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The objective of this study was to investigate the application effect of deep learning model combined with different magnetic
resonance imaging (MRI) sequences in the evaluation of cartilage injury of knee osteoarthritis (KOA). Specifically, an image
superresolution algorithm based on an improved multiscale wide residual network model was proposed and compared with
the single-shot multibox detector (SSD) algorithm, superresolution convolutional neural network (SRCNN) algorithm, and
enhanced deep superresolution (EDSR) algorithm. Meanwhile, 104 patients with KOA diagnosed with cartilage injury were
selected as the research subjects and underwent MRI scans, and the diagnostic performance of different MRI sequences was
analyzed using arthroscopic results as the gold standard. It was found that the image reconstructed by the model in this study
was clear enough, with minimum noise and artifacts, and the overall quality was better than that processed by other
algorithms. Arthroscopic analysis found that grade I and grade II lesions concentrated on patella (26) and femoral trochlear
(15). In addition to involving the patella and femoral trochlea, grade III and grade IV lesions gradually developed into the
medial and lateral articular cartilage. The 3D-DS-WE sequence was found to be the best sequence for diagnosing KOA injury,
with high diagnostic accuracy of over 95% in grade IV lesions. The consistency test showed that the 3D-DESS-WE sequence
and T2∗ mapping sequence had a strong consistency with the results of arthroscopy, and the Kappa consistency test values
were 0.748 and 0.682, respectively. In conclusion, MRI based on deep learning could clearly show the cartilage lesions of KOA.
Of different MRI sequences, 3D-DS-WE sequence and T2∗ mapping sequence showed the best diagnosis results for different
degrees of KOA injury.

1. Introduction

Knee joint is the largest and most complicated joint in
human body. Failure to protect the knee joint in daily life
can easily lead to knee injury and discomfort symptoms such
as knee swelling and pain [1, 2]. Knee osteoarthritis (KOA)
is knee joint disease arising from the degeneration of knee
joint and presents discomfort symptoms such as swelling,
pain, snapping, and effusion [3]. Generally, the middle-
aged and elderly people are high-risk people, and they are
often accompanied by joint swelling and pain, joint effusion,
limited activities, and other complications. The occurrence
of this disease is related to overweight, age factors, excessive

injuries, genetic factors, and other reasons [4–6]. There are
many treatments for KOA, and different treatments can be
adopted according to different causes. For example, in the
early stage of the disease, drugs for removing dampness
and blood stasis and promoting blood circulation are used
for control, while acupuncture and massage are used for
conservative treatment. When the symptoms are more seri-
ous, it is necessary to go to the hospital for examination
and specific treatment after identifying the cause [7].
Because the knee bone joint is difficult to cure, special care
is required in the later stage. Otherwise, it will recur [8].
Generally speaking, the early treatment of diseases will be
very effective, which is also true for KOA.
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There are many methods for clinical examination of
knee joints, including X-ray plain film and CT. The X-ray
can show whether the cartilage layer of the diseased joint
becomes thinner or destroyed and whether the joint space
becomes narrower, but other structures such as meniscus
and ligament cannot be judged, and its clinical application
value is limited [9, 10]. CT can find the degeneration of
articular cartilage, the narrowing of joint space, the hyperos-
teogeny, and calcification, which is helpful to diagnose
arthritis, but it can only see the changes in bone structure,
and its diagnosis of arthritis caused by soft tissue is poor
[11–13]. As a noninvasive examination technology, mag-
netic resonance imaging (MRI) does not have the radiation
problem of X-ray or CT and can be repeated several times
in a short period. Articular cartilage, meniscus, and ligament
can be observed in various MRI sequences, assisting doctors
in making more accurate assessment, which has become the
most valuable method to evaluate knee cartilage, with the
advantages of the high resolution of soft tissue, multiple
parameters, and small diagnostic error [14]. Deep learning

is a branch of machine learning, which attempts to use mul-
tiple processing layers with complex structures or multiple
nonlinear transformations to abstract data at a high level
[15]. It establishes neural networks that can simulate the
human brain for analytical learning. It stimulates the mech-
anism of human brain to interpret data, such as images,
texts, and sounds, and is also widely used in the field of clin-
ical medical images [16].

