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Gene Expression Profiling: From Microarrays to Medicine
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With the mapping of the human genome comes the ability to
identify genes of interest in specific diseases and the pathways
involved therein. Laboratory technology has evolved in parallel,
providing us with the ability to assay thousands of these genes at
once, a technique known as microarray analysis. The main ques-
tion that this type of technology raises is how we can apply this
powerful technology to clinical medicine. Recently, advances in
data analysis, as well as standardization of the technology, have
allowed us to examine this question, and indeed a few clinical
trials currently being performed include microarrays as part of
their protocol. In this review we outline the microarray technique
and describe these types of studies in further detail.
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INTRODUCTION

One of the promises of the Human Genome Project is that
through knowledge of genomic organization and chromo-
somal location, it will be possible to identify and link spe-
cific genes to susceptibility to various human diseases. In
the past, gene expression information has been obtained on
a one-by-one, single-gene basis typically through the use
of Northern Blot Analysis; however, the introduction of
hybridization to nucleotide arrays now permits the rapid,
simultaneous screening of the expression of several thou-
sand individual genes at a given time. The two most com-
mon forms of gene expression profiling used today are the
serial analysis of gene expression (SAGE) and microar-
ray analysis. The SAGE technique is based on the prin-
ciple that a 10- to 14-bp sequence referred to as a “tag”
can uniquely identify a transcript, provided that the tag is
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obtained from a unique position within a transcript (1).
This method of profiling allows researchers to examine
the changes in the absolute levels of transcripts in a cell
and, because it does not require ana priori knowledge
of the transcriptome, can uncover novel genes expressed
therein. However, this technique is quite labor-intensive
and technically challenging, and the costs involved with
the generation and sequencing of SAGE libraries are be-
yond the scope of many laboratories. Microarray technol-
ogy, the older of the two techniques, is intrinsically more
“user-friendly.” The first recorded instance of this tech-
nology is often overlooked, but was published in a study
by Augenlichtet al. where, in 1987, investigators used a
nylon membrane, containing 4000 complementary DNA
(cDNA) sequences to examine changes in gene expression
in colon cancer (2). Since these early studies, microarray
profiling has been significantly refined and modified to
optimize the sensitivity of the assay as well as the number
of genes examined in a given experiment.

MICROARRAY ANALYSIS: A PRIMER

Gene expression profiling may provide valuable in-
sights into the molecular mechanisms underlying disease.
To perform a successful experiment, there is a need to
identify clones of interest for arraying, isolate high-quality
RNA from tissues of interest, and analyze the data in the
most informative manner possible (Fig. 1). Each of these
steps will be examined in detail below.

Experimental Design

In a microarray experiment, gene expression is often
compared in two samples of RNA. This typically means
comparing “normal” to “diseased” tissues or “treated” and
“untreated” cells or samples derived from various experi-
mental conditions. What has become quite clear through
its development and application is that microarray anal-
ysis is an exquisitely sensitive technique and prone to a
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Fig. 1. Microarray technology: From bedside to bench and back again. (1) Clones or oligonucleotides are selected and
robotically spotted onto a glass slide or nylon filter. (2) RNA is extracted from cells or tissues of interest and labeled either
with cy3 or cy5 (glass slides) or with P33 (nylon filters) and hybridized. (3) Images are analyzed using programs such as
ArrayPro or IPLAB. (4) Data is clustered and information extracted using bioinformatics.

myriad of unavoidable variability, which leads to diffi-
culty when designing an experiment. The first hurdle one
must overcome is to select an appropriate disease state,
or experimental condition as a reference against which all
samples in a given test set can be compared. One major
problem begins in simply defining “what is normal?” or
obtaining a specimen to which a diseased tissue can be
legitimately compared. Skin from different areas of the
body can significantly vary, just as cells derived from dif-
ferent tissues or region of a given organ may significantly
differ. Tumors are frequently a heterogenous mixed pop-
ulation displaying varying degrees of anaplasia, necrosis,
and vascular proliferation. Thus, even comparing a single
tumor cell type derived from different patients can yield
quite varied gene expression profiles.

