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Introduction
Movement through the endosomal system involves the progres-

sion from an early endosome to a late endosome to a degrada-

tive lysosome. This progression is regulated, at least in part, by 

Rab family GTPases localized to each compartment (Zerial and 

McBride, 2001). For example, early endosomes are character-

ized by their rapid recruitment of Rab5 (Gorvel et al., 1991). 

Progression from an early to a late endosome (with concomitant 

Rab7 recruitment) occurs through the action of Rab5 effectors 

(Rink et al., 2005). Phagocytosis is a specialized form of endo-

cytosis that allows the internalization of large particles into the 

cell and plays an essential role in development and immunity. 

After their formation, phagosomes undergo a maturation pro-

cess by interacting with the endosomal pathway (Vieira et al., 

2002). During phagosome maturation, Rab5 is necessary for the 

recruitment of Rab7 and the formation of a late phagosome and 

a subsequent phagolysosome. Therefore, Rabs are critical regu-

lators of endosome and phagosome maturation and many paral-

lels are likely to exist between these events. However, as there 

are over 60 known Rabs and multiple Rabs can be present in 

distinct microdomains on a single endosome (Sonnichsen et al., 

2000), it is unclear if and how most Rabs function during endo-

some/phagosome maturation. The small size of endosomes 

makes Rab interactions with the endosomal system diffi cult to 

study. Therefore, we decided to use a model phagosome to 

screen a large network of Rabs to determine which Rabs are 

involved in phagosome maturation.

Results and discussion
We chose the ∆invA/Inv strain of Salmonella enterica serovar 

Typhimurium (S. Typhimurium) as our model to generate 

phagosomes. The InvA protein is a structural component of the 

Salmonella pathogenicity island (SPI)–1–encoded type III 
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M
embers of the Rab guanosine triphosphatase 

(GTPase) family are key regulators of mem-

brane traffi c. Here we examined the associa-

tion of 48 Rabs with model phagosomes containing a 

non-invasive mutant of Salmonella enterica serovar 

Typhimurium (S. Typhimurium). This mutant traffi cs to lyso-

somes and allowed us to determine which Rabs localize to 

a maturing phagosome. In total, 18 Rabs associated with 

maturing phagosomes, each with its own kinetics of asso-

ciation. Dominant-negative mutants of Rab23 and 35 

 inhibited phagosome–lysosome fusion. A large number of 

Rab GTPases localized to wild-type Salmonella-containing 

vacuoles (SCVs), which do not fuse with lysosomes. 

However, some Rabs (8B, 13, 23, 32, and 35) were ex-

cluded from wild-type SCVs whereas others (5A, 5B, 5C, 

7A, 11A, and 11B) were enriched on this compartment. 

Our studies demonstrate that a complex network of Rab 

GTPases controls endocytic progression to lysosomes and 

that this is modulated by S. Typhimurium to allow its intra-

cellular growth.
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 secretion system (TTSS; Galan and Curtiss, 1989). The TTSS is 

a needle-like device that S. Typhimurium uses to translocate 

bacterial effector proteins into the host cell to manipulate the 

actin cytoskeleton and drive invasion through a ruffl ing mecha-

nism (Brumell and Grinstein, 2004). The ∆invA strain is unable 

to secrete effector proteins into the host cell and is therefore 

noninvasive. Expression of the invasin (inv) gene of Yersinia 
pseudotuberculosis allows the bacteria to enter the host cell via 

an alternative mechanism. The Inv protein induces uptake of the 

bacteria through binding to β1-integrin (Isberg and Leong, 

1990). Inv-mediated uptake of Y. pseudotuberculosis leads to 

degradation of these bacteria in lysosomes (Mills and Finlay, 

1998). Similarly, the ∆invA/Inv strain of S. Typhimurium is effi -

ciently internalized and traffi cs to late endocytic compartments 

where it fails to replicate (Steele-Mortimer et al., 2002). To ensure 

that the phagosomal maturation of ∆invA/Inv S. Typhimurium 

is not manipulated by virulence factors apart from the SPI-1 

TTSS, such as the PhoP/PhoQ regulon or the SPI-2 encoded 

TTSS (Brumell and Grinstein, 2004), we inhibited bacterial 

protein synthesis through addition of tetracycline 15 min after 

internalization. This resulted in the traffi cking of the bacteria to 

a lysosome, leading to their degradation (Fig. 1 A).

