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Abstract: The Apollo butterfly, Parnassius glacialis, is one of the most charming members of its genus
and includes two subspecies locally distributed in montane areas of south-central China and Japan.
In this study, we investigated the genetic structure and demographic history of P. glacialis by analyzing
partial sequences of four mitochondrial genes and nuclear single nucleotide polymorphisms (SNPs)
via genotyping-by-sequencing (GBS) of samples from nearly the entire known distributional range
in China. The mitochondrial DNA (mtDNA) data demonstrated that a total of 39 haplotypes were
present, and the species was estimated to have diverged about 0.95 million years ago during the
middle Pleistocene transition into two main clades that likely formed during the Kunlun-Huanghe
tectonic movement. The two clades then dispersed independently in distinct geographic areas
alongside the mountainous routes in central and southern China, most likely driven by the Pleistocene
glacial-interglacial cycles. Nuclear SNP analysis was generally congruent with mtDNA results at the
individual level. A minor incongruence of genetic structures that was detected between mtDNA and
nuclear SNP data from the Laojunshan and Tiantangzhai populations was likely due to secondary
contact and male-biased dispersal. Our work demonstrates that complicated dispersal-vicariance
evolutionary processes likely led to the current geographic distribution of P. glacialis in China,
particularly the uplift of the Qinghai-Tibet Plateau and related climatic oscillations during the
Quaternary period.

Keywords: Parnassius; Parnassius glacialis; phylogeny; phylogeography; divergence time estimation;
quaternary climatic oscillations

1. Introduction

The geographic distribution and biodiversity of organisms is strongly influenced by geological
events and associated climate variations. Geological events give rise to habitat fragmentation
and subsequent spatial restriction of gene flow, a contributing factor in genetic diversification and
speciation [1–3]. Climate variations are largely responsible for population isolation leading to
population divergence [4,5]. For example, glacial-interglacial cycles in the Quaternary period caused
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periodic expansion and contraction of population distribution area and size; temperate plants and
animals retreated to the south during glacial periods and dispersed northward during interglacial
times [4,6–11]. Major geological and paleoclimatic events in China during the Quaternary period,
including the uplift of the Qinghai-Tibet Plateau (QTP) and the formation of glacial landforms in
mountain ranges, had profound influences on environmental changes and the evolution of organisms.
The uplift of QTP is thought to be responsible for the formation and diversification of endemic species.
Compared to climate changes in North America and Europe during the Quaternary period, the uplift
of QTP and associated paleoclimatic events resulted in a less severe and extensive glacial advance in
East Asia and a warmer climate in southern China [12–17].

Parnassius, a butterfly genus in the family Papilionidae, is distributed in high-altitude mountains
across Asia, Europe, and North America [18]. Because Parnassius flies slowly and does not migrate
long distances, it is isolated in small local populations in various ecological areas. Additionally,
these organisms display a unique reproductive strategy in that the males have special accessory
glands that produce a mating plug that seals the female genitalia after mating. This is believed
to ensure the success of the male by preventing other males from mating, and therefore avoiding
sperm competition [19]. Parnassius has diversified into about 60 species, mostly occurring in the
Himalayan-Tibetan mountains [20,21]. In China, only one species, Parnassius glacialis, has dispersed into
areas south of the Yangtze River, inhabiting lower-altitude mountains (~200 to 2000 m). This species
remarkably resembles its closest relative Parnassius stubbendorfii, which is distributed in northern
areas of Asia. Both are commonly characterized by ice-like, clean, and hairy bodies and use Corydalis
yanhusuo and C. caudata as their host plants, respectively [22,23]. However, little is currently known
about their spatiotemporal origin and divergence.

Animal mitochondrial DNA (mtDNA) sequences are maternally inherited, lack recombination,
and evolve rapidly as compared with nuclear DNA fragments [24,25]. Mitochondial DNA has been
widely used to study molecular evolution, phylogenetics, and population genetics in animals for several
decades [26,27]. In recent years, genotyping-by-sequencing (GBS) has allowed for the development
of reduced representation libraries of genome-wide single nucleotide polymorphisms (SNPs) from
high-throughput sequencing data. It has also been used to estimate the phylogenetic relationship and
genetic diversity of animal species [28–31]. In this study, we attempted to reconstruct the phylogeny,
genetic structure, and demographic history of P. glacialis, aiming to clarify the spatiotemporal pattern
of this species by using mtDNA and nuclear SNP data combined with evidence of paleogeographic
and paleoenvironmental evolution in the region.