Overall, sample selection is a conundrum. Peripheral
blood, the prototypical clinical specimen, is seldom a use-
ful source of informative specimens simply because lo-
calized gene expression changes in tissues are not repre-
sented in RNA made from peripheral blood leukocytes.
Moreover, the percentage of white blood cells within a
given patient can vary from sample to sample affecting
the RNA recovered. Because of the exquisite sensitivity

inherent in microarray analysis, the use of mixed cell pop-
ulations is a tenuous proposition. This is especially true for
more complex organ structures such as the brain, where,
for example, dopaminergic cells that display pathogene-
sis in several neurodegenerative and addiction disorders,
are very sparsely represented in the total organ cell popu-
lation. Most commonly, inclusion of a pure population of
the suspected infiltrating cell types in the experiment can
assist in the identification of genes associated with infiltra-
tion or contamination, and then statistical analysis can be
used to exclude these genes from the analysis. In addition,
research techniques such as FACS or laser capture mi-
crodissection can further enrich these heterogenous cell
populations, resulting in more isolated and defined cell
subpopulations for profiling. However, such enrichments
must also consider the fact that inflammatory infiltrates
or cells present in an adjacent tissue may themselves be
part of the disease process and therefore are an appropriate
component of the specimen.

The development of many diseases may occur over an
extended period of time and some may even include an
orderly progression of stages. The originating event(s)
leading to clinical symptoms or findings may have been
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initiated many years prior to diagnosis so that specimens
obtained when symptoms develop may have limited infor-
mational value in predicting pathoformic disease. Despite
these caveats, over the past few years, a steady stream
of reports has appeared describing the use of microarray
technology in a variety of research areas including can-
cer, autoimmune or infectious disease, and a variety of
inherited disorders, all with the intent of identifying and
understanding their molecular origins and mechanisms.
Some have indeed identified potentially valuable mark-
ers for diagnosis. More recently, as the genomes of var-
ious bacteria, viruses, parasites, and other pathogens are
sequenced, studies have been directed toward elucidating
specific genes involved in microbial pathogenicity and vir-
ulence with the obvious expectation that such genes may
serve as potential therapeutic targets in disease treatment.

Microarray Construction and Hybridization

The first step in the construction of a microarray is
to identify and collect clones (cDNAs) or short oligonu-
cleotides that encode genes important for research pur-
poses. cDNA arrays can be designed and constructed
with a number of different goals in mind. Such ar-
rays may be focused on a particular tissue, chromo-
some, developmental stage, gene family, disease, or func-
tional characteristic (e.g., signaling molecules, cytokines,
apoptotic-mediators), or may be unfocused. Oligonu-
cleotide microarrays are manufactured byin situ synthe-
sis on glass using a combination of photolithography and
oligonucleotide chemistry. The result is a panel of short
oligonucleotides that, depending on the particular array,
identify up to about 33,000 discrete human genes. Re-
cently, other manufacturers have begun to produce what
are being called “spotted” oligonucleotide arrays. Rather
than the oligonucleotide being directly synthesized on the
array substrate, these arrays are constructed using a robotic
pin-based microarrayer to spot conventionally synthesized
40- to 80-bp oligonucleotides onto glass slides or nylon
filters (3).

Genes of interest can be identified using the public Uni-
Gene database (http://www. ncbi.nlm.nih.gov/UniGene/).
UniGene is an experimental system for automatically
partitioning nucleotide sequence data deposited in Gen-
Bank into a nonredundant set of gene-oriented clusters
(4). Each UniGene cluster contains sequences that rep-
resent a unique gene as well as related information such
as the tissue types in which the gene has been expressed
and its chromosomal location. Unigene numbers may also
correlate to hypothetical proteins (i.e., proteins identified
by in silico analysis of genetic sequences) or as yet un-
characterized transcripts obtained from random-primed

cDNA libraries, referred to as expressed sequence tags
(ESTs). Each UniGene cluster typically includes a num-
ber of clones that may be potentially used for cDNA array
construction. A useful public source of cDNA clones are
those made available by the Integrated Molecular Anal-
ysis of Genomes and their Expression (IMAGE) Con-
sortium that also places sequence, map, and expression
data about these clones into the public domain (4). At the
present time, there are approximately 4.5 million ESTs in
the NCBI databases (http://www.ncbi.nlm.nih.gov/) and
most are available from commercial distributors. Addi-
tional cDNA clones are available from commercial enter-
prises and from research laboratories that have constructed
and sequenced unique cDNA libraries.