To follow the traffi cking of the model phagosome we sep-

arately transfected HeLa cells with 48 distinct GFP- or CFP-

tagged Rab GTPases. The Rabs chosen for our study constitute 

a broad representation of the Rab family. We then introduced 

∆invA/Inv S. Typhimurium and, after phagocytosis, tracked Rab 

association with the model phagosome over 3 h. At each time 

point investigated, we determined Rab association for at least 

100 internalized bacteria, ensuring we only counted cells where 

expression of the Rab was relatively low. To ensure we counted 

only internalized bacteria, we immunostained for S. Typhimurium 

before and after permeabilization of the cellular membrane. In 

this way we were able to determine which bacteria had invaded 

and which remained extracellular. We counted a positive asso-

ciation of a Rab with the model phagosome as a distinct ring 

around the bacteria and in the same focal plane as the bacteria 

(Fig. 1, B and C).

In parallel, we infected cells with wild-type S. Typhimurium 

and monitored its association with the same 48 Rab GTPases. 

Wild-type S. Typhimurium use the SPI-1–encoded TTSS to 

 invade epithelial cells in a manner distinct from receptor-

 mediated phagocytosis (Brumell and Grinstein, 2004). After 

 invasion, the bacteria reside in a Salmonella-containing vacuole 

(SCV) that, like a phagosome, interacts with the early endo-

somal pathway and acquires Rab5. The SCV then undergoes a 

maturation process that is characterized by the recruitment of 

lysosomal-associated membrane protein-1 (LAMP-1) and other 

lysosomal glycoproteins but does not fuse with lysosomes. The 

manner in which wild-type S. Typhimurium is able to manipu-

late SCV traffi cking is unknown; however, there is evidence it 

can directly manipulate Rab function (Harrison et al., 2004).

The results of our screen on the model phagosome correlated 

well with previously characterized Rabs found on phagosomes 

(Fig. 2). Rab3, 4, 5, 7, 9, 10, 11, and 14 have all been previously 

identifi ed on purifi ed latex bead phagosomes (Garin et al., 2001) 

and were all present, with the exception of Rab3, at a level of 

20% or higher on model phagosomes at some time during the 

fi rst 3 h post infection (p.i.; Fig. 2 and Table S1, available 

at http://www.jcb.org/cgi/content/full/jcb.200611056/DC1). In 

addition, the association of Rab5A early (15 min p.i.) and Rab7 

later (2–3 h p.i.) matched previous results (Vieira et al., 2002), 

signifying that our model system is an effective tool to study 

phagosome maturation. Importantly, our studies determined 

Figure 1. Differential traffi cking of wild-type and 𝚫invA/Inv 
S. Typhimurium. (A) Cells were infected with wild type (◆), 
∆invA/Inv (■), or ∆invA/Inv + tetracycline (●). Semi-log plot 
of the relative number of intracellular bacteria over an 8-h 
 infection. Results are the means (± SD) of three independent 
experiments. HeLa cells were transfected with CFP-Rab8B 
(B) or CFP-Rab5B (C), infected with wild-type or ∆invA/Inv 
S.  Typhimurium, and fi xed at the indicated time. Arrows 
 indicate colocalization between bacterial vacuole and Rab. 
Arrowheads indicate extracellular bacteria. Bar, 10 μm.
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several novel Rab associations (>20% association) with our 

model phagosome (Fig. 2).

Some phagosome-associated Rabs interacted only with the 

model phagosome and not with the SCV of wild-type bacteria 

(Fig. 1 B and Fig. 2). These included Rab8B, 13, 23, 32, and 35. 