2. Materials and Methods

2.1. Specimen Collection

Adult P. glacialis individuals (n = 368) were collected from 13 localities in central and southern
China, covering nearly all known distributional ranges in China. Sampling strategies varied for
mtDNA and SNP analyses. All individuals were examined for mtDNA analysis. For SNP analysis,
129 samples from all 13 localities were sequenced (n = 9 to 10 samples per locality). The sample size
and geographical coordinates for each population are presented in Table 1, and localities are shown in
Figure 1. Adult individuals from the closely related species P. stubbendorfii, P. cephalus, P. imperator,
P. jacquemontii, P. apollonius, P. szechenyii, P. orleans, P. andreji, P. choui, P. epaphus, P. acco, P. apollo,
P. nomion, P. actius, and P. simo were also collected from QTP and other areas of China (n = 68, Table S1).
After sample collection and species identification, fresh samples were promptly fixed in 100% ethanol
and preserved at −20 ◦C for subsequent experiments.
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Table 1. P. glacialis population genetic parameters and sample data. (N, Sample size subjected to
mtDNA/SNP examination; “H”, for mtDNA haplotype; Clade A/B as shown in Figure 3).

Population Code N Geographic
Coordinates

Altitude
(m) Clade Haplotypes (No.

of Individuals)
Haplotype

Diversity (Hd)
Nucleotide

Diversity (π)

1 Zijinshan,
Jiangsu Prov. ZJS 30/10 E118.83,

N32.06 314 B H1(19), H2(2),
H3(5), H4(4) 0.568 0.00027

2 Yuntaishan,
Jiangsu Prov. YTS 30/10 E119.40,

N34.71 345 A H5(30) 0 0

3 Tiantangzhai,
Anhui Prov. TTZ 28/10 E115.77,

N31.17 615 B H6(24), H7(4) 0.254 0.00008

4 Huangbaiyuan,
Shaanxi Prov. HBY 30/10 E107.40,

N33.73 1360 A
H8(2), H9(18),

H10(6), H11(2),
H35(1), H36(1)

0.609 0.00026

5 Laojunshan,
Henan Prov. LJS 30/10 E111.66,

N33.76 861 A/B

H12(3), H13(1),
H14(4), H15(14),
H16(4), H17(2),
H38(1), H39(1)

0.754 0.00188

6 Tianmushan,
Zhejiang Prov. TMS 26/10 E119.45,

N30.34 536 B H18(13), H19(13) 0.520 0.00052

7 Taishan,
Shandong Prov. TS 28/10 E117.12,

N36.25 685 A H20(5), H21(7),
H22(16) 0.601 0.00023

8 Xiaolongshan,
Gansu Prov. XLS 29/10 E105.68,

N34.85 1420 A H9(19), H10(9),
H11(1) 0.490 0.00017

9 Langyashan,
Anhui Prov. LYS 26/10 E118.29,

N32.28 270 B H2(2), H3(3),
H4(5), H23(16) 0.588 0.00057

10 Niutoushan,
Hubei Prov. NTS 29/10 E110.73,

N32.60 680 A H24(5), H25(2),
H13(21), H37(1) 0.456 0.00064

11 Kunyushan,
Shandong Prov. KYS 30/10 E121.73,

N37.28 290 A H26(10), H27(20) 0.460 0.00015

12 Shennongjia,
Hubei Prov. SNJ 26/10 E110.35,

N31.52 1820 A
H9(1), H28(4),

H29(11), H30(8),
H31(2)

0.723 0.00043

13 Songshan,
Henan Prov. SS 26/9 E113.05,

N34.48 716 A H32(24), H33(1),
H34(1) 0.151 0.00007
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2.2. DNA Extraction, PCR Amplification, and Sequencing

Total DNA was extracted from adult leg muscles with a DNA extraction kit (Sangon Biotech,
Shanghai, China) following the manufacturer’s instructions. Amplification of four mtDNA segments
(ND1, ND5, COI, and Cytb genes) was conducted using primers described in previous reports [32–34].
All primers were synthesized by Sangon Biotechnology Co. Ltd. (Shanghai, China). PCR was performed
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using the following cycling parameters: Initial denaturation for 2 min at 94 ◦C, 35 cycles of 1 min at
94 ◦C, 1 min at 46 to 57 ◦C, and 1 min at 72 ◦C, followed by final extension for 10 min at 72 ◦C. Amplified
fragments were purified using a DNA Purification Kit (Tiangen Biotech, Beijing, China) and sequenced
with an ABI 3730 × l DNA analyzer (Anhui General Biotechnology Co., Ltd., Chuzhou, China) using
their corresponding primers and ABI BigDye Terminator v3.1 (Applied Biosystems, Foster City, CA,
USA). Raw sequences of the four gene fragments were visually inspected in ClustalX 2.1 software [35].
Subsequently, sequence data were aligned using MUSCLE in MEGA6 software [36] according to amino
acid sequence similarity and concatenated into one dataset by DAMBE v7.0.35 software [37].

Genotyping-by-sequencing analysis was conducted according to a slightly modified protocol
reported previously [28,38,39]. Whole genome DNA (100 ng/sample) was digested with MseI and
EcoRI (New England Biolabs, Beverly, MA, USA). The adapter, which contained a barcode sequence,
was ligated to the MseI restriction site for each individual sample and another adapter was ligated
to the EcoRI restriction site of genomic DNA for all samples. After ligation, individual reactions
were pooled and purified with Agencourt AMPure XP beads (Beckman Coulter, Miami, FL, USA).
PCR amplification was performed using Illumina Primers (Illumina, San Diego, CA, USA) and the
following parameters: Temperature cycling at 72 ◦C (5 min), 98 ◦C (30 s), followed by 16 cycles of
98 ◦C (30 s), 65 ◦C (30 s), and 72 ◦C (20 s), and a final extension step. PCR products were purified
using Agencourt AMPure XP beads (Beckman) and pooled, then, separated on 2% agarose gel for
detection. The PCR fragments (375 to 400 bp, including indexes and adaptors) were isolated using
a Gel Extraction Kit (Qiagen, Hilden, Germany) and purified using Agencourt AMPure XP beads.
Paired-end sequencing (minimum depth coverage = 10) was performed on selected tags using an
Illumina HiSeq 2000 (Illumina). Sample sequences were sorted according to the barcodes. To ensure
the reliability of reads for population genetics analysis, raw reads were processed through a series of
quality control procedures [40]. Both GBS library preparation and Illumina sequencing were performed
by NovoGene Co. Ltd. (Beijing, China).

2.3. Mitochondrial Data Analysis

In this study, 368 individuals of P. glacialis, 68 adult individuals from closely related species, and
Hypermnestra helios (LS975127) served as the ingroup, while the three Parnassiinae species Luehdorfia
taibai (NC023938), L. chinensis (KU360130), and Sericinus montelus (HQ259122) served as the outgroups.
Bayesian inference (BI) analysis was performed to construct the phylogeny based on concatenated
datasets of four mitochondrial genes (2994 bp in total) using MrBayes 3.2 [41]. On the basis of Akaike
information criterion (AIC), the GTR+I+G model was selected via jModelTest 2.1.6 [42]. Ten million
generations, with sampling at every 1000th generation, were processed and two separate runs consisting
of four Markov chains (one cold and three heated) were conducted simultaneously. Convergence of
the runs was assessed using the potential scale reduction factor (PSRF = 1.0) and average standard
deviation of split frequencies (<0.01), with the first 2500 (25%) generations discarded as burn-in
samples. Bayesian posterior probabilities were estimated from the posterior distribution of remaining
trees [43]. A haplotype network was implemented using a median-joining network algorithm in
NETWORK v5.0.1 (http://www.fluxus-engineering.com), with network loops resolved via coalescence
theory-based criteria.

The number of haplotypes (h), haplotype diversity (Hd), and indices of nucleotide diversity (π)
were calculated for each population using DnaSP 5.10 [44]. Nei’s pairwise genetic distance matrix
among populations, analysis of molecular variance (AMOVA), and Mantel tests (estimation of relative
contributions between genetic distance and geographical distance) were performed using GenAlEx
v6.1 [45].

On the basis of the mtDNA data, a time-calibrated phylogeny of the Parnassius species was
estimated using BEAST v1.83 [46]. For molecular dating analysis, the clock model was set as relaxed,
uncorrelated lognormal with the tree prior set as the birth-death process. The MCMC chain was run
for 10 million generations to achieve convergence and sampled every 1000 generations. Convergence

http://www.fluxus-engineering.com
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was assessed in the systematic sample after a 10% burn-in using Tracer v1.7 [47]. A maximum clade
credibility tree was generated by the Tree Annotator program within BEAST. The final chronogram
and node ages were visualized in FigTree v1.4.3 [48].

Swallowtail butterfly fossils (family Papilionidae) are scarce, with the oldest papilionid fossils
reported from the Lutetian Stage (41.2 to 47.8 Ma, mid-Eocene) of the Green River Formation (USA,
Colorado), and two unambiguous fossils of Parnassiinae, Thaites ruminiana from the Chattian Stage
(23.03 to 28.1 Ma, late Oligocene), and Doritites bosniaskii from the Messinian Stage (5.33 to 7.25 Ma, late
Miocene) [49–51]. In the analysis, the minimum age for the crown of Parnassiinae was constrained to
be 23.03 Ma based on the closely related fossil Thaites ruminiana. The initial split of genus Parnassius
was constrained to be 13 to 22 Ma [52], and the last common ancestor of Luehdorfia was set to be 9.6 ±
1.2 Ma [53].

Ancestral area reconstructions were inferred using RASP 3.2 [54] and the statistical
dispersal-vicariance method (S-DIVA) [55]. To reconstruct ancestral areas on the basis of
topography, the distribution of Parnassius in China was divided into five regions as follows: Qinling
Mountains-Huaihe River region (A), area south of the Huaihe River (B), northeast China (C), Xinjiang
(D), and the QTP (E) (C and D regional data not included for this study, only analyzed for comparison).
Time trees used in this analysis were generated by BEAST v1.83. The ancestral area was reconstructed
by obtaining the marginal probabilities of alternative ancestral distributions through statistical
dispersal-vicariance analysis, and frequencies of an ancestral range at a node were averaged over
all trees.