To sum up, the combination of deep learning technology
and medical images is a hot topic of research at present and
has a broad development prospect. 104 KOA patients
received the MRI scans with different sequences, and an
image superresolution algorithm based on the improved
multiscale wide residual network model was proposed for
the image processing of MRI. The diagnostic accuracy of
MRI images with different sequences for different injury
grades was calculated to comprehensively evaluate the adop-
tion value of the deep learning model combined with MRI
images in the examination of KOA. It was hoped to provide
help for the selection of imaging diagnosis of KOA.

Table 1: Sequence scanning parameters.

Parameter 3D-DESS-WE T2 mapping T2∗ mapping Tl mapping

Time of echo (TE) 6ms 15.6ms 10.5ms 2.55ms

Time of repetition (TR) 13.55ms 1500ms 550ms 25ms

Band width 220Hz / / /

Vision 145 × 145mm 145 × 145mm 145 × 145mm 145 × 145mm

Resolution 265 × 265 350 × 350 315 × 315 350 × 350
Layer thickness / 3.6mm 3.6mm 3.6mm

Layer distance / 0.8mm 0.8mm 0.8mm
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Figure 1: Multiscale residual network structure.
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2. Materials and Methods

2.1. Research Subjects. A total of 104 patients with KOA who
were admitted to the hospital between October 20, 2018, and
February 20, 2021, were recruited as the research subjects.
All patients lived a normal life and had no history of high-
intensity exercise training. This study had been approved
by ethics committee of hospital. Patients and their families
were aware of this study and had signed informed consent.

The inclusion criteria are as follows: (1) no past or recent
history of major knee trauma, (2) no previous history of
infectious diseases, (3) no previous surgical history, (4) no
previous use of drugs affecting cartilage, (5) patients with
complete clinical data, and (6) no contraindications for
MRI examination.

The exclusion criteria are as follows: (1) poor MRI image
quality, (2) patients without arthroscopic examination infor-
mation, (3) patients with congenital or acquired knee defor-
mity, and (4) body mass index (BMI) is too high or too low.

2.2. MRI Examination. 3.0T superconducting magnetic res-
onance imaging system was used, with 15 channel phased
array surface coil. Before MRI scan, the patient was
instructed to sit quietly for about 10 minutes and remove
all metal objects on the body. Especially, whether cardiac
pacemaker and coronary artery stent were installed should
be figured out. The patient was in a supine position during
scanning.

Conventional MRI scan, sagittal T1-weighted imaging
(T1WI), proton density-weighted inhibition (PDWI-fs), cor-
onal PDWI-fs, and axial T2-weighted imaging (T2WI) were

performed first. Then, sagittal double-echo stable water exci-
tation (3D-Dess-WE), T2 mapping, T2∗ mapping, and Tl
mapping were carried out. The specific parameters are
shown in Table 1.

In image processing, the multimodal MRI images were
sent to a workstation for processing. Two experienced MRI
diagnostic specialists assessed the severity of cartilage injury
according to the Recht grading criteria and divided the car-
tilage into medial femur cartilage, lateral condyle cartilage,
patellar cartilage, medial tibia cartilage, and femur trochlear
cartilage. The relaxation time was also measured.

The sensitivity, specificity, and accuracy are calculated as
follows.

Specificity = A4
A3 + A4

,

Specificity = A4
A3 + A4

,

Accuracy rate = A1 + A4
A1 + A2 + A3 + A4

,

ð1Þ

where A1 indicates positive arthroscopy and positive MRI,
A2 indicates positive arthroscopy and negative MRI, A3 indi-
cates negative arthroscopy and positive MRI, and A4 indi-
cates negative arthroscopy and negative MRI.

2.3. Image Superresolution Algorithm Based on Improved
MSRN Model. Superresolution [17] refers to the reconstruc-
tion of corresponding high-resolution images from low-
resolution images, which has important application value
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Figure 2: Improved widened multiscale residual network structure model.
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(a) (b)

(c) (d)

(e)

Figure 3: Reconstruction results of MRI images by different algorithms. (a)–(e) are the original image, reconstructed image by SRCNN
algorithm, reconstructed image by SSD algorithm, reconstructed image by EDSR algorithm, and reconstructed image by the model in the
study.
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in monitoring equipment, satellite images, and medical
images. MSRN [18] is a deep learning network model based
on image superresolution, and its structure is shown in
Figure 1.

In this structure, local residual learning can reduce com-
putational complexity and improve network performance.
Multiscale feature fusion can extract image features in differ-
ent proportions and enable shared feature information of
different branches. The operation can be expressed as fol-
lows.

F1 = λ α13∗3 ∗Hm−1 + c1
� �

,

G1 = λ α15∗5Hm−1 + c1
� �

,

F2 = λ α23∗3 ∗ F1,G1b c + c2
� �

,

G2 = λ α25∗5 ∗ G1, F1b c + c2
� �

,

F ′ = α31∗1 ∗ F2,G2b c + c2,

ð2Þ

where α is the weight; c is the deviation; superscripts 1, 2,
and 3 represent the layer where it is located at; 1 ∗ 1, 3 ∗ 3,
and 5 ∗ 5 are the size of convolutional kernel; λðÞ is the
RELU function; bF1,G1c, bG1, F1c, and bF2,G2c represent
series operations; and H represents the number of network
feature graphs.

The above network model only uses one scale convolu-
tion kernel to extract image features when obtaining high-

frequency information from low-resolution images, which
will greatly miss a lot of details of images. Therefore, on
the basis of the above model, this study adds three branch
networks of different scales, as shown in Figure 2.

The above model can convert RGB images into Ycbcr
images and carry out superresolution reconstruction of Y
channels. Suppose that a MR image has K channels; the
model can be expressed as follows.

δ
_
= argminδ

∑L
i=1R ∗ Fδ ImLRI

i

� �
, ImHRI

i

� �

L
,

δ = α1, α2,⋯αn, c1, c2,⋯cnf g,
ð3Þ

where ImLRI is the low-resolution feature image, ImHRI is the
high-resolution feature image, δ represents the weight and
deviation of the network, L denotes the number of images
input, and R ∗ is the loss function to minimize the differ-
ence between the low-resolution feature image and the
high-resolution feature image.

The network structure of the model is mainly composed
of multiscale feature extraction block, wide residual block,
and multiscale reconstruction. The multiscale feature extrac-
tion module can be expressed as follows.

UMF = CONMF,×3 ImLRI� �
, ð4Þ
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Figure 4: Comparison of PSNR and SSIM of reconstructed images by four algorithms. # represents significant difference between
algorithms (P < 0:05).
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where CONMF,×3 represents feature extraction using the
branch network of ×3.

The wide residual module needs to carry out wide resid-
ual feature extraction, feature fusion, local residual learning,
and global residual learning. The wide residual feature
extraction can be expressed as follows.

F1 = Zgn a13∗3 ∗Hm−1 + c1
� �

,

G1 = Zgn a15∗5 ∗Hm−1 + c1
� �

,

F2 = λ a23∗3 ∗ F1, G1b c + c2
� �

,

G2 = λ α25∗5 ∗ G1, F1b c + c2
� �

:

ð5Þ

Zgn indicates that the group normalization layer is used
to normalize the feature graph, and the meanings of other
letters are the same as before. Then, the fusion operation
can be expressed as follows.

F ′ = α31∗1 ∗ F2,G2b c + c2: ð6Þ

Local residual learning can improve the transmission of
feature information and gradient flow in the network and

obtain more detailed information, which can be expressed
as follows.

Hm = F ′ +Hm−1, ð7Þ

where Hm represents local residual learning, and global
residual learning can solve the problem of gradient disap-
pearance in the training process of the network, which can
be expressed as follows.

UGR =UMF +HM , ð8Þ

where UGR represents global residual learning. Finally, mul-
tiscale reconstruction is carried out, and the final image can
be expressed as follows.

IMre =U3∗3 vups,×3 UGRð Þ� �
, ð9Þ

where IMre represents the obtained superresolution recon-
structed image.

2.4. Evaluation of the Performance of Algorithm. The single-
shot multibox detector (SSD) algorithm [19], superresolu-
tion convolutional neural network (SRCNN) algorithm
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Figure 5: Basic information of subjects.
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[20], and enhanced deep superresolution (EDSR) algorithm
are introduced [21] to compare with the improved widened
MSRN structure model proposed in this study.

Peak signal noise ratio (PSNR) and structural similarity
(SSIM) are used to evaluate for image reconstruction effects.

2.5. Statistical Methods. SPSS19.0 was used for data process-
ing in this study. Mean ± standard deviation (�x ± s) was used
for measurement data, and percentage (%) was used for
counting data. Pairwise comparison was performed by
one-way ANOVA. The difference was statistically significant
at P < 0:05.

3. Results

3.1. Performance Analysis of Improved Multiscale Wide
Residual Network Structural Model. Firstly, the recon-
structed image was subject to subjective evaluation
(Figure 3). Compared with the original image, the recon-
structed image by the four algorithms had significantly
improved in terms of clarity and noise. The reconstructed
image by the proposed model was clear enough with mini-
mum noise and artifacts, and the overall quality was better
than that processed by other algorithms.

Further quantitative index analysis (Figure 4) showed
that the PSNR and SSIM of the reconstructed image by
SRCNN algorithm were 30.41 dB and 0.892, respectively;
for SSD, they were 26.11 dB and 0.749 dB, respectively; for

EDSR algorithm, they were 27.84 dB and 0.788 dB, respec-
tively; and for the model proposed in the study, they were
38.87 dB and 0.956, respectively. Evidently, PSNR and SSIM
of reconstructed images by the model in this study were sig-
nificantly higher than those of SRCNN, SSD, and EDSR
algorithms, and the differences were statistically significant
(P < 0:05).

3.2. Basic Information of the Subjects. As shown in Figure 5,
in terms of gender, male patients (69 cases) were more than
female patients (35 cases). In terms of age, most patients
were 30-45 years old (67 cases), followed by <30 years old
(27 cases) and >45 years old (10 cases). In terms of BMI,
18.5-23.9 kg/m2 patients were the most (63 cases), followed
by >23.9 kg/m2 patients (21 cases) and <18.5 kg/m2 patients
(20 cases). In terms of the affected knee joint, right knee was
affected in 58 cases, and left knee was affected in 46 cases.

3.3. Imaging Data. Figure 6 shows the MRI data of a 28-year-
old male. MRI image showed thickening of synovial mem-
brane of the knee joint and multiple nodular and lobulated
mixed signal shadows around the joint, most of which were
long T1 and long T2 signal shadows. Multiple pomegranate
seed-like low signal shadows were found inside, and serrated
damage changes were observed in the lower femur and
upper tibia subchondral segments.

Figure 7 shows the MRI data of a 45-year-old male. MRI
images showed synovial thickening and joint cavity effusion.

(a) (b)

(c) (d)

Figure 6: Male, 28 years old, presented with sudden redness and pain of the right knee joint for 3 days. (a) and (b) are sagittal T2WI, while
(c) and (d) are transverse T2WI.
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The thickened synovium presented low T1 and equal T2 sig-
nal shadows, and the boundary with adjacent tendons, liga-
ments, and muscles was not clear. Localized or extensive soft
tissue swelling was observed around the knee, and T2WI
presented high signals.

3.4. Arthroscopy Results. A total of 624 subareas of articular
cartilage were found in 104 knee joints, and 295 cartilage
lesions were detected by arthroscopy (Figure 8(a)), including
74 grade I lesions, 83 grade II lesions, 74 grade III lesions,
and 64 grade IV lesions. Grade I lesions (Figure 8(b))
included 13 internal femoral condyles, 6 external femoral
condyles, 10 internal tibial condyles, 4 external tibial con-
dyles, 26 patella, and 15 femoral trochlea. Grade II lesions
(Figure 8(c)) included 13 internal femoral condyles, 4 exter-
nal femoral condyles, 11 internal tibial condyles, 5 external
tibial condyles, 28 patella, and 22 femoral trochleae. Grade
III lesions (Figure 8(d)) included 16 internal femoral con-
dyles, 5 external femoral condyles, 14 internal tibial con-
dyles, 6 external tibial condyles, 19 patella, and 14 femoral
trochleae. Grade IV lesions (Figure 8(e)) included 14 inter-

nal femoral condyles, 4 external femoral condyles, 13 inter-
nal tibial condyles, 5 external tibial condyles, 17 patella,
and 11 femoral trochleae.

3.5. Examination Results of Different MRI Sequences. With
arthroscopy results as the gold standard, the diagnostic accu-
racy of PDWI-FS sequence for different injury grades was
obtained (Figure 9). It was noted that the diagnostic accu-
racy of PDWI-FS sequence was 56.73% for grade I lesions,
60.42% for grade II lesions, 82.15% for grade III lesions,
and 90.44% for grade IV lesions. The diagnostic accuracy
of PDWI-FS sequence for grade III and IV lesions was sig-
nificantly higher than that for grade I and II lesions, and
the difference was significant (P < 0:05).

According to the consistency test, the Kappa consistency
test value between PDWI-FS sequence and arthroscopy
results was 0.517, indicating a moderate consistency.

With arthroscopy results as the gold standard, the diag-
nostic accuracy of 3D-DESS-WE sequence for different
injury grades was obtained (Figure 10). The diagnostic accu-
racy of 3D-DESS-WE sequence was 84.72% for grade I

(a) (b)

(c) (d)

Figure 7: Male, 45 years old, chief complaint: recurrent pain in the knuckles of both hands and toes for 5 years, recurring 1 week before. (a)
and (b) are sagittal T2WI, while (c) and (d) are transverse T2WI.
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Figure 8: Arthroscopy results. (a) The grade of cartilage injury. (b) The distribution of grade I lesions. (c) The distribution of grade II
lesions. (d) The distribution of grade III lesions. (e) The distribution of subareas of grade IV lesions.

9Computational and Mathematical Methods in Medicine



lesions, 72.14% for grade II lesions, 85.15% for grade III
lesions, and 96.74% for grade IV lesions. The diagnostic
accuracy of 3D-DESS-WE sequence was high for all levels
of lesions, especially for grade IV lesions, which reached
more than 95%.

According to the consistency test, the Kappa consistency
test value of 3D-DESS-WE sequence and the results of
arthroscopy was 0.748, showing a strong consistency.

With arthroscopy results as the gold standard, the diag-
nostic accuracy of Tl mapping sequence for different injury
grades was obtained (Figure 11). The diagnostic accuracy
of Tl mapping sequence was 31.18% for grade I lesions,

40.68% for grade II lesions, 58.97% for grade III lesions,
and 85.18% for grade IV lesions. The diagnostic accuracy
of Tl mapping sequence in grade IV lesions was significantly
higher than that in grade I lesions, grade II lesions, and
grade III lesions (P < 0:05).

According to the consistency test, the Kappa consistency
test value of Tl mapping sequence and arthroscopy results
was 0.396, indicating a general consistency.

With arthroscopy results as the gold standard, the diag-
nostic accuracy of T2 mapping sequence for different injury
grades was obtained (Figure 12). It was noted that the diag-
nostic accuracy of T2 mapping sequence was 60.55% for
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90.44
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40
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Figure 9: Diagnostic accuracy of PDWI-FS sequence for different injury grades. A and B indicate that pairwise comparison has statistical
significance (P < 0:05).
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Figure 10: Diagnostic accuracy of 3D-DESS-WE sequence for different injury grades. A and B indicate that pairwise comparison has no
statistical significance (P < 0:05).
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grade I lesions, 57.49% for grade II lesions, 68.06% for grade
III lesions, and 92.31% for grade IV lesions. The diagnostic
accuracy of T2 mapping sequence for grade IV lesions was
significantly higher than that for grade I, II, and III lesions,
and the difference was significant (P < 0:05).

According to the consistency test, the Kappa consistency
test value of T2 mapping sequence and arthroscopy results
was 0.578, indicating a moderate consistency.

With arthroscopy results as the gold standard, the diag-
nostic accuracy of T2∗ mapping sequence for different
injury grades was obtained (Figure 13). It was noted that
the diagnostic accuracy of T2∗ mapping sequence was
67.38% for grade I lesions, 70.13% for grade II lesions,

75.88% for grade III lesions, and 96.12% for grade IV lesions.
The diagnostic accuracy of T2∗ mapping sequence for grade
IV lesions was significantly higher than that for grade I
lesions, grade II lesions, and grade III lesions, with signifi-
cant difference (P < 0:05).