These Rabs also associated with the model phagosome in a 

macrophage cell line with similar kinetics and with phagosomes 

containing IgG-coated ∆invA mutant bacteria (lacking Inv 

 expression) after Fcγ receptor–mediated phagocytosis (Table 

S2, A and B, available at http://www.jcb.org/cgi/content/full/

jcb.200611056/DC1). To test whether these Rabs have a role in 

phagosome maturation, Texas red–labeled dextran was preloaded 

into HeLa cells, followed by transfection with CFP-tagged 

dominant-negative (DN) Rab constructs or a CFP control 

 vector. Before infection, noninternalized dextran was removed, 

 allowing internalized dextran to label lysosomes. At 3 h p.i., 

cells were fi xed and the number of bacteria in lysosomes was 

enumerated. For wild-type S. Typhimurium, �10% of bacteria 

fused with lysosomes compared with �40% of ∆invA/Inv bac-

teria (Fig. 3, A–C). Expression of DN mutants of Rab8B, 13, 

and 32 had no effect on phagosomal fusion with lysosomes 

compared with the control. However, DN mutants of Rab23 and 

35 reduced fusion by >25% compared with the control, demon-

strating these Rabs play a role in phagosome–lysosome fusion 

(Fig. 3 C). Both Rabs are expressed in many cell types, includ-

ing HeLa cells, and are thought to play a role in endosomal 

 recycling (Evans et al., 2003; Kouranti et al., 2006). Thus, it is 

possible that Rab23 and Rab35 promote phagosome maturation 

by mediating recycling from this compartment.

Interestingly, we observed some Rabs that, although asso-

ciated with the model phagosome, had greater association with 

the wild-type SCV (Fig. 1 C and Fig. 2). These are Rab5A, 5B, 

5C, 7, 11A, and 11B. It is possible the bacteria specifi cally 

 mediate recruitment of these Rabs to the SCV. Indeed, our 

 recent experiments indicate that a bacterial factor promotes 

 recruitment of Rab5 to early SCVs by promoting their fusion 

with early endosomes (unpublished data). Conversely, the 

lack of association of some Rabs with the SCV suggests that 

S. Typhimurium can block their recruitment. This is consistent 

with the fi nding that S. Typhimurium can modulate the activity 

of host GTPases, including members of the Rab family (Harrison 

et al., 2004). Additionally, S. Typhimurium may mimic the 

function of host GTPases, obviating a need for their recruit-

ment. Such a scenario was recently suggested for TTSS effec-

tors present in other bacterial pathogens (Alto et al., 2006).

Approximately 3 h p.i., S. Typhimurium activates a sec-

ond TTSS encoded in SPI-2 and mediates translocation of a 

distinct set of effector proteins across the SCV and into the host 

cell. Deletion of ∆ssaR, an essential component of the SPI-2 

TTSS apparatus, had no effect on the recruitment of Rabs to the 

Figure 2. Rab GTPase localization on wild-type and ∆invA/Inv S. Typh-
imurium vacuoles. Wild-type SCVs and ∆invA/Inv S. Typhimurium model 
phagosomes were enumerated for their association with 48 Rab GTPases 
at the indicated times. The scale represents 0 to 75% of vacuoles colocaliz-
ing with the Rab GTPase as indicated by degree of shading. Results repre-
sent at least two independent experiments. *, P < 0.05, comparing 
differences between wild-type and ∆invA/Inv vacuoles at each time point. 
Signifi cance was tested when n ≥ 3.

Figure 3. Rab requirement for phagosome–lysosome fusion. Cells were 
preloaded with Texas red (TR)–dextran and transfected with CFP. Cells 
were fi xed 3 h after infection with wild-type S. Typhimurium (A), or ∆invA/Inv 
S. Typhimurium (B). Arrowheads indicate extracellular bacteria. Bar, 
10 μm. (C) Co-localization between the SCV and TR-Dextran was enumer-
ated in cells preloaded with TR-dextran, transfected with CFP or CFP-tagged 
DN Rab constructs, and fi xed 3 h after addition of bacteria to HeLa cells. 
Results are the means (± SD) of three independent experiments. Levels of 
signifi cance are indicated by p-values compared with CFP-transfected 
∆invA/Inv-infected control.
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SCV during the fi rst 3 h p.i., which is consistent with the 

kinetics of SPI-2 TTSS expression (Table S1). We also observed 

that the ∆ssaR mutant did not associate with Rab8B, 13, 23, 32, 

and 35 up to 10 h p.i., indicating this mutant did not traffi c to ly-

sosomes (unpublished data). These observations are consistent 

with the fi ndings of Garvis et al. (2001), who demonstrated that 

the PhoP/Q regulon mediates avoidance of lysosomes and that 

the SPI-2 TTSS plays no role in this aspect of SCV traffi cking.