Neutrality tests were performed in DnaSP 5.10. Tajima’s D [56] and Fu’s Fs [57] statistics were
applied to detect significant deviation from the assumption of neutrality with 10,000 bootstrap replicates.
Demographic change was estimated using mismatch distributions based on concatenated sequences in
Arlequin v.3.5.158 [58]. Validity of the expansion model was assessed with the Harpending raggedness
index (r) and the sum of squared deviations (SSD) between expected and observed values [58,59].
When evidence of population expansion was found, two Bayesian coalescent analysis models (Bayesian
skyline plot and constant-size model) were applied using BEAST v1.83 in order to determine a
suitable substitution rate of P. glacialis. Relative fit of the two models was determined by calculating
approximated Bayes factors via estimation of marginal likelihoods, using the algorithm implemented in
Tracer v1.6 [8]. Expansion time (t, number of generations) was estimated with the formula t = τ/2u [60],
where τ is the parameter of sudden expansion and u is the mutation rate per generation for the entire
sequence under study (calculated using the equation u = 2µk, where µ is the substitution rate per site
per generation and k is the sequence length per haplotype). Considering P. glacialis are univoltine with
non-overlapping generations, generation time was set to one year. Furthermore, Bayesian skyline
plot (BSP) analysis was used to estimate the change in population size with time in BEAST v1.83.
The piecewise-constant skyline model was selected, and a relaxed uncorrelated lognormal molecular
clock was used. The mutation rate (substitution per site per MY) was selected as described above.

2.4. Nuclear Genotyping-by-Sequencing (GBS) Analysis

Determined sequences without barcodes, restriction site remnants, and “N’s” were discarded to
filter out false positive SNPs. Filtered raw sequences were assembled with a short-read assembling
program SOAPdenovo [61]. After quality filtering and sequence assembly, SNP calling was performed
by SAMtools 1.3 [62], and SNPs with more than 50% missing data or minor allele frequency (MAF)
below 0.01 were removed.

Evolutionary relationships and the population structure were characterized using three
complementary approaches: (1) individual-based neighbor joining (NJ) trees were constructed based
on p-distance using TreeBeST v1.9.2 [63], (2) principal components analysis (PCA) was performed
using GCTA [64], and (3) population genetic structure of P. glacialis individuals was determined by
ADMIXTURE v1.3.0 [65].
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3. Results

3.1. Mitochondrial DNA

The alignments for mitochondrial ND1, ND5, COI, and Cytb segments were 936, 750, 648,
and 663 bp, respectively. The aligned concatenated nucleotide dataset contained a total of 2994 bp, and
no indels or stop codons. All gene sequences were deposited into GenBank acquiring the accession
numbers as MH518317 to MH520060. Polymorphic sites were observed with frequencies of 7, 2, 9,
and 14 for ND1, ND5, Cytb, and COI, respectively, defining all 39 haplotypes for 368 individuals of
P. glacialis from 13 localities (Figure 1 and Table 1). The percentage of sequence divergence among
39 haplotypes ranged from 0.03% to 0.54%, with an average of 0.22%.

A phylogenetic tree inferred using Bayesian inference (BI) indicated that the 16 Parnassius species
in this study could be assigned to the five major subgenera (Driopa, Kailasius, Tadumia, Parnassius, and
Kreizbergia). P. glacialis was sister to P. stubbendorfii, which constituted a clade sister to the grouping
of all other Parnassius species (Figure 2). In the Bayesian tree (Figure 3), the 39 P. glacialis haplotypes
were distinctly split into two monophyletic haplogroups, Clade A and Clade B. Clade A included
28 haplotypes that were widely distributed in the Qinling Mountains (XLS, HBY, NTS, SNJ, SS, and
LJS-partial) and the region north of the Huaihe River (TS, KYS, and YTS) (Figure 1). Clade A was
further divided into three subclades of specific geographic areas, i.e., A1, A2, and A3. Subclade
A1 (TS and KYS) and Subclade A2 (YTS) were from the Shandong Peninsula and Northern Jiangsu
Province, respectively, and Subclade A3 was mostly from the Qinling Mountains and adjacent regions.
Clade B consisted of 11 haplotypes from areas south of the Huaihe River (TTZ, LYS, ZJS, and TMS),
and a subset of the population from LJS. The reconstructed haplotype median-joining network showed
that the distribution of haplotypes was consistent with the phylogenetic tree (Figure 3).
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Figure 2. Estimated time tree of Parnassius based on mitochondrial sequences in relation to geological
and climatic events from the Oligocene epoch to the present. (a) Divergence time estimated from
BEAST analysis, with relevant geological events (blue shades), 95% highest posterior density (HPD)
intervals (boxes) and calibration points (*). Numbers above branches represent Bayesian posterior
probability (PP); (b) global climate curve, from Zachos et al. [66].
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Figure 3. Bayesian phylogenetic tree (left) and median-joining network (right) based on mtDNA
haplotypes of P. glacialis. Haplotype frequency denoted by circle size, black dots represent corresponding
mutation steps, and open circles indicate undetected haplotypes.