After choosing the appropriate genes and ESTs for a
given array, these genes can be cloned into plasmid vec-
tors suitable for transforming bacteria. Bacterial clones
containing cDNAs of interest are propagated and the DNA
extracted and purified. The gene-specific inserts are am-
plified in microtiter plates by PCR. The best arrays contain
only clones that are sequence-verified, to ensure accuracy
and quality. Such verification is crucial to the reliability
of the data obtained from such arrays. Using a multiwell
format, these cDNA inserts or oligonucleotides can be
spotted by a robotic microarrayer onto glass slides, or ny-
lon or nitrocellulose membranes that have been pretreated
to augment their surface charge and increase the adher-
ence of the DNA (5). Currently, depending on whether
the format is nylon-based or glass-chip-based, an array
may contain anywhere from 500 (nylon) to over 30,000
(glass chip) genes. Glass- and nylon-based arrays are often
regarded as alternative technologies. However, they have
both strong and weak points that are often complemen-
tary. Filter-based arrays used with radioactivity generally
require less total RNA, although with current protocols
such as dendrimer or amino-allyl labeling, small amounts
of RNA can be used for fluorescence arrays as well (6).
However, filter-based arrays have lower per filter cost,
making them an attractive choice for smaller laboratories
(7). On the other hand, fluorescent labeling allows control
and experimental RNA to be hybridized together, allowing
for the significant advantage of a direct comparison.

The process of DNA hybridization involves the reasso-
ciation of single-stranded DNA to form double-stranded
DNA with one strand originating from a cell or tissue un-
der study and the other strand with the target sequence
that has been printed or synthesized on the microarray.
A crucial factor for successful hybridization is the purity
and quality of the RNA extracted from the cells or tis-
sue of interest. Contamination of this RNA with genomic
DNA, proteins or detergent residues, or its degradation
by ubiquitous ribonucleases may cause serious problems
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during the RT-PCR steps of the procedure. The method
of labeling probe RNA depends on the particular type of
microarray being used for the study. With microarrays
printed on glass slides, it is customary to label during
reverse transcription one sample with the dye cyanine-3
(Cy3) that, when excited by light, yields green fluores-
cence and, the other sample with cyanine-5 (Cy5) that
yields red fluorescence (8). Synthesized oligonucleotide
arrays typically use biotinylated probes and are stained
posthybridization with streptavadin conjugated to phy-
coerythrin. For microarrays using nylon membranes, the
target RNA is typically radioactively labeled by incor-
poration of [33P] dCTP or [32P] dCTP nucleotides during
reverse transcription (9). While not commonly performed,
arrays on glass slides may also be queried with radiola-
beled probes. Irrespective of labeling method, the probes
are purified and incubated in a suitable buffer for 16–
24 h with the microarray. Posthybridization, the arrays
are washed and quantity of signal incorporated in each
spot is measured using either a specialized slide reader or
an imaging system.

Image Analysis and Data Extraction

Analysis of microarray data continues in an evolution-
ary state with a number of different research groups ana-
lyzing their data in a variety of ways using combinations
of various microarray-specific, spreadsheet, data display,
and statistical software programs (10–13). To date, there
is no universally accepted method to analyze microarray
data and thus the analytic method selected is frequently di-
rected toward the specific research question being asked.
Often, microarray data is examined using several tech-
niques with the method providing the most robust inter-
pretation being utilized for publication and further pursuit.