One of the cellular phenotypes attributed to the SPI-2 

TTSS is the formation of Salmonella-induced fi laments (Sifs). 

Sifs are long tubular structures extending from the SCV that are 

characterized by their enrichment with LAMP-1 (Garcia-del 

Portillo et al., 1993). The purpose of Sif formation is unclear; 

however, mutants defective for Sif formation are also defective 

for intracellular growth and for virulence in animal models of 

infection. The source of membrane from which Sifs are formed 

is also unclear; hence, we screened the 48 Rabs to determine 

which are present on Sif membranes. We found both Rab7 (Fig. 

4 A) and Rab9 (Fig. 4 B) on the membrane but none of the other 

Rabs tested (not depicted). Rab7 controls the acquisition of 

LAMP-1 by the SCV (Meresse et al., 1999) and has been previ-

ously localized to Sifs and shown to be required for Sif forma-

tion (Brumell et al., 2001).

Rab9 regulates late endosome to Golgi traffi c (Lombardi 

et al., 1993) and its localization to Sifs is a novel observation. 

Therefore, we determined if Rab9 activity is required for 

Sif formation by transfection of DN Rab9 in wild-type 

S. Typhimurium–infected HeLa cells (Fig. 4 C). For these ex-

periments, we transfected cells with DN constructs 2 h after in-

fection with wild-type S. Typhimurium. In this way, we could 

selectively modulate Rab activity after bacterial establishment of a 

favorable intracellular niche and focus our analysis on Sif for-

mation, which occurs between 6–8 h p.i. (Birmingham et al., 2005). 

In CFP control-transfected cells, �30% of infected cells had 

Sifs after an 8-h infection. When transfected with DN Rab7, 

12% of infected cells had Sifs after 8 h, confi rming the require-

ment of this GTPase in Sif formation. Transfection of DN Rab5 

had no effect on Sif formation, suggesting this effect was not 

caused by a general inhibition of the endosomal system (unpub-

lished data). In cells transfected with DN Rab9, 11% of infected 

cells had Sifs after 8 h (Fig. 4 C). Under similar infection con-

ditions, expression of DN Rab5, 7, or 9 did not affect intracellu-

lar bacterial growth up to 10 h p.i. (unpublished data). Thus, 

inhibition of Sifs by DN Rab expression was not caused by an 

effect on bacterial growth. Together, these studies reveal a novel 

role for Rab9 in Sif formation.

The presence of Rab9 on Sifs suggested that fusion of late 

endosomes with the SCV can occur at late times p.i. and is con-

sistent with the presence of cathepsin D and lysobisphospha-

tidic acid on Sifs (Brumell et al., 2001). To further test this 

possibility, we examined other late endocytic markers to deter-

mine their presence on Sifs. We found that the late endosome-

localized syntaxin7 (Nakamura et al., 2000), as well as the late 

endosome/lysosome-localized transporter Niemann-Pick C1 

(NPC1; Higgins et al., 1999), were both present on Sifs (Fig. 

4, D and E). However, we did not detect Sif fusion with lyso-

somes when examined by addition of fl uid phase markers (un-

published data), confi rming previous results (Garcia-del Portillo 

et al., 1993). Thus, our data suggests that the SCV fuses with 

late  endosomes and that this compartment could provide a 

source of membrane for Sifs.

We determined when fusion of the SCV with late endo-

somes occurs during infection. HeLa cells were infected with 

wild-type S. Typhimurium and fi xed at various times up to 8 h 

p.i. Bacteria positive for LAMP-1 (a marker for SCVs) were 

scored for colocalization with NPC1 (Fig. 4 F). At 1 h p.i., 

80% of LAMP-1+ SCVs did not associate with NPC1, indicat-

ing that fusion with late endosomes was minimal at this time. 