Haplotype, haplotype diversity (Hd), and nucleotide diversity (π) for all populations of P. glacialis
are summarized in Table 1. Thirty-two of the 39 haplotypes (82.05%) were private haplotypes,
each found in only one population. The remaining seven haplotypes (17.95%) were shared among two
or more populations. The most abundant haplotype H9, shared by 38 individuals, was distributed
in three populations (HBY, XLS, and SNJ). Each population had at least two haplotypes, except for
the YTS population, which had only one haplotype (H5) with the lowest Hd (0). The highest haploid
diversity (Hd = 0.754) was detected in the LJS population, with a nucleotide diversity (π) of 0.00188.

Nei’s genetic distance between populations ranged from 0.001 (between HBY and XLS) to 0.484
(between LYS and SNJ) (Table 2). The mean distance between Clade A and Clade B was ~0.21, while
mean distances among populations in Clades A and B were ~0.15 and ~0.08, respectively. The estimated
mean gene flow, Nm, among populations was 0.136. A positive correlation was found between genetic
distance and geographic distance (Mantel test, p = 0.01, R2 = 0.28) (Figure 4), which indicates that the
genetic differentiation among populations of P. glacialis was at least somewhat associated with isolation
by distance. AMOVA analysis indicated that nearly half of the genetic variation occurred between
the two clades (46.37%), while 37.68% of variation occurred among populations and 15.95% occurred
within populations (Table 3).
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Table 2. Nei’s genetic distance (below diagonal) and geographic distance (above diagonal, km) between
geographic populations of P. glacialis.

Geographic
Population ZJS YTS TTZ HBY LJS TMS TS XLS LYS NTS KYS SNJ SS

ZJS 299.38 302.38 1082.6 695.33 200.14 491.73 1257.7 56.41 761.46 638.06 803.52 601.30
YTS 0.245 514.84 1027.7 719.14 485.95 268.21 1252.2 289.14 833.26 354.38 914.00 581.63
TTZ 0.084 0.209 836.45 481.42 361.58 574.63 1026.4 264.31 502.08 868.02 518.65 446.98
HBY 0.333 0.156 0.277 393.87 1195.9 928.24 201.19 1027.7 335.31 1354.3 369.71 526.92
LJS 0.210 0.131 0.183 0.086 826.48 569.04 562.40 639.54 152.44 991.16 277.63 151.52

TMS 0.052 0.259 0.113 0.379 0.245 691.85 1382.5 242.23 862.78 799.85 877.57 757.24
TS 0.185 0.149 0.137 0.183 0.157 0.219 1046.0 454.34 709.80 426.27 816.40 417.66

XLS 0.336 0.159 0.279 0.001 0.088 0.385 0.184 1201.9 530.26 1465.8 570.81 675.03
LYS 0.035 0.288 0.138 0.398 0.274 0.070 0.247 0.399 708.36 638.48 754.12 544.95
NTS 0.326 0.137 0.267 0.055 0.068 0.335 0.196 0.057 0.399 1125.9 127.99 297.74
KYS 0.301 0.266 0.241 0.226 0.230 0.345 0.149 0.234 0.377 0.264 1223.5 840.85
SNJ 0.400 0.203 0.332 0.040 0.100 0.434 0.231 0.042 0.484 0.058 0.162 415.24
SS 0.290 0.253 0.231 0.086 0.120 0.334 0.207 0.087 0.365 0.143 0.256 0.125
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Clades A and B were analyzed by mismatch distribution analysis and neutrality tests to 
discover historical demographic changes in P. glacialis (Figure 5A and Table 4). Clade A exhibited a 
smooth bimodal frequency distribution, and SSD and r-values from the expected curve were not 
significant. However, the Clade A neutrality test indicated that Fu’s Fs was non-significant and 
negative, indicating a disagreement in outcomes for this clade. For Clade B, the mismatch 
distribution was unimodal and both SSD and r index tests failed to reject the hypothesis of a sudden 
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Figure 4. Scatter plot of Nei’s genetic distance vs. geographical distance (based on longitude and
latitude coordinates) for P. glacialis populations (Mantel test).

Table 3. Analysis of molecular variance (AMOVA) for populations of P. glacialis based on data from
four mtDNA fragments.