One of the challenges in array data analysis is to dis-
tinguish specific physiologic changes in gene expression
from the noise and variability inherent within the microar-
ray technique. Although there is a paucity of data specifi-
cally addressing such variability in human tissue, current
available information suggests that the normal variance
of expression of tightly regulated genes in a given tissue
may range up to 20–30%. The miniaturization of the as-
say and the ability to conduct thousands of experiments
at a given time (for analysis purposes, hybridization to
each array spot can be considered a small experiment) in
parallel inherently produces considerable variability in a
microarray experiment (14). The sources of fluctuation ac-
cumulate at each step of the microarray procedure from
the initial processing of the tissue sample, through target
and array preparation, hybridization, and image process-
ing (15, 16).

Whereas fluorescent-labeling of spotted cDNAs allows
both the experimental and control RNA to be hybridized
on the same microarray, radioactively labeled samples re-
quire that each specimen be hybridized on a separate array.
The arrays are queried using specific software that recog-
nizes and assigns a numeric density value to each spot
on the microarray. Irrespective of whether fluorescent- or
radioactive-labeled microarrays are used, most research
groups then apply a normalization procedure to the fam-
ily of arrays included in an experiment to bring their signal
range into an acceptable confidence interval and adjust the
signals on each filter to approximate a normal distribution
with a mean of 0 and a standard deviation of 1. Many dif-
ferent normalization techniques have been described but
there is yet no agreement as to a “best” way to normal-
ize microarray data (17). Normalization is important to
eliminate artifacts and allow comparison between filters.
However, normalization has limits that, when ignored, can
result in the creation of false signals and misinterpretation
of the data (18).

Following normalization, microarray data is examined
to identify differences in gene expression. The simplest
technique is the ratio of experimental to control or fold
change. Many published studies have used the “twofold
change” criterion as a measure of significance and it has
been shown that this method can be reproducible even tak-
ing into account interlaboratory variability. For example,
one study compared gene expression changes in yeast, in
three different laboratories, and showed a greater than 95%
concordance in genes increased over twofold (19). While
this method is straightforward, it rapidly becomes appar-
ent that this calculation may not be useful in all cases, most
importantly because it eliminates all information about
absolute gene expression levels. More significantly, fold
change does not embrace any knowledge of biology. Suc-
cinctly, genes that are members of a defined pathway or
that respond to a common challenge are likely to be coreg-
ulated and therefore could be expected to display similar
patterns of expression.

A statistical technique generically termed “exploratory
multivariate data” or “cluster analysis” has come into the
forefront to identify groups of genes that display simi-
lar changes in expression. In general, classical clustering
techniques start by creating a set of bidirectional distance
vectors that represent the similarity between genes and be-
tween clusters of genes. An iterative process is then under-
taken where each gene profile is compared to all the other
gene profiles and clusters until eventually all genes are
in one cluster (10). There are numerous hierarchical clus-
tering algorithms that differ in their starting point and the
manner in which they calculate and compare the distances
between the existing clusters and the remainder of the data
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set (17). Bottom-up (agglomerative) hierarchical cluster-
ing was first applied to microarray analysis by Eisenet al.
(20). Because this technique produces readily visualized
patterns of coordinately regulated genes and is supported
by software programs such as Clusteruc© and TreeViewc©
created by Eisen (http://rana.lbl.gov/), it has become ex-
tremely popular for microarray analysis. Other types of
cluster analysis include multidimensional cluster analy-
sis, which uses the similarities between two samples to
generate a Pearson’s pairwise correlation coefficient. This
gives an idea of the magnitude of difference between two
samples and, when applied to three or more samples, also
provides a direction of the difference between them. Once
these samples have been mapped into a three-dimensional
plot, the similarity between two samples can be assessed
by the distance between them. The more tightly two sam-
ples cluster together, the more similar they are. Once these
classes of genes have been identified, statistical analyses
can be used to best determine which genes cause the sam-
ples to segregate as they do (21).