Figure 4. A delayed interaction of the wild-type SCV 
with late endocytic compartments. HeLa cells trans-
fected with GFP-Rab7 (A) or GFP-Rab9 (B) show co-
localization between the tagged protein and LAMP-1 
8 h p.i. on Sifs. Arrows indicate Sifs. (C) The number 
of cells with Sifs was counted after an 8-h infection with 
wild type S. Typhimurium in cells transfected with CFP 
or DN Rab constructs. Results are the means (± SD) of 
three independent experiments. Levels of signifi cance 
are indicated by p-values compared with CFP trans-
fected. Hela cells transfected with myc-Syntaxin 7 (D) 
or immunostained for NPC1 (E) show colocalization 
with LAMP-1 8 h p.i. on Sifs. Arrows indicate Sifs. 
Bars, 10 μm. (F) HeLa cells were infected with wild-
type S. Typhimurium, fi xed, and immunostained 
for LAMP-1 and NPC1. SCVs that colocalized with 
LAMP-1 only (◆) or LAMP-1 and NPC1 (■) were 
quantifi ed. Results are the means (± SD) of three inde-
pendent  experiments. Levels of signifi cance are indi-
cated by p-values comparing LAMP-1+/NPC1+ to 
LAMP-1+/NPC1−.



RAB GTPASE ASSOCIATION WITH THE PHAGOSOME • SMITH ET AL. 267

However, by 4 h p.i. the majority of LAMP-1+ SCVs had accu-

mulated NPC1, indicating late endosome fusion had taken 

place. Our data demonstrates a two-step maturation of the SCV 

occurs where there is a delay in fusion with late endosomes. 

This is reminiscent of the “pregnant pause” mechanism used by 

Legionella pneumophila and other intracellular bacterial patho-

gens (Swanson and Fernandez-Moreira, 2002), which tempo-

rarily halt maturation of their vacuole so they can form a 

replicative niche before the vacuole matures to the next state.

Our experimental approach permitted us to study the 

 interactions of a large number of Rabs with both a model phago-

some and the SCV of virulent S. Typhimurium. The results we 

obtained correlated well with previous data describing the asso-

ciation of Rab GTPases with both compartments. Importantly, 

we were able to localize several uncharacterized Rabs to each 

compartment. A network of 18 different Rabs was present on 

model phagosomes and 16 were found on the SCV. The fi nding 

that up to 12 different Rabs were present on each compartment 

at a given time is remarkable and consistent with the hypothesis 

that endosomes are composed of membrane domains (Sonnichsen 

et al., 2000). Our data indicate that the process of phago-

some maturation is far more complex than a single Rab5 to 7 

transition and provide many insights and new avenues of study. 

Indeed, we found a novel role for both Rab23 and 35 in phago-

some maturation. Furthermore, we were able to monitor the 

traffi cking of a pathogenic bacterium and characterize the diver-

gence of its vacuolar compartment from the normal degradative 

pathway. Our observations reveal the ability of S. Typhimurium 

to undergo a unique two-step maturation process that involves a 

delayed interaction of the SCV with late endosomes, but not 

 lysosomes (Fig. 5). Future studies are required to defi ne the 

 molecular mechanisms by which Rab GTPases control phagosome 

maturation and how intracellular pathogens like S. Typhimurium 

modulate their function.

Materials and methods
Cell culture and bacterial strains
HeLa and RAW 264.7 cells were obtained from American Type Culture 
Collection. Cells were maintained in DME (HyClone) supplemented with 
10% FBS (Wisent) at 37°C in 5% CO2 without antibiotics. Cultures were 
used between passage numbers 3–25. Wild-type SL1344 (Hoiseth 
and Stocker, 1981), ∆ssaR SL1344 (Brumell et al., 2002), ∆invA (Steele-
Mortimer et al., 2002), and ∆invA/pRI203 (∆invA/Inv) 14028S (Steele-
Mortimer et al., 2002) S. Typhimurium strains were used in this study.

Plasmids and transfection
Plasmids used in this study are described in the Online supplemental 
 material. GeneJuice transfection reagent (Oncogene Research Products) 
was used for transient transfection of cells.

Antibodies
Rabbit polyclonal antibodies to S. Typhimurium O antiserum group B were 
obtained from Difco. Murine monoclonal and rabbit polyclonal anti-GFP 
antibodies were obtained from Invitrogen. Rabbit polyclonal antibodies 
to c-myc were purchased from Santa Cruz Biotechnology, Inc. Murine 
monoclonal anti–human LAMP-1 antibodies (clone H4A3) developed by 
T. August (University of Iowa, Iowa City, IA) were obtained from the Devel-
opmental Studies Hybridoma Bank. Rabbit polyclonal antibodies to NPC1 
were obtained from D. Manhuran and R. Bagshaw (Hospital for Sick 
 Children, Toronto, Canada).

Bacterial infection of cell cultures
For wild-type and ∆ssaR mutant infections, late-log bacterial cultures were 
used and prepared using a method optimized for bacterial invasion (Steele-
Mortimer et al., 1999). After infection, extracellular bacteria were removed 
by extensive washing with PBS and addition of growth medium containing 
100 μg/ml gentamicin. After 90 min of bacterial infection, the gentamicin 
concentration was decreased to 10 μg/ml. For Sif studies, cells were 
transfected 2 h p.i. with wild-type S. Typhimurium (see Plasmids and 
transfection). Cells were fi xed 8 h after addition of bacteria. Intracellular 
growth assays were performed as previously described (Steele-Mortimer 
et al., 2002).

For ∆invA/Inv infections, bacteria were grown for �16 h at 37°C 
with shaking, subcultured (1:33) in Luria-Bertani broth for 3 h, and diluted 
to an OD600 of 1.0 in Luria-Bertani. Bacterial inocula were prepared by 
pelleting at 10,000 g for 2 min, directly resuspended and diluted in PBS, 
pH 7.2, and added to cells at a dilution of 1:20. Cells were spun at 1,000 
rpm for 1 min followed by incubation at 37°C for 15 min. After infection, 
extracellular bacteria were removed by extensive washing with PBS and 
addition of growth medium containing 200 μg/ml tetracycline. For ∆invA 
infections, bacteria were incubated in 2 ml PBS in the presence of 2 mg/ml 
of human IgG for 1 h at 37°C with shaking before addition to cells, as 
mentioned for the ∆invA/Inv strain.

For dextran loading, HeLa cells were incubated with 1 mg/ml Texas 
red–dextran (Invitrogen) for 24 h, and then chased for 1 h before use. Cells 
were transfected 16–20 h before use and cells were infected with wild-type 
and ∆invA/Inv bacteria as above.

Immunofl uorescence
Fixed cells were immunostained as previously described (Brumell et al., 
2001). Immunostaining before permeabilization was used when determin-
ing the presence of intracellular bacteria. A fl uorescence microscope 
(DMIRE2; Leica) equipped with a 100×/NA 1.4 oil objective (Plan Apo-
chromat; Leica) was used to enumerate association of different proteins 
with the SCV. Colocalization was determined visually, with distinct signal 
surrounding the bacteria considered positive, for at least 100 bacteria. The 
mean ± the range (n = 2) or the SD (n ≥ 3) is presented. Images of fi xed 
cells were obtained using an inverted microscope (Axiovert 200M; Carl 
Zeiss MicroImaging, Inc.) equipped with a laser scanning confocal imag-
ing system (LSM510; Carl Zeiss MicroImaging, Inc.) and a 63×/NA 1.4 oil 
immersion objective lens (Plan Apochromat; Carl Zeiss MicroImaging, Inc.). 

Figure 5. Model of Rab association during Salmonella invasion. 
Model showing Rabs enriched on either the wild-type SCV or ∆invA/Inv 
model phagosome from invasion through to Sif formation or lysosomal 
 fusion, respectively.
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Images were imported into Photoshop (Adobe) and assembled in 
 Illustrator (Adobe).

Statistical analysis
All experiments were repeated two to four times. Statistical analyses were 
performed using a two-tailed unpaired t test. P-values <0.05 were consid-
ered statistically signifi cant.

Online supplemental material
Provided as online supplemental material are descriptions of the plasmids 
used in this study. Table S1 provides raw data for Fig. 2. Table S2 provides 
data for colocalization of Rab8B, 13, 23, 32, and 35 with phagosomes 
containing ∆invA/Inv bacteria (A) or IgG-coated ∆invA bacteria (B) in 
RAW 264.7 macrophages. Table S2 C provides the primers used to generate 
plasmids in this study. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200611056/DC1.

