland of China and 16 counties in Hubei province. The considered model involved 
several key parameters that were estimated as well such as: latent time and quarantine time. The model provided 
reliable results fitting the empirical public data. Authors in38, developed a new mathematical SEIR-HC [SEIR 
(susceptible, exposed, infectious, removed), HC (Hospital, Community)] model by considering two different 
social circles (individuals in hospital and community). A two-step iterative optimization approach is proposed 
to estimate the model parameters. It has been shown that quarantine and isolation are important measures that 
play a considerable role in reducing the epidemic spread. A mathematical model for COVID-19 was developed 
in39 taking into consideration the impact of imported cases and different rates (isolating, diagnostic, recovery, 
mortality). The model is dynamic for the epidemic transmission process in terms of quantity of daily infected 
individuals. The results showed that the isolation of infected cases and the strict control of input cases contribute 
in stopping the epidemic spread. Authors in40 developed a SEIQR (susceptible, exposed, infected, quarantined, 
recovered) mathematical model to study the COVID-19 spread. The model is based on nonlinear system of 
coupled ordinary differential equations. A study of the model in terms of consistency, stability and convergence 
was carried out and showed its validity. A two-parameter SIR mathematical model is investigated in41 to study 
the SARS-Cov-2 epidemic. The elaboration showed that the SIR model is restricted as it can be applied reliably 
on small populations to provide consistent results.

Optimization approach for COVID‑19 deaths estimation
In the sequel, we shall use the following notation.

•	 Input data

•	 [1, T]: Time interval during which observations on deaths were reported,
•	 D̃(t) : Reported number of new deaths on day t, t = 1, . . . ,T,
•	 C̃d(t) =

t∑
k=1

D̃(k) : Reported cumulative number of deaths on day t, t = 1, . . . ,T,
•	 τmin/τmax : Minimum/Maximum time from infection to death. These values can be defined as the lower 

and upper bounds of the 95% tolerance interval of the random time that elapses from infection to death,
•	 rmin/rmax : Minimum/Maximum time from infection to recovery. These values can be defined as the 

lower and upper bounds of the 95% tolerance interval of the random time that elapses from infection to 
recovery.

•	 Estimate values

•	 I(t): Estimate of total number of cases on day t, t = 1, . . . ,T,
•	 N(t): Estimate of number of new cases on day t, t = 1, . . . ,T,
•	 R(t): Estimate of number of recovered cases on day t, t = 1, . . . ,T,
•	 A(t): Estimate of number of active cases on day t, t = 1, . . . ,T.

The total number of cases I(t) is assumed to follow a generalized logistic function. The generalized logistic 
function is an S-shaped function that has been originally used for modeling growth curves. In contrast to the 
well-known logistic function (Verhulst function), the generalized logistic function is used for modeling situa-
tions where the growth curve is asymmetrical about its inflection point. Several variants of this function have 
been investigated so far. In this paper, we consider the following form:

where (K ,Q, �, ν) are four parameters allowing a high flexibility of the sigmoid curve. During the last years, the 
generalized logistic model has been widely used in epidemiology for deriving predictions of the spread of epidem-
ics including SARS42,43 and dengue fever44,45. Recently, several authors used it for deriving prediction models for 
the COVID-19 outbreak46–48. The computation of the optimal parameters of a generalized logistic function is a 
challenging nonlinear least squares problem that has been addressed by many authors49.

Remark  To our knowledge, all of the previously published papers dealing with the use of the generalized logistic 
function to predict the spread of an epidemic address the problem of fitting positive case data. However, in the 

(1)I(t) = 0, t < 0,

(2)I(t) =
K

(1+ Qe−�t)1/ν
, t ≥ 0,
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case of the COVID-19 outbreak, focusing on positive cases is largely questionable. Indeed, as the number of 
cases infected with COVID-19 is generally much higher than the number of positive cases diagnosed, the practi-
cal relevance of the approach then becomes questionable. In contrast, in this paper, we shall build a model for 
predicting the total number of cases (including both detected and undetected ones).