However, irrespective of the particular clustering
method chosen, it quickly becomes apparent that mi-
croarrays can differentiate tens of thousands of genes,
only a small subset, in the range of 5–10%, undergo sig-
nificant change in expression, and are therefore worthy
of additional study. This point led to the testing of an-
other group of statistical techniques that included self-
organizing maps (22) andK -means clustering (23) that
organize the expression data before actual clustering (24,
25). More recently mathematical procedures such as prob-
abilistic principal component analysis (26) and support
vector machines (SVMs) (27–29), as well as models based
on neural network designs (12, 30) or Bayesian inference
(31, 32), have begun to be explored. In these techniques, an
analysis algorithm is “trained” with a portion of the data
set and these results used to heuristically select among
various data-fitting models, one of which is then used to
examine the entire data set. If an analysis technique can
be developed and validated that can identify the genes
that undergo a significant change in expression and re-
move those that do not, it could alter microarray design
and construction in favor of smaller focused arrays that
query only biologically relevant genes. Clearly, gene ex-
pression analysis remains a work in progress. The goal is
to develop tools that can identify meaningful expression
changes, evaluate the significance of these changes to de-
termine whether they are different than what might occur
by chance alone, and ultimately group genes to reveal
and examine the combinatorial nature of transcriptional
control.

Two important points to take into consideration when
running a microarray experiment are the necessity to run

replicate experiments (33–35) and to validate the gene ex-
pression changes using other techniques such as real-time
PCR. It may also be useful to analyze the expression lev-
els of proteins encoded by the altered genes. This can
be done by techniques such as immunocytochemistry
or Western blot, using specific antibodies for the pro-
teins of interest. Recently, members of the Microarray
Gene Expression Data (www.mged.org) society have ad-
vocated the adoption of the Minimal Information About
a Microarray Experiment (MIAME) guidelines (36, 37)
(www.mged.org/Workgroups/MIAME/miamechecklist.
html). One effect of these standards seems certain—there
will be a move to the use of a single microarray product
for all future clinical studies.

Bioinformatics and Data Mining

Bioinformatics applies principles of information sci-
ence and technology to make life science data more un-
derstandable and useful. In practice, when dedicated com-
puter software is used to search for hidden patterns in
groups of data and to link this information to other data,
this is referred to as “data mining.” The usual first endpoint
of a microarray experiment is a list of the genes or their
GenBank accession numbers that have undergone a mean-
ingful change in expression. More often than not, a few of
the gene names are recognizable, but the majority are not.
However, what we really want to know is the function(s)
of the gene, how it is related to other biologic pathways
and processes or defined clinical syndromes or diseases,
how this gene was affected by how the microarray ex-
periment was conducted, and to link this information with
clinical data, treatment outcomes, and drug responses. Ul-
timately, we want to develop gene expression data into a
prognostic or diagnostic tool.

As previously noted, the trend in microarray analy-
sis is toward various unsupervised clustering techniques.
More recently, supervised techniques such as SVM or
neural networks that allow nonexpression data to be in-
corporated into the clustering model have shown added
promise. However, it is accepted that there is really no
single technique that is appropriate for all data sets,
leaving the interpretation of microarray data an inex-
act science (17). Depending on how the data is pro-
cessed, different relationships may be revealed which
in and of themselves may be informative. Data-mining
software continues to evolve with several dozen com-
mercial and academic products available. So far, no
“one program does it all,” and one is typically left with
moving the expression data between various database,
statistical, graphics, and annotation packages during
analysis.

Journal of Clinical Immunology, Vol. 24, No. 3, 2004



P1: KEE

PP1197-joci-486510 JOCI.cls April 22, 2004 13:41

218 WEERARATNA, NAGEL, DE MELLO-COELHO, AND TAUB

Numerous new high-quality databases have been con-
structed and other previously existing databases such as
GenBank significantly augmented by data produced by the
Human Genome Project (http://www.ncbi.nlm.nih.gov/
Sitemap/index.html). Together, these databases contain a
truly amazing amount of information that is being updated
and expanded on a regular basis. The effect of this contin-
uous updating is that there is a degree of impermanence
associated with the data. This has produced the secondary
effect of turning the retrieval of information about indi-
vidual genes from the various online genomic databases
such as LocusLink (www.ncbi.nlm.nih.gov/LocusLink),
OMIM (www.ncbi.nlm.nih.gov/omim/), Aceview (www.
ncbi.nlm.nih.gov/IEB/Research/Acembly/ ), UniGene
(www.ncbi.nlm.nih.gov/unigene), KEGG (www.genome.
ad.jp/kegg/kegg2.html), and GeneCardsTM (http://
nciarray.nci.nih.gov/cards/) into complex hot-linked
spreadsheets and databases, that are nonetheless user-
friendly. This situation will persist into the foreseeable
future as new gene function and pathway data becomes
available over the Internet.