According to the consistency test, the Kappa consistency
test value of T2∗ mapping sequence and arthroscopy results
was 0.682, showing a strong consistency.

4. Discussion

Osteoarthritis, one of the common chronic diseases in the
elderly, often causes patients with synovial joint injury and
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Figure 11: Diagnostic accuracy of Tl mapping sequence for different injury grades. A and B indicate that pairwise comparison has no
statistical significance (P < 0:05).
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Figure 12: Diagnostic accuracy of T2 mapping sequence for different injury grades. A and B indicate that pairwise comparison has no
statistical significance (P < 0:05).
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articular dysfunction [22]. As early osteoarthritis has no
obvious symptoms, it can only be detected by functional
imaging. Currently, X-ray, CT, and MRI are commonly used
for knee examination [23]. In this study, KOA patients were
examined by MRI. To improve image quality, an image
superresolution algorithm based on an improved multiscale
wide residual network model was proposed. Firstly, the
superresolution reconstruction effect of the algorithm was
analyzed. From the subjective evaluation, the image recon-
structed by the model in this study was clear enough, with
minimum noise and artifacts, and the overall quality was
better than that processed by other algorithms. By further
comparing the quantitative indicators of reconstructed
images, it was noted that the PSNR and SSIM of the image
reconstructed by the model in this study were significantly
higher than those of SRCNN, SSD, and EDSR algorithms,
and the differences were statistically significant (P < 0:05),
in line with the research results of Vitaloni et al. [24]. Both
PSNR and SSIM are conventional indicators used to evaluate
image quality in academic field. The quantitative evaluation
results being consistent with the above subjective evaluation
results indicated that the superresolution reconstruction
model has practical feasibility in MRI image processing
and has clinical promotion value.

In this study, 104 KOA patients were recruited and
underwent MRI scans. First, the basic data of patients were
analyzed, and it was found that in terms of gender, male
patients (69 cases) were more than female patients (35
cases); in terms of age, most patients were 30-45 years old
(67 cases), followed by <30 years old (27 cases) and >45
years old (10 cases); in terms of BMI, 18.5-23.9 kg/m2

patients were the most (63 cases), followed by >23.9 kg/m2

patients (21 cases) and <18.5 kg/m2 patients (20 cases); and
in terms of the affected knee joint, right knee was affected
in 58 cases, and left knee was affected in 46 cases. Then,
arthroscopic analysis found that grade I and grade II lesions

concentrated on patella (26) and femoral trochlear (15),
which was similar to the conclusions of previous studies that
the patellar cartilage and the medial region of the femoral
condyle were most vulnerable to cartilage injury [25]. In
addition to involving the patella and femoral trochlea, grade
III and grade IV lesions gradually developed into the medial
and lateral articular cartilage. Next, with arthroscopic results
as the gold standard, the diagnostic performance of MRI
sequences was analyzed. The 3D-DS-WE sequence was
found to be the best sequence for diagnosing KOA injury,
with a high diagnostic accuracy of over 95% in grade IV
lesions. The consistency test showed that the 3D-DESS-WE
sequence and T2∗ mapping sequence had a strong consis-
tency with the results of arthroscopy, and the Kappa consis-
tency test values were 0.748 and 0.682, respectively. The
results showed that 3D-DS-WE sequence and T2∗ mapping
sequence were acceptable in the diagnosis of KOA injury
and superior to other sequences.

5. Conclusion

104 KOA patients received MRI scans with different
sequences. Then, an image superresolution algorithm based
on the improved multiscale wide residual network model
was proposed for the image processing of MRI. The consis-
tency test showed that the 3D-DESS-WE sequence and T2∗
mapping sequence had a strong consistency with the results
of arthroscopy, and the Kappa consistency test values were
0.748 and 0.682, respectively. However, the cases are selected
from a single source with regional limitations, and whether
combined detection of different sequences will improve the
diagnostic performance of KOA injury is not further dis-
cussed. The follow-up research should focus on this problem
to strengthen the findings of the study. All in all, this study
provides a reference for the combined application of deep
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Figure 13: Diagnostic accuracy of T2∗ mapping sequence for different injury grades. A and B indicate that pairwise comparison has no
statistical significance (P < 0:05).
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learning model and image technology in the diagnosis of
KOA.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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