The number of new cases on day t is denoted by N(t) and is deduced as follows:

Consequently, the number of new deaths on day t is modeled as the the sum of a linear combination of the 
number of new cases of days t − τmax, t − τmax + 1, . . . , t − τmin . Hence, we set:

where aj is the expected rate of individuals that die j days after being infected ( j = τmin, . . . , τmax).
Accordingly, the cumulative number of deaths can be expressed as follows:

Similarly to the daily deaths, the number of infected people that recover on day t is modeled as the the sum 
of a linear combination of the number of new cases of days t − rmax, t − rmax + 1, . . . , t − rmin . Thus, we define:

where bj represents the rate of individuals that recover j days after being infected ( j = rmin, . . . , rmax).
Clearly, aj ( bj ) can be seen as the probability that an individual will die (recover) j days after being infected. 

Therefore, we have:

In the sequel, we shall make the assumption that the distribution of the bj is unimodal. We denote the mode 
by j∗ . This assumption is supported by the findings of34 who showed that the best fit of the onset-to-recovery 
distribution is a gamma distribution.

Therefore, the number of active cases on day t is denoted by A(t) and is given by:

To estimate the cumulative number of deaths, we use the following regression model:

where ǫt is a normally distributed random error with mean zero.
Using (8), we get:

(3)N(t) = 0, t ≤ 0,

(4)N(t) = I(t)− I(t − 1), t > 0.

(5)D(t) =

t−τmin∑

ζ=t−τmax

at−ζN(ζ ), t = 1, . . . ,T ,

(6)=

τmax∑

j=τmin

ajN(t − j), t = 1, . . . ,T ,

(7)Cd(t) =

t∑

k=1

D(k), t = 1, . . . ,T ,

(8)=

t∑

k=1

τmax∑

j=τmin

ajN(k − j), t = 1, . . . ,T ,

(9)R(t) =

t−rmin∑

η=t−rmax

bt−ηN(η), t = 1, . . . ,T ,

(10)=

rmax∑

j=rmin

bjN(t − j), t = 1, . . . ,T ,

(11)
τmax∑

j=τmin

aj +

rmax∑

j=rmin

bj = 1.

(12)A(0) = I(0),

(13)A(t) = A(t − 1)+ N(t)− D(t)− R(t), t = 1, . . . ,T .

(14)C̃d(t) = Cd(t)+ ǫt , t = 1, . . . ,T ,

(15)C̃d(t) =

t∑

k=1

τmax∑

j=τmin

ajN(k − j)+ ǫt , t = 1, . . . ,T .
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Given a quadruplet (K ,Q, �, ν) , we define Z(K ,Q, �, ν) as the optimal value of the following Quadratic Pro-
gramming (QP) problem:

Clearly, (QP) aims at finding the values of the aj’s, bj ’s and ǫt ’s that minimize the sum of quadratic errors 
between the reported cumulative number of deaths and the predicted ones. Constraints (17) and (18) are self-
explanatory, and constraints (19)–(20) enforce the unimodularity of the infection-to-recovery time distribution.

To find the parameters of the generalized logistic function, we formulate a Global Optimization problem (GO) 
that requires finding the quadruplet that minimizes Z(.). Hence, the problem reads as follows:

Finding a global minimum of Problem (GO) poses very hard challenges. Instead, we derive an approximate 
solution by using a Particle Swarm Optimization algorithm (PSO). Since its introduction about two decades ago 
by Kennedy and Eberhart50, this approach has been extensively used for solving hard continuous global optimi-
zation problems (See51–53 and the references therein). PSO algorithm was applied in several research studies to 
deal with COVID-19 prediction. In54, a susceptible-exposed-infected-quarantined-recovered-dead (SEIQRD) 
model was presented to predict the COVID-19 spread in Italy. The model parameters are estimated using the 
PSO algorithm. In55, a novel PSO-BLS (particle swarm optimization broad learning system) was developed 
to predict the dynamics of COVID-19. The proposed model shows higher accuracy and stability versus deep 
learning models when predicting the number of active infected cases and removed cases. Four phenomenologi-
cal epidemic models as well as SIR model were investigated in56 in order to predict the cumulative number of 
confirmed cases due to COVID-19 in Saudi Arabia and the possible end-date of the pandemic. The idea was 
based on an optimization approach using the PSO algorithm.

Once problem (GO) is solved, an IFR estimate is computed as the sum of the infection-to-death probabilities:

Numerical results
We consider the following settings: 

1.	 The minimum/maximum time from onset of symptoms to death is 5 days/21 days34.
2.	 The minimum/maximum time from onset of symptoms to recovery is 4 days/34 days34. The mode of this 

distribution is 22.
3.	 The mean incubation time (IT) of COVID-19 is about 6 days57. Hence, we set the minimum/maximum time 

from infection to death to 11 days/27 days, the minimum/maximum time from infection to recovery to 10 
days/40 days, and the mode of the infection-to-recovery distribution to 28 days.

4.	 The empirical data of cumulative deaths are provided in58,59. The date t = 1 corresponds to February 29, 2020, 
which is the date when the first positive case was detected in Qatar.

The proposed approach was implemented via MATLAB R2019b (we used the PSO subroutine embedded therein), 
and run on a machine with an Intel i5-2430M processor and 6 GB of RAM.

(16)(QP):Z(K ,Q, �, ν) = Min

T∑

t=1

ǫ2t

(17)
t∑

k=1

τmax∑

j=τmin

ajN(k − j)+ ǫt = C̃d(t), t = 1, . . . ,T ,

(18)
τmax∑

j=τmin

aj +

rmax∑

j=rmin

bj = 1,

(19)bj−1 ≤ bj , j = rmin + 1, . . . , j∗,

(20)bj ≥ bj+1, j = j∗, . . . , rmax − 1,

(21)aj ≥ 0, j = τmin, . . . , τmax,

(22)bj ≥ 0, j = rmin, . . . , rmax.

(23)(GO): MinZ(K ,Q, �, ν)

(24)K ,Q, �, ν ≥0.

(25)IFR =

τmax∑

j=τmin

aj .
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To assess the performance of the proposed approach, we run it on two input sets that were obtained by con-
sidering the number of deaths that were reported during the first 120 and 180 days of the outbreak, respectively. 
The obtained generalized logistic curves as well as the curve of the reported cumulative number of deaths (up 
to Day 300) are displayed in Fig. 1. The parameters of the derived curves are displayed in Table 1. In this Table, 
we also report: the values of the objective functions, the values of the root-mean-square errors (RMSE), and 
the CPU times.

We performed a Kolmogorov–Smirnov test for checking the hypothesis that the prediction errors are normally 
distributed. The results are displayed in Table 2. We observe that for both scenarios the null hypothesis (that is, 
the errors are normally distributed) cannot be rejected at the 5% significance level. Furthermore, we performed 
a hypothesis test for checking whether the mean error is zero. We found that, in both cases, it is rejected at the 
5% significance level, but it cannot be rejected at the 1% significance level (see the the corresponding confidence 
intervals in Table 3).

0 50 100 150 200 250 300
0

50

100

150

200

250

(180,194)

(120,110)

Figure 1.   Estimate cumulative number of deaths curves.

Table 1.   Parameters values for the optimization approach.

T (K,Q, �, ν)
∑

t

ǫ2t RMSE CPU time (s)

120

K = 194, 566

920.7 9.93 182.349
Q = 2000

� = 0.0682

ν = 1.2666

180

K = 296, 117

1723.8 3.39 900.263
Q = 131

� = 0.0498

ν = 0.7246

Table 2.   KS test values for 95% confidence interval.

T Hypothesis P-value KS statistic CR value

120 H0 0.0752 0.1155 0.1225

180 H0 0.3447 0.0689 0.1003
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To get a quantitative measure of the quality of the predictions, we computed for each prediction scenario (that 
is, T = 120 and 180, respectively), the relative deviations, which are defined as follows:

for t = T + 1, . . . , 215 , where 215 corresponds to the last day for which data is available (September 30, 2020). 
We found that the first scenario (T = 120) exhibits a positive mean deviation of 7.22% , which indicates that the 
estimates are on the average slightly overestimated. However, the estimates are fairly robust since the maximum 
absolute deviation is 14.88% . On the other hand, the second scenario (T = 180) exhibits a negative mean devia-
tion of −3.85% , and a remarkable maximum absolute deviation of 6.64% only.

Using (25), the first scenario (T = 120) yields an estimate value of the IFR that is equal to 0.11%. On the 
other hand, using much more available data, the second scenario (T = 180) yields an estimate value that is equal 
to 0.068%. To the best of our knowledge, there is no published estimate of the IFR in Qatar, and therefore it is 
infeasible at this stage to get a rigorous assessment of the accuracy of our estimates. Nevertheless, it is possible 
to get some insights by comparing these values with those estimates that were recently published in the literature 
and that are based on data from antibody-prevalence studies. In particular, the authors in60 published the results 
of a nation-wide study in Spain that tested for antibodies in more than 61, 000 randomly selected individuals. 
This study provides estimates of the range of the age-specific IFR for severe acute respiratory syndrome corona-
virus 2. The results of this study provide evidence that the IFR is nearly zero for anyone who is under forty and 
increases to 7.2% for people in their eighties (see Table 4).

We used Table 4 for deriving a “rough” estimate of overall IFR for Qatar. Toward this end, we considered the 
present distribution of the population of Qatar by age group61. This distribution is displayed in Table 5. Combin-
ing the data in Tables 4 and 5, we derived an overall IFR for Qatar that is equal to 0.086%, which is pretty close 

(26)Relative Deviation on Day t =
Cd(t)− C̃d(t)

C̃d(t)
,

Table 3.   Confidence intervals (CI) characteristics.

T Error STD Error MEAN 95% CI 99%  CI

120 2.7186 0.5859 [0.094516, 1.0773] [−0.063572, 1.2354]

180 3.0627 0.4982 [0.050747, 0.94561] [−0.089875, 1.0862]

Table 4.   IFR by age62.

Age group IFR by age (%)

0–9 0

10–19 0

20–29 0.01

30–39 0.03

40–49 0.07

50–59 0.3

60–69 1

70–79 3.4

≥ 80 7.2

Table 5.   Distribution of Qatar population61.

Age group Population in Qatar (in 1000 s)

0–9 287.51

10–19 197.14

20–29 695.37

30–39 911.83

40–49 458.65

50–59 179.55

60–69 52.87

70–79 12.79

≥ 80 3.47

Total 2799.18
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to the estimate value that was obtained for T = 180 . At this stage, it is worth emphasizing that it is reasonable 
to expect that differences between countries in the IFR estimates may exist because the fatality risk is related, 
among other factors, to the underlying public health system.

In Figs. 2 and 3 are displayed the curves of the total number of infected cases and the daily number of infected 
cases, respectively, along with the reported detected cases. Both figures suggest that the number of detected cases 
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Figure 2.   Estimate total number of infected cases curves.
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Figure 3.   Estimate daily number of infected cases curves.
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(through RT-PCR tests) largely underestimates the actual spread of the outbreak. Also, we observe that in both 
cases, the estimate values have generally increased between the first prediction (Day 120) and the second one 
(Day 180). In particular, the values of parameter K, which corresponds to the asymptotic limit of I(t) was first 
estimated to 195,000 and then to 296,000. This latter estimate suggests that by the end of the outbreak about 10.5% 
of the population of Qatar would have been infected by the SARS-Cov-2. At this point it is worth mentioning 
that sampling-based methods for estimating seroprevalence of anti-SARS-CoV-2 antibodies in a population have 
been used elsewhere by many authors. In particular, a study that was carried out on a large sample of randomly 
selected adult patients receiving dialysis in the US found evidence that 9.3% of the US adult population has been 
infected so far3. On the other hand, a second study63 that was carried out in the region of Geneva, Switzerland 
(which was heavily affected by the first wave of the outbreak), found a seroprevalence ranging on different weeks 
between 4.8 and 10.9%.