Single-Nucleotide Polymorphisms (SNPs)

Another concept receiving a great deal of recent at-
tention, particularly by the pharmaceutical industry, is
the observation that there are genetically based differ-
ences in drug and immune responses between individu-
als that may be utilized to optimize a person’s therapy
and that are responsible for adverse or suboptimal drug
responses. Further, a logical corollary to this idea is that
through sequence analysis, it will be possible to identify
disease-susceptibility genes that might represent potential
targets for future drug development or other interventional
therapy (38). This has created a new field, pharmacoge-
nomics, that examines inherited gene variations that dic-
tate drug response and studies their effect on clinical drug
responses (39). Presently, the identification and catalogu-
ing of SNPs is the most popular method to investigate these
complex genetic associations. SNPs are the most com-
mon form of genetic variation, occurring approximately
once every 1000 bp throughout the 3 billion base pair
human genome. Although their incidence varies substan-
tially across the genome, the total number of human SNPs
is estimated to be over 10 million (40). As of September
2002, 4.3 million SNPs have been deposited in the public
dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/) and
approximately 1.25 million SNPs have been mappedin sil-
ico to the human genome by The SNP Consortium (TSC;
a private, not-for-profit alliance of 13 major multinational
companies and the Wellcome Trust; http://snp.cshl.org)
(41, 42).

Since DNA possesses only four nucleotides, the num-
ber of potential SNP variations is quite restricted, making
SNPs well-suited for high-throughput automated or paral-
lel analysis (43). However, the bottleneck in SNP genotyp-
ing is the sample preparation; i.e., purifying hundreds of
thousands of different loci so that SNP genotyping can be
done at each site. Many different SNP detection technolo-
gies are under commercial development (44). Presently,
most large-scale projects examining genome-wide SNP
expression are based on differential hybridization affinity
using either spotted orin situsynthesized oligonucleotide
arrays (45, 46) or utilize mass spectroscopy for genotype
analysis (7, 47). However, a new spotted thiol-modified
oligonucleotide gold thin film array appears capable of
substantially improving detection speed and sensitivity
(48). SNP data analysis is much simpler than microar-
ray data analysis because the readout can be designed to
be binary (i.e., fluorescent or nonfluorescent) rather than
scalable. At present, SNPs have provided the most clini-
cally relevant data linked to the HGP but continue to be a
work in progress. A number of clinical studies are already
under way using SNP-based genetic testing to identify
patients who are at increased risk for diabetes, cardio-
vascular disease, adverse drug reactions, cancer, or deep
vein thrombosis. SNP genotyping holds great promise as
a breakthrough technology that will introduce the era of
personalized medicine. However, the clinical SNP geno-
typing studies that are now in progress are largely, if not
exclusively, based on gene–disease associations and gene
polymorphisms that were discovered 5–10 years previ-
ously demonstrating that considerable important work is
still needed to identify meaningful disease-causing and
modifying genes. Linking these discoveries with public
data produced by large genome-wide SNP discovery and
validation initiatives can be expected to promote a gradual
introduction of SNP genotyping into diagnostic medicine
and gene-based pharmacotherapeutics.

FROM BEDSIDE TO BENCH AND BACK AGAIN:
MICROARRAYS IN THE CLINIC

Although there are several potential pitfalls associated
with microarray technology, it is a powerful technique,
and as evidenced by the surge in the medical literature
over the past few years, has become increasingly popular
(Table I). It is nevertheless accepted that the widespread
inclusion of clinical data into microarray analysis algo-
rithms will not be simple. Several decades of research and
development of clinical record systems has shown that a
data model needed to capture the broad array of clinical pa-
rameters is extremely complex and difficult to standardize.
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Table I. Microarray Use in Clinical Research

Disease Refs.