Source of Variation Variance % Total Fixation Indices p Value

Among groups 2.44966 46.37% FCT = 0.46373 0.0000
Among populations within groups 1.99030 37.68% FSC = 0.70257 0.0000

Within populations 0.84257 15.95% FST = 0.84050 0.0016

Divergence times between species/major clades in this study were estimated as shown in Figure 2.
The most recent common ancestor (MRCA) of Parnassius was dated at ~16.50 Ma with a 95% highest
posterior density (HPD) at 12.35 to 20.99 Ma (early Miocene); the split of P. glacialis and P. stubbendorfii
was estimated at ~5.59 Ma (95% HPD, 1.82 to 10.85 Ma, late Miocene). The divergence of Clades A and
B of P. glacialis was ~0.95 Ma (95% HPD, 0.38 to 1.92 Ma, early-middle Pleistocene).

Clades A and B were analyzed by mismatch distribution analysis and neutrality tests to discover
historical demographic changes in P. glacialis (Figure 5A and Table 4). Clade A exhibited a smooth
bimodal frequency distribution, and SSD and r-values from the expected curve were not significant.
However, the Clade A neutrality test indicated that Fu’s Fs was non-significant and negative, indicating
a disagreement in outcomes for this clade. For Clade B, the mismatch distribution was unimodal and
both SSD and r index tests failed to reject the hypothesis of a sudden expansion model. A neutrality
test of Clade B resulted in significant negative values for Tajima’s D and Fu’s Fs statistics, indicating
that Clade B experienced recent demographic expansion.
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Bayes factors were calculated for two coalescent models (log10 BF = 0.56) to develop a 
constant-size coalescent model. The molecular evolutionary rate was modeled as a bell-shaped 
marginal posterior probability distribution with a mean value of 0.56% substitutions per site per 
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expansion time of Clade B was estimated to be approximately 44.8 Ka. 

Figure 5. Demographic expansion models for two major clades of P. glacialis. (A) Mismatch distribution
analyses for Clades A and B. The blue dotted and brown solid lines represent the observed and expected
mismatch distributions of a stationary population, respectively; (B) Bayesian skyline plots for Clades A
and B. The X-axis represents time (Ma) and the Y-axis is Ne × µ (effective population size ×mutation
rate per site per generation). Medians are shown as solid lines, and gray areas represent 95% HPD limits.

Table 4. Mismatch distribution analysis and neutrality test results for Clades A and B.

Mismatch Distribution Analysis Neutrality Tests τ Expansion Time (Ma)

SSD PD r Pr Tajima’s D PD Fu’s Fs PFs

Clade A 0.04504 0.148 0.25367 0.316 0.43656 0.701 −22.274 0.11 3.832 -
Clade B 0.03792 0.242 0.11609 0.566 −1.39030 0.033 −27.318 0.000 3.018 0.0434

Bayesian skyline plot analyses based on coalescent theory revealed detailed demographic histories
for both clades. The population size of Clade A was relatively stable for a long period, followed by
expansion at ~56 Ka (Figure 5B). The demographic expansion of Clade B began approximately at 45 Ka.

Bayes factors were calculated for two coalescent models (log10 BF = 0.56) to develop a constant-size
coalescent model. The molecular evolutionary rate was modeled as a bell-shaped marginal posterior
probability distribution with a mean value of 0.56% substitutions per site per million years (95% HPD,
0.082% to 1.31%, Figure 6). On the basis of the observed values for age expansion (τ = 3.018, Table 4)
and substitution rate (of 0.56% per site per Ma), the demographic expansion time of Clade B was
estimated to be approximately 44.8 Ka.
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Figure 6. Marginal posterior probability distributions for substitution rate of P. glacialis mtDNA
modeled by constant-size and Bayesian skyline plot (BSP) methods. Molecular dating was calibrated
by assuming a time to Most Recent Common Ancestry of 0.95 Ma for P. glacialis.

3.2. Nuclear Single Nucleotide Polymorphisms (SNPs)

The GBS library, sequenced using Illumina technology, yielded a total of 60.28 Gbp of sequence data
averaging 478.45 Mbp per sample. On average, the GBS library produced 1,658,046 raw de-multiplexed
reads. The sequence data was high quality (Q20 ≥ 96.98% and Q30 ≥ 85%), GC percentage ranged from
39.17 to 42.53, and mean GC percentage was 40.94. The SNP calling pipeline identified 1,040,945 SNPs.
After quality control, 166,546 SNPs were kept for subsequent analysis. The raw sequencing reads were
deposited in the BioProject, accession number: PRJNA603210, and BioSample, under the following
accession number: SAMN13924708-SAMN13924836.