We are grateful to those colleagues who generously provided reagents used 
in this study. We thank members of the Brumell laboratory for critical reading 
of the manuscript, Malina Bakowski for her generous donation of artwork, 
Mike Woodside for help with confocal microscopy, and Judith Cirulis for tech-
nical assistance.

A.C. Smith is the recipient of a University of Toronto open scholarship, 
a studentship from the Natural Sciences and Engineering Research Council of 
Canada, and the Toronto Star student bursary through the Hospital for Sick 
Children Research Training Centre. C. Macrae was supported by the Samuel 
Lunenfeld Research Summer Student Program. This work was supported with 
funding from the Canadian Institutes of Health Research. Infrastructure for the 
Brumell laboratory was provided by a New Opportunities Fund from the 
 Canadian Foundation for Innovation and the Ontario Innovation Trust. J.H. Brumell 
holds an Investigators in Pathogenesis of Infectious Disease Award from the 
Burroughs Wellcome Fund.

Submitted: 10 November 2006
Accepted: 21 December 2006

References
Alto, N.M., F. Shao, C.S. Lazar, R.L. Brost, G. Chua, S. Mattoo, S.A. McMahon, 

P. Ghosh, T.R. Hughes, C. Boone, and J.E. Dixon. 2006. Identifi cation 
of a bacterial type III effector family with G protein mimicry functions. 
Cell. 124:133–145.

Birmingham, C.L., X. Jiang, M.B. Ohlson, S.I. Miller, and J.H. Brumell. 2005. 
Salmonella-induced fi lament formation is a dynamic phenotype induced 
by rapidly replicating Salmonella enterica serovar typhimurium in 
 epithelial cells. Infect. Immun. 73:1204–1208.

Brumell, J.H., and S. Grinstein. 2004. Salmonella redirects phagosomal 
 maturation. Curr. Opin. Microbiol. 7:78–84.

Brumell, J.H., P. Tang, S.D. Mills, and B.B. Finlay. 2001. Characterization 
of Salmonella-induced fi laments (Sifs) reveals a delayed interaction 
 between salmonella-containing vacuoles and late endocytic  compartments. 
Traffi c. 2:643–653.

Brumell, J.H., D.L. Goosney, and B.B. Finlay. 2002. SifA, a type III secreted 
effector of Salmonella typhimurium, directs Salmonella-induced fi lament 
(Sif) formation along microtubules. Traffi c. 3:407–415.

Evans, T.M., C. Ferguson, B.J. Wainwright, R.G. Parton, and C. Wicking. 2003. 
Rab23, a negative regulator of hedgehog signaling, localizes to the plasma 
membrane and the endocytic pathway. Traffi c. 4:869–884.

Galan, J.E., and R. Curtiss III. 1989. Cloning and molecular characterization of 
genes whose products allow Salmonella typhimurium to penetrate tissue 
culture cells. Proc. Natl. Acad. Sci. USA. 86:6383–6387.

Garcia-del Portillo, F., M.B. Zwick, K.Y. Leung, and B.B. Finlay. 1993. 
Salmonella induces the formation of fi lamentous structures containing 
lysosomal membrane glycoproteins in epithelial cells. Proc. Natl. Acad. 
Sci. USA. 90:10544–10548.

Garin, J., R. Diez, S. Kieffer, J.F. Dermine, S. Duclos, E. Gagnon, R. Sadoul, C. 
Rondeau, and M. Desjardins. 2001. The phagosome proteome: insight 
into phagosome functions. J. Cell Biol. 152:165–180.

Garvis, S.G., C.R. Beuzon, and D.W. Holden. 2001. A role for the PhoP/Q regu-
lon in inhibition of fusion between lysosomes and Salmonella-containing 
vacuoles in macrophages. Cell. Microbiol. 3:731–744.

Gorvel, J.P., P. Chavrier, M. Zerial, and J. Gruenberg. 1991. rab5 controls early 
endosome fusion in vitro. Cell. 64:915–925.

Harrison, R.E., J.H. Brumell, A. Khandani, C. Bucci, C.C. Scott, X. Jiang, B.B. 
Finlay, and S. Grinstein. 2004. Salmonella impairs RILP recruitment 

to Rab7 during maturation of invasion vacuoles. Mol. Biol. Cell. 
15:3146–3154.

Higgins, M.E., J.P. Davies, F.W. Chen, and Y.A. Ioannou. 1999. Niemann-Pick 
C1 is a late endosome-resident protein that transiently associates with 
 lysosomes and the trans-Golgi network. Mol. Genet. Metab. 68:1–13.

Hoiseth, S.K., and B.A. Stocker. 1981. Aromatic-dependent Salmonella 
 typhimurium are non-virulent and effective as live vaccines. Nature. 
291:238–239.

Isberg, R.R., and J.M. Leong. 1990. Multiple beta 1 chain integrins are receptors 
for invasin, a protein that promotes bacterial penetration into mammalian 
cells. Cell. 60:861–871.

Kouranti, I., M. Sachse, N. Arouche, B. Goud, and A. Echard. 2006. Rab35 reg-
ulates an endocytic recycling pathway essential for the terminal steps of 
cytokinesis. Curr. Biol. 16:1719–1725.

Lombardi, D., T. Soldati, M.A. Riederer, Y. Goda, M. Zerial, and S.R. Pfeffer. 
1993. Rab9 functions in transport between late endosomes and the trans 
Golgi network. EMBO J. 12:677–682.

Meresse, S., O. Steele-Mortimer, B.B. Finlay, and J.P. Gorvel. 1999. The rab7 
GTPase controls the maturation of Salmonella typhimurium-containing 
vacuoles in HeLa cells. EMBO J. 18:4394–4403.

Mills, S.D., and B.B. Finlay. 1998. Isolation and characterization of Salmonella 
typhimurium and Yersinia pseudotuberculosis-containing phagosomes 
from infected mouse macrophages: Y. pseudotuberculosis traffi cs to 
terminal lysosomes where they are degraded. Eur. J. Cell Biol. 77:35–47.

Nakamura, N., A. Yamamoto, Y. Wada, and M. Futai. 2000. Syntaxin 7 mediates 
endocytic traffi cking to late endosomes. J. Biol. Chem. 275:6523–6529.

Rink, J., E. Ghigo, Y. Kalaidzidis, and M. Zerial. 2005. Rab conversion as a mech-
anism of progression from early to late endosomes. Cell. 122:735–749.

Sonnichsen, B., S. De Renzis, E. Nielsen, J. Rietdorf, and M. Zerial. 2000. 
Distinct membrane domains on endosomes in the recycling pathway 
 visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 
149:901–914.

Steele-Mortimer, O., S. Méresse, J.-P. Gorvel, B.-H. Toh, and B.B. Finlay. 1999. 
Biogenesis of Salmonella typhimurium-containing vacuoles in epithe-
lial cells involves interactions with the early endocytic pathway. Cell. 
Microbiol. 1:33–51.

Steele-Mortimer, O., J.H. Brumell, L.A. Knodler, S. Meresse, A. Lopez, and 
B.B. Finlay. 2002. The invasion-associated type III secretion system of 
Salmonella enterica serovar Typhimurium is necessary for intracellular 
proliferation and vacuole biogenesis in epithelial cells. Cell. Microbiol. 
4:43–54.

Swanson, M.S., and E. Fernandez-Moreira. 2002. A microbial strategy to multiply 
in macrophages: the pregnant pause. Traffi c. 3:170–177.

Vieira, O.V., R.J. Botelho, and S. Grinstein. 2002. Phagosome maturation: aging 
gracefully. Biochem. J. 366:689–704.

Zerial, M., and H. McBride. 2001. Rab proteins as membrane organizers. Nat. 
Rev. Mol. Cell Biol. 2:107–117.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (U.S. Prepress Defaults)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 299
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 299
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200073007000650063006900660069006300200074006f0020005200550050002000640065006c006900760065007200610062006c006500200061006e00640020006500700072006f006f006600200050004400460073002e00200046006f007200200075007300650020007700690074006800200041007200630072006f006200610074002000440069007300740069006c006c00650072002000760065007200730069006f006e00200037002e0078003b00200044004a0053002000760065007200730069006f006e00200031002e0030000d>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