Alcoholism
profiles alcoholic frontal cortex on UniGEM V array 66
profiles alcoholic motor and frontal cortex on UniGEM V array 67

Cardiovascular
profiles cardiomyopathy on CardioChip 68
profiles heart failure on 10,272 gene cardiac cDNA array 69

Diabetes
profiles human islet cells on Affymetrix U95A array 70
profiles human muscle cells on Affymetrix Hu6800 array 71

Endocrinology
profiles skeletal muscle from T3-Rx pts on 22,640 spot cDNA array 72
profiles differentiation of preadipocytes on Mu Gene Discovery array 73

Gerontology
review of microarray applied to aging 74
profiles progeria fibroblasts on Affymetrix HuGeneFL array 75

Immunology
profiles innate immune response to bacteria on NCI LymphoChip 76
profiles PBMC from lupus patients on Panorama gene array 77

Neuroscience
profiles 24 gliomas on ATLAS gene expression array 78
profiles brain from patients with Alzheimer’s disease on UniGene Lifearray 79
profiles schizophrenic prefrontal cortex on Hu UniGEM V array 80

Oncology
Lymphoma and Leukemia

profiles 96 B cell lymphomas and CLL on NCI LymphoChip 81
profiles CML hematopoietic stem cells on ExpressChipTM oligo array 82

Melanoma
profiles neural crest cells on 22,889 melanocyte EST cDNA array 83
uses CAST algorithm to subclassify histopathologically similar tumors 84
gene expression profiling of melanoma 85

Colorectal
profiles colon carcinoma cell line on Affymetrix HuGeneFL array 86
profiles 10 primary and metastatic colon carcinomas on 9191 cDNA array 87

Breast
profiles hereditary breast cancer on cDNA and tissue arrays 88
profiles 97 primary breast carcinomas on Hu 25K array 89

Gastric, Liver
profiles 26 gastric carcinomas on Affymetrix HuGeneFL array 90
profiles 20 hepatocellular carcinomas on 23,040 spot cDNA array 91

Prostate, Renal
profiles prostate cancer xenografts on ATLAS and ResGen cDNA arrays 92
profiles hormonal-Rx prostate cancer xenografts on 2 cDNA arrays 93
profiles kidney disease and renal cell carcinomas on Affymetrix U95A array 94

Other
profiles alveolar rhabdomyosarcoma cell lines on 1238 spot cDNA array 95
profiles ovarian tissue and cell lines on MICROMAX human cDNA array 96

Toxicogenomics
describes use of microarrays in toxicology and NIEHS Hu ToxChip array 97
describes the use of gene expression profiling in toxicology studies 98

Consequently, unlike most genomic data, there are few
shared online national clinical databases (49). Serious con-
cerns about privacy issues are also certain to have signif-
icant impact on universal access to clinical data. Despite
these concerns, several studies have emerged that indicate
that microarray technology may have value in the clinic
and a few clinical trials even include microarrays as part
of their protocol. Many studies have used this type of ex-
periment to classify disease states, in the hopes of being
able to predict clinical outcome, response to treatment,

and perhaps new molecular targets for improved therapy.
For example, molecular profiling of cutaneous melanoma
allowed for the identification of a more motile group of tu-
mors histopathologically indistinguishable from their less
aggressive counterparts (21). In addition, potential useful-
ness of microarray-derived gene expression data has been
shown in several recent studies of lymphoma, leukemia
(25, 50), and multiple myeloma (51) where modeling tech-
niques that incorporate outcome and drug response dur-
ing treatment were used to define tumor types or patient
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groups and to suggest rational targets for drug therapy
or development. It is becoming increasingly evident that
these techniques may have a significant impact on current
diagnostic methods (52).

Although many studies have demonstrated that current
clinical parameters are reliable predictors of outcome, a
few studies are beginning to reveal that certain prognostic
indicators can more efficiently be derived from profiling
studies. Analysis of breast cancer samples by microar-
ray revealed that where standard clinical and histological
criteria can be useful in predicting disease outcome in pa-
tients with early onset breast cancer, these patients had a
very distinct gene expression signature that acted as an
even more powerful predictor (53). This sort of robust
prediction can also be made on the basis of microarray
analysis of children presenting with medulloblastomas, in
whom, again, outcome can be determined on the basis of
their molecular signature (54).