The NJ tree (Figure 7b) of all 129 individuals based on GBS SNP data was similar in topology to
the mitochondrial gene-based Bayesian tree (Figure 3). However, Clade II of the NJ tree contained the
TTZ population, which was grouped into an alternate clade (Clade B) in the mtDNA tree (Figure 3;
Figure 7b). Two-way PCA also supported these groupings (Figure 7c). To further understand the
population genetic structure of P. glacialis and determine its ancestry, we performed ADMIXTURE
analysis with cross-validation errors for the number of clusters, K, from two to eight, and determined
that K was optimized at a value of two (fewest cross-validation errors). Analysis at K = 2 revealed that
populations located south of the Huaihe River were distinguished from populations in the Qinling
Mountains-Huaihe River regions, and mixed SNP signals were observed in the TTZ population
(Figure 7d).
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divergence of P. glacialis from its closest relative P. stubbendorfii occurred about 5.59 Ma in the late 
Miocene period, coincident with the rapid Qinling uplifting. 

The early diversification of P. glacialis occurred ~0.95 Ma during the Pleistocene period, which 
closely coincided with the Kunlun-Huanghe tectonic movement that occurred from 1.1 to 0.6 Ma [71] 
and influenced the present-day pattern of the East Asian monsoon [72,73]. This geological event and 
associated global cooling caused widespread glacial formations in mountainous regions of China 
[72], triggering habitat fragmentation and restricting gene flow among P. glacialis populations, which 
are considered to be responsible for current butterfly species distribution patterns [74–76].  

A positive correlation between genetic distance and geographic distance was detected in this 
study (Figure 4), suggesting that the genetic differentiation of P. glacialis is likely associated with its 
geographic isolation. Meanwhile, AMOVA analyses indicated little genetic variation within 
populations (Table 3), which probably resulted from interrupted gene flow among populations. 
Moreover, the higher proportion of private haplotypes observed in P. glacialis (82.05%, Table 1) 
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Ancestral area reconstruction (Figure 8) indicated that the early diversification of genus 
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Figure 7. Population genetics analyses of P. glacialis based on genotyping-by-sequencing (GBS)
data. (a) Sampling sites in this study representing a total of 129 individuals from 13 populations;
(b) Neighbor joining (NJ) tree constructed using p-distance between individuals representing 13
populations; (c) Principal Components 1 and 2 for all individuals; (d) population genetic structure based
on genomic SNPs. Each vertical bar represents one individual, and the length of each colored segment
indicates the proportion of the individual genome inferred from ancestral populations (K = 2–4).

4. Discussion

4.1. Phylogenetic Relationships and Divergence Times

Divergence time estimates indicated that the early divergence of Parnassius in the early Miocene
period was likely correlated with the formation of mountain ranges (blue shades in Figure 2). During
the subsequent global climate warming (mid-Miocene climatic optimum period between 17 and
15 Ma) [67], Parnassius subclades could have originated in refugia at higher elevations and later spread
to adjacent areas with accelerated incipient speciation during cooling periods, likely associated with
divergences and shifts of their host plants [68,69]. To our knowledge, P. stubbendorfii in China is mainly
distributed in the northwest, while P. glacialis is distributed in the Qinling Mountains in the southeast.
The distributional patterns of these two disjunct species were likely shaped by the intense orogenesis
of the Qinling Mountains during the Miocene period some 10 million years ago, continuing into the
Quaternary period [70]. Our estimated time tree (Figure 2) showed that the divergence of P. glacialis
from its closest relative P. stubbendorfii occurred about 5.59 Ma in the late Miocene period, coincident
with the rapid Qinling uplifting.

The early diversification of P. glacialis occurred ~0.95 Ma during the Pleistocene period, which
closely coincided with the Kunlun-Huanghe tectonic movement that occurred from 1.1 to 0.6 Ma [71]
and influenced the present-day pattern of the East Asian monsoon [72,73]. This geological event and
associated global cooling caused widespread glacial formations in mountainous regions of China [72],
triggering habitat fragmentation and restricting gene flow among P. glacialis populations, which are
considered to be responsible for current butterfly species distribution patterns [74–76].

A positive correlation between genetic distance and geographic distance was detected in this study
(Figure 4), suggesting that the genetic differentiation of P. glacialis is likely associated with its geographic
isolation. Meanwhile, AMOVA analyses indicated little genetic variation within populations (Table 3),
which probably resulted from interrupted gene flow among populations. Moreover, the higher
proportion of private haplotypes observed in P. glacialis (82.05%, Table 1) implied the occurrence of
habitat fragmentation events.

4.2. Demographic History

Ancestral area reconstruction (Figure 8) indicated that the early diversification of genus Parnassius
occurred at the Qinghai-Tibet Plateau during the middle Miocene period. P. glacialis ancestors evolved
from a lineage from the QTP area that spread to the Qinling Mountains-Huaihe river regions and
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further dispersed to areas south of the Yangtze River. The divergence within each clade of P. glacialis
took place during middle to late Pleistocene, coinciding with repetitive glaciation events in this period.
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ka), consistent with BSP analysis. Haplotypes from both mitochondrial clades have only been found 
at the junction between the Qinling and Dabie mountains (LJS) suggesting that the expansion of both 
clades resulted in the current sympatry observed in the LJS locality. Individuals of Clade B probably 
dispersed through the Dabie mountains and came into secondary contact with Clade A at LJS. 