Using (10) and (13), we derived estimates of the number of active cases. The obtained curves are displayed 
in Fig. 4. Here again, we observe that the number of detected active cases are much smaller than the predicted 
values, and that the estimate values of Day 180 are significantly larger than were obtained on Day 120.

Conclusion
Keeping in mind that the proposed approach is intended to be used primarily for forecasting of the number of 
deaths and estimation of the death rate from infection, we believe that it offers remarkable advantages over similar 
approaches, but also has some limitations. It is a glaring fact that the vast majority of the modeling approaches 
that have been proposed so far for modeling and forecasting the spread of COVID-19 rely heavily on data and 
parameters that are difficult to know precisely. Indeed, these models require information on many parameters 
that pertain to mobility and behavior of the population, the reproduction number R0 , the current number of 
infections, the infection fatality ratio, as well as the fraction of asymptomatic (contagious) individuals, to quote 
just a few. Often, a small variation in any of these input data and the model can provide forecasts that are off by 
orders of magnitude. In contrast, the proposed approach is based solely on the number of deaths, which is both 
much more precise and easier to obtain. At this point, it should be noted that the number of observed deaths 
is rarely used in the literature to predict the number of deaths. However, whenever this number is used, other 
parameters are also used. For example, the authors of64 have developed an interesting SIR model to estimate 
the number of new COVID-19 infections, as well as the number of people likely to die. However, unlike our 
approach, they also rely on the infection fatality rate (IFR) for which accurate estimate is still unknown. Here we 
emphasize that, in our approach, the IFR is an output of the model calculations and not an input. On the other 
hand, an obvious limitation of our approach is that it assumes that the spread of the epidemic is a stationary 
process. That is, we assume that no new viral variants have appeared, nor that new epidemic control measures 
or vaccination campaigns have been implemented. Furthermore, a second limitation is that it cannot be useful 
for performing a what-if-analysis. Which means that it cannot help answer questions such as “what will be the 
impact of social distancing?” or “what will be the impact of the school closures?”
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Figure 4.   Estimate daily number of active cases curves.
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We anticipate that if the proposed approach is run on a periodic basis (as new data accumulates), then it will 
prove useful for public health authorities for making informed decisions and thus mitigating the impact of the 
outbreak.

Finally, we used in this study (for the sake of convenience) the PSO code that is embedded within MATLAB. 
However, it is likely that some recent and much sophisticated PSO variants (including those presented in51–53) 
might prove much effective and thus would probably yield better estimate values. This is a first future research 
direction that we recommend investigating. Furthermore, we recommend as a future research direction to use the 
proposed approach for deriving estimates of the IFR for different countries and to develop a regression analysis 
for investigating the influence of socioeconomic, demographic, climatological and environmental factors on 
the spread on COVID-19.

Data availability
The data used in the current study are publicly available in : Coronavirus disease 2019 (COVID-19) statistics. 
https://​www.​data.​gov.​qa/​explo​re/​datas​et/​covid-​19-​cases-​in-​qatar/​table/?​sort=​date. Worldometer coronavirus. 
https://​www.​world​omete​rs.​info/​coron​avirus/​count​ry/​qatar/. Population of Qatar in 2019, by age group (in 
1,000s). https://​www.​stati​sta.​com/​stati​stics/​724145/​qatar-​popul​ation-​age-​group/.
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