In addition to classifying disease states and predicting
outcomes, microarray analysis can also be used to ana-
lyze the effects of treatments and patient response to ther-
apy. A recent study demonstrated that the effects of di-
verse regulators of breast cancer growth on breast cancer
cells in culture linked the behavior of these cells to im-
portant clinical properties seen inin vivospecimens (55).
Array analysis has been used to examine the probability
of the rejection of renal allografts, by studying the gene
expression profiles of patients who rejected their grafts as
compared to those who did not. Again, accurate predic-
tions as to whether or not a patient would reject a graft
could be made on the basis of their molecular profiles.
Other examples include using an oligonucleotide array,
encoding several variations for the gene which encodes
debrisoquine hyroxylase (CYP2D6) that metabolizes var-
ious psychotropic medications, and thus similar to an SNP
chip, where researchers were able to determine which pa-
tients might need adjustments in dosage due to their ability
to metabolize these drugs, based on the alleles expressed
(56). In another study examining the changes in skeletal
muscle tissues of patients with and without insulin treat-
ment, several genes were differentially expressed. These
genes were associated with muscle insulin resistance and
complications associated with insulin metabolism, allow-
ing again for the reassessment of treatment of patients with
differing profiles (57). When genes are identified that are
useful as prognostic indicators, or markers of response,
as indicated by the aforementioned studies, smaller arrays
can be custom made to reflect these discoveries, and to
aid with patient assessment, diagnostically or therapeuti-
cally. In at least two cases, a chip has been made to aid
in diagnosis. One of these, the OvaChip, contains genes
involved in ovarian cancer as identified by SAGE analy-

sis, and the utility of this chip is under investigation by
several different groups (58). Another, the lymphochip,
uses a custom array to help diagnose tumors of lymphoid
origin (59, 60). In cancers where tumor type and origin
can be difficult to diagnose, this type of chip could have
great utility. In addition, using a microarray platform to
analyze viral DNA has proven its effectiveness. An HPV
DNA chip uses a microarray platform to screen patients for
possible human papilloma virus (HPV) infection, by spot-
ting several different HP viruses on a microarray, allowing
clinicians and researchers to determine the possibility of
probable complications (such as cervical cancer) depend-
ing on the type of HPV present in the patient (61, 62).
Furthermore, the most recent array application of clini-
cal significance was the use of microarray technology to
identify the virus responsible for SARS. To do this, re-
searchers created a chip containing over 12,0000 differ-
ent viral gene signatures (the ViroChip) and only a few
spots on this chip, all of which correlated to corona virus,
showed positive expression (63–65). The time saved us-
ing this method of analysis may significantly advance the
discovery of a treatment for this epidemic and others of its
kind.

THE FUTURE OF MICROARRAYS

To date, microarray analysis has existed almost exclu-
sively as research tool that requires considerable effort
and time by skilled individuals to prepare high-quality
RNA, label and hybridize the arrays, and read and an-
alyze the data. Although microarray technology has be-
gun to enter clinical medicine, several significant hurdles
need to be overcome. For routine clinical lab use, signifi-
cant improvements are needed in microarray fabrication,
hybridization methodology, and analysis that will allow
much or all of the processes to be fully automated and thus
increase reproducibility within and across experiments.
Microfluidics and nanofabrication technologies that range
from the use of DNA as a construction material for me-
chanical devices to the use of carbon nanotubules to pro-
duce microarray-like device may have greater potential
for full automation as well as increasing throughput speed
and accuracy in the study of gene expression. In addition,
the field of proteomics is a rapidly burgeoning one, and the
identification of proteins and antigens for therapeutic use
will be of high significance in the future. Several commer-
cial software vendors have already announced they plan
to modify their data-mining software to link nucleotide
and protein databases and tools that in the future may
allow both individual gene transcription and translation
to be readily evaluated. Upon the accumulation of these
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technologies and data-mining tools, it is likely that the
promise of microarrays as a tool for the clinician may one
day be realized.
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