Unlike temperate species in Europe and North America that underwent expansions post Last 
Glacial Maximum (LGM, 25 to 15 ka), BSP analysis revealed an unusual P. glacialis expansion during 
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extent in MIS 3b could have facilitated long-range dispersal in this region. Populations of Clade B 
could have experienced a sudden demographic expansion during the subsequent interglacial 
period, which was likely due to the relatively lower genetic distances for this group compared to 
Clade A.  

4.3. Incongruence between Mitochondrial DNA (mtDNA) and Nuclear SNP Analysis 

Figure 8. Chronogram and ancestral area reconstruction of Parnassius in China based on
mtDNA. Ancestral area assignments at nodes represent marginal probabilities of alternative
ancestral distributions obtained by statistical dispersal-vicariance analysis (S-DIVA). (A) Qinling
Mountains-Huaihe River region; (B) area south of the Huaihe River; (C) northeast China; (D) Xinjiang;
and (E) the Qinghai-Tibet Plateau (QTP). Data from C and D were not included in this report.

Clade A was mainly distributed in the Qinling Mountains and the region north of the Huaihe
River. Populations from the Qinling Mountains likely dispersed eastward to colonize areas north
of the Huaihe River through the Funiu Mountains during Pleistocene glacial periods. The BSP for
Clade A indicated a recent expansion event that began approximately at 56 ka (Figure 7). Clade B
distribution was restricted to areas south of the Huaihe River. This clade might have spread from the
Qinling mountains to the present-day distributions along the Dabie mountain ranges. A unimodal
mismatch distribution, significantly negative Fu’s Fs and Tajima’s D, all support the occurrence of
population expansion for Clade B; demographic expansion occurred in the later Pleistocene (~44.8 ka),
consistent with BSP analysis. Haplotypes from both mitochondrial clades have only been found at
the junction between the Qinling and Dabie mountains (LJS) suggesting that the expansion of both
clades resulted in the current sympatry observed in the LJS locality. Individuals of Clade B probably
dispersed through the Dabie mountains and came into secondary contact with Clade A at LJS.

Unlike temperate species in Europe and North America that underwent expansions post Last
Glacial Maximum (LGM, 25 to 15 ka), BSP analysis revealed an unusual P. glacialis expansion during
the cooling transition between the Last Interglacial (LIG, 130 to 80 ka) and LGM, which was congruent
with the results of previous studies about other insects in East Asia [77,78]. Previous paleoclimate
research suggested that the glacial extent of the Marine Isotope Stage 3b (MIS 3b cold period, 54 to
44 ka) was larger than that of LGM at middle and low latitudes [79]. The larger glacial extent in
MIS 3b could have facilitated long-range dispersal in this region. Populations of Clade B could have
experienced a sudden demographic expansion during the subsequent interglacial period, which was
likely due to the relatively lower genetic distances for this group compared to Clade A.
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4.3. Incongruence between Mitochondrial DNA (mtDNA) and Nuclear SNP Analysis

Mitochondrial DNA haplotype data and nuclear SNP data revealed minor phylogenetic
incongruences between two populations in this study (TTZ and LJS) (Figure 1; Figure 8). Under natural
conditions, the admixture of clades is known to occur in secondary contact zones, which has been well
documented for spatially isolated populations in Europe and North America [4,80,81]. Population LJS
displayed mixed phylogenetic signals in mtDNA haplotypes, thus, its mixed haplotypes imply the
secondary contact of Clade A with Clade B after their initial divergence. The inheritance modes of
nuclear and mitochondrial genes, population TTZ of Clade II (nuclear data), and corresponding Clade
B (mitochondrial data) were differentially categorized, which could be attributed to the male-biased
dispersal and female philopatry of P. glacialis [82,83].

5. Conclusions

To understand the spatiotemporal pattern of P. glacialis in China, we reconstruct the phylogeny,
genetic structure, and demographic history of this species by using mtDNA and nuclear SNP data.
The mtDNA data demonstrated that this species was estimated to have diverged about 0.95 million
years ago during the middle Pleistocene transition into two main clades that likely formed during
the Kunlun-Huanghe tectonic movement. The two clades then dispersed independently in distinct
geographic areas alongside the mountainous routes in central and southern China, most likely
driven by the Pleistocene glacial-interglacial cycles. In addition, nuclear SNP analysis was generally
congruent with mtDNA results at the individual level. A minor incongruence of genetic structures was
likely due to secondary contact and male-biased dispersal. Our work demonstrates that complicated
dispersal-vicariance evolutionary processes likely led to the current geographic distribution of P. glacialis
in China, particularly the uplift of the Qinghai-Tibet Plateau and related climatic oscillations during
the Quaternary period.
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