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Abstract

Background: Many metazoan genomes conserve chromosome-scale gene linkage relationships (“macro-synteny”)
from the common ancestor of multicellular animal life [1-4], but the biological explanation for this conservation is
still unknown. Double cut and join (DCJ) is a simple, well-studied model of neutral genome evolution amenable to
both simulation and mathematical analysis [5], but as we show here, it is not sufficent to explain long-term macro-
synteny conservation.

Results: We examine a family of simple (one-parameter) extensions of DCJ to identify models and choices of
parameters consistent with the levels of macro- and micro-synteny conservation observed among animal genomes.
Our software implements a flexible strategy for incorporating genomic context into the DCJ model to incorporate
various types of genomic context (“DCJ-[C]”), and is available as open source software from http://github.com/
putnamlab/dcj-c.

Conclusions: A simple model of genome evolution, in which DCJ moves are allowed only if they maintain
chromosomal linkage among a set of constrained genes, can simultaneously account for the level of macro-
synteny conservation and for correlated conservation among multiple pairs of species. Simulations under this
model indicate that a constraint on approximately 7% of metazoan genes is sufficient to constrain genome
rearrangement to an average rate of 25 inversions and 1.7 translocations per million years.

Background
Macro-synteny conservation
Recent genome sequencing efforts have dramatically
expanded the sampling of metazoan diversity repre-
sented among assembled genomes. One unexpected
result of comparing these genomes is that their chromo-
some-scale organization is largely conserved from the
last common ancestor of metazoans in members of
multiple phyla. The genomes of sponges, cnidarians, pla-
cozoans, and chordates all show extensive conservation

of chromosome-scale linkage (or macro-synteny) among
genes [1-4].
Only a handful of genome projects (and only the

human genome among those examined in this work)
have received sufficient depth of sequencing, long-range
clone-end sequencing, and map construction for their
longest reconstructed pieces (called “scaffolds”) to
approach the length of whole chromosomes. However,
indirect methods have been developed [1,2] to infer chro-
mosome-scale linkage from orthologous genes shared
between scaffolds of different draft genome assemblies.
We apply those methods here to partition the scaffolds
(or chromosome segments, in the case of the human gen-
ome) of five metazoan genomes by biclustering. In the
resulting partitioning, the scaffolds in each group share a
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distinct distribution of orthologs across the groups of
other genomes. This pattern is clearly visible in the
human-piacozoan “dot plot” of Figure 1a.
This pattern has been interpreted as indicating that

each such group of scaffolds corresponds to an ancestral
chromosome (predating recent genome rearrangements),
and the groups are therefore referred to as “putative
ancestral linkage groups” (PALs). This interpretation is
bolstered by statistical tests, and one PAL of Branchios-
toma floridae was interrogated by physical mapping and

found to correspond to a single chromosome [2]. While
this imprint of the ancestral metazoan chromosomes
clearly persists in the genomes analyzed here which
have been diverging for over half a billion years, it has
been mostly or completely lost in the genomes of all
sequenced arthropods, nematodes, and tunicates [2,6].
Several biological mechanisms could explain the

observed conservation, including a low average rate of
germ-line mutations involving inter-chromosomal rear-
rangement, and low rate of fixation of these mutations
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Figure 1 Whole-genome gene order comparison (“dot plots”) for (a) Observed: human (Hs) vs. placozoan (Ta). (b) Starting (genome 1) and
ending (genome 2) genomes of DCJ simulations matching conserved macro-synteny ( p = pHsTa ). (c) DCJ simulation matching conserved
micro-synteny: ( s = sHsTa ). (d) DCJ-DS simulation matching both conserved micro- and macro-synteny ( mu = 0.07, n = 30,000 ).
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because they disrupt gene regulatory interactions. We
set out to find simple, concrete models of genome evo-
lution that can explain such synteny conservation, and
can be used to generate simulated null distributions for
testing hypotheses about genome evolution.

Extending the DCJ model with constraints
DC J is a generic genome rearrangement operation
determined by (1) selecting a pair of points at which the
genome is cut, and (2) reconnecting the resulting new
ends to effect an inversion, a reciprocal translocation, or
the excision, insertion, fission or fusion of circular frag-
ments. All gene-conserving moves of genome rearrange-
ment can be constructed from DCJ operations. Efficient
algorithms exist for computing the minimum number of
DCJ operations required to transform one genome into
another [5,7]. DCJ has also previously been used to
study the behavior of genomes evolving under a stochas-
tic model in which DCJ moves are selected by choosing
cut points uniformly at random across the genome, and
with constraints imposed on move choices designed to
more closely match observations of real genomes [8,9].
Stochastic DCJ with cut points selected at random
(hereafter referred to as the DCJ model) imposes a fixed
relationship between the rate of decay of micro- and
macro-synteny, and as we show below, it cannot
account for the long-term conservation of macro-syn-
teny relationships.
We have examined four models which build on DCJ,

each through the addition of a single adjustable para-
meter which affects the relative frequency and/or size of
intra- and inter- chromosomal rearrangement events by
imposing various constraints on move selection. In each
case, candidate DCJ moves are proposed at random, and
either carried out or rejected according to the rules of
the model. We considered the following models:
DCJ-maxL: Under this model, a maximum rearrange-

ment length (Lmax) is imposed on inversions, excisions
and translocations.
DCJ-maxT: This model is similar to DCJ-maxL but the

length restrictions are imposed only on the inter-chro-
mosomal operations, and not on inversions.
DCJ-pfix: In this model, proposed inter-chromosomal

rearrangements are independently accepted with prob-
ability pfix, and otherwise rejected, reducing their fre-
quency by not their size.
DCJ-DS: A fixed fraction of genes µ are flagged as

“sensitive”, and operations that would alter the partition-
ing of these genes among chromosomes are rejected.
DCJ-DS was conceived to study constraints on genome
structure evolution arising from dosage-sensitive genes
(Figure 2); i.e., genes producing a phenotypic effect
when their copy number in a diploid genome deviates
from the normal complement of two. Dosage sensitivity

has been shown to play a role in determining the long-
term fate of genes created by whole genome duplication
[10]. A new mutation moving a dosage-sensitive gene
from one chromosome to another is unlikely to be fixed
in a diploid population, because when crossed with the
un-rearranged genotype it leads to gametes with zero
and two copies of the translocated genes, in addition
to those with one copy. This leads to underdominant
selection against such rearrangements, as illustrated in
Figure 2. Figure 3 illustrates examples of the operation
of the constraint.
Other types of constraint that restrict the movement

between chromosomes of a fixed subset of genes may
have similar or indistinguishable effects when realized in
such a simplified model. Examples of such subsets of
constrained genes could, for example, include genes
under the control of long-range cis-regulatory elements.

Results
Simulations of genome evolution
Our open-source Python implementation of these meth-
ods enables simulation of genome evolution under a
family of models based on DCJ. These extend the dou-
ble cut and join paradigm by rejection of moves based
on various types of genomic context, and we refer to
them collectively as “DCJ-[C]”. Our software includes a
modified binary search tree with “reverse” flags and sub-
tree summaries on nodes so that all the information
necessary to carry out DCJ-[C] operations, such as
counting “sensitive” genes on any fragment, can be com-
pleted in O(log N) time. [11-13] Although we do not
enforce balanced binary trees for a strict bound on per-
formance, we found chromosome gene trees to remain
O(log N) height on average, with correspondingly fast
running time. (Data not shown.) The software can be
downloaded from http://github.com/putnamlab/dcj-c.
We define two summary statistics: sab and pab, which

measure the conservation rate of micro- and macro-syn-
teny respectively in a pairwise comparison of genomes a
and b. sab is equal to the fraction of gene adjacencies in
a which are also present in the orthologous genes of b.
pab is the fraction of genes in genome a which have a
conserved chromosomal context in b.
We focus on five metazoan genomes representing

anciently-diverged metazoan groups that have been
shown previously to exhibit extensive macro-synteny
conservation, and for which PALs have previously been
inferred: Homo sapiens (human) [14], Branchiostoma
floridae (lancelet) [2], Nematostella vectensis (sea ane-
mone) [1], Trichoplax adherens (placozoan) [3] and
Amphimedon queenslandica (sponge) [4]. These gen-
omes have pairwise values of p ranging from 35% to
58%, and of s ranging from 0.4% to 2.3% (Table 1). All
the models considered reduce to the DCJ model for
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some choice of the added parameter. DCJ does not pre-
dict the levels of micro- and macro- synteny observed
among these genomes. In simulation, when the level of
macro-synteny conservation falls to ≈ 50%, the average
value of s is ≈ 90%(Figure 1b). At longer simulated evo-
lutionary times, p falls to its saturation level of 1/c,
where c is the number of chromosomes, by the time s

approaches the range observed in the metazoan data
(Figure 1c; Table 1).
For each constrained model, we explored the depen-

dence of the mean values of s and p on the number of
rearrangements and the added model parameter. Figure
4 shows the dependence of the average values of s and p
when comparing starting and ending genomes of DCJ-

D (2)

F1 individual (2)

wt (1) T (1)

wt (1) T (1)Δ (0)

P gametes

F1 gametes

Figure 2 Structural polymorphisms result in gene dosage changes. Top row: haploid gametes with chromosomes represented as colored
vertical bars, with wild genotype (wt) and mutated genotype carrying a single translocation (T); middle row: heterozygous diploid individual;
bottom row: gametes produced at the next generation, half of which have altered dosage: the translocated segment (red color) is either deleted
(Δ), or duplicated (D). Numbers in parentheses indicate the number of copies of the translocated segment.
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DS simulation runs as functions of n, the number of
accepted moves and µ, the fraction of dosage-sensitive
genes. The rate of decay of micro-synteny with n
depends only weakly on µ, while macro-synteny decays
much more slowly with increased µ.

Comparisons to genome data
We fit each model to the Human-Trichoplax divergence,
which exhibits typical levels of p and s, and both gen-
ome have high quality assemblies. Three of the models
can simultaneously account for the observed levels of
micro- and macro-synteny observed in pairwise genome

comparisons (Figure 4); only the DCJ-Lmax fails in this
respect. While restricting the size of all rearrangements
does slow the decay of macro-synteny due to lower fre-
quency and size of inter-chromosomal rearrangements,
the loss of micro-synteny is also slowed when inversion
size is limited [15]. The best-fitting parameter values of
each model to the human-placozoan comparison are
shown in Table 2.

Multi-species comparison
To further discriminate among the models and compare
them to the genome data, we examined their behavior
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Figure 3 DCJ-DS model. The four chromosomal fragments produced by a pair of cuts on different chromosomes can be rejoined in two ways.
Inter-chromosomal rearrangement that would change the chromosomal-scale connectivity of sensitive genes (x’s) are rejected. Rearrangements
are accepted only when one side of each breakpoint is free of sensitive genes both before and after the move. A: Illegal cuts. Connectivity of
sensitive genes would be broken in any of these moves. B: Illegal rejoins. Sensitive genes from different chromosomes would be rejoined (or
split) in the rejected moves.
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in a multi-species comparison. Because a specific subset
of genes is strictly constrained to remain on their start-
ing chromosome in the DCJ-DS model, this model
implies correlations in the fates of orthologous genes in
lineages after they diverge. In the real data, we found
1144 single-copy gene families present in all five gen-
omes, of which 298 showed conserved macro-synteny in
all five genomes. This is more than what one might
expect based on a simple model of independent gene
movement ( N p

− =5 2 183/ , although this calculation does
not take into account correlations that could be induced
by the discrete nature of the rearrangement process,
shared ancestry, or variation in evolutionary rates. Table
3 lists symbols and abbreviations.)
We measured multi-species conserved macro-synteny

for each of the three successful models by sampling
simulated evolutionary histories of five species in a star-
shaped phylogeny, with the same mean pairwise micro-
and macro-synteny conservation rates as the real data.
For each simulation we selected 1144 marker genes and
counted how many exhibited five-way conserved macro-
synteny. The DCJ-Tmax and DCJ-pfix models, which
treat all genes equally, matched the prediction of inde-
pendent gene movement, while the DCJ-DS model
showed a level consistent with that found in the real
data.
We wished to further assess the impact of these esti-

mates of variation in branch length, shared evolutionary
history (i.e. a resolved, rather than star-shaped tree), and
the move size and frequency distributions of the DCJ-
DS model. Therefore we estimated the rearrangement
distance n and fraction of marked genes µ for each pair-
ing of five metazoan genomes which have previously
been shown to conserve ancient macro-synteny relation-
ships (Table 1). We then applied the neighbor-joining
method to construct a distance-based phylogenetic tree
(Figure 5). We simulated the evolution of the genomes
under the DCJ-DS model across this tree multiple times,
and measured the multi-species conservation rate under
two conditions. In the first condition, the same set of

genes was marked as dosage sensitive across the entire
tree in each simulation run. In the second condition,
marked genes were chosen independently for each
branch in the tree, preserving the rearrangement
dynamics of the DCJ model, but not the correlations
among lineages. The distribution of conservation rates is
shown in (Figure 6).

Discussion
Three of the four models we considered can account for
the pattern of synteny conservation observed between
pairs of metazoan genomes, but only the DCJ-DS model
explains the high observed level of multiple-species
macro-synteny conservation. This suggests that con-
straints on a specific subset of genes, arising from some
link biological function are responsible for shaping the
long term evolution of metazoan genome organization.
DCJ-DS is a biologically motivated extension of the

DCJ model, adding a single new parameter, (µ): the frac-
tion of genes that are constrained against movement
between chromosomes, modeling the effect of dosage-
sensitive selection. The simulation results presented
here show that this model provides a plausible and suffi-
cient explanation for the observed large-scale patterns of
genome organization that we examined here. In particu-
lar, such a constraint acting on only ≈ 7% of genes is
sufficient.
The models considered here are, like DCJ, highly sim-

plified models of genome rearrangement, ignoring many
important aspects of genome evolution, such as gene
duplication and loss, chromosome fission and fusion,
variation in the propensity for rearrangement across the
genome, turnover in the population of dosage-sensitive
genes, and genetic drift. The DCJ-[C] framework may be
useful in future tests of the effects that these factors
have had on the evolution of genome organization as
more genomes are assembled. The software we have
developed is well-suited to the implementation of other
extensions of the DCJ model, and we have made our
code available to the community for this purpose. For
example, DCJ moves could be restricted based on the
inclusion or non-inclusion of other features such as cen-
tromeres, the topologies of the chromosomes affected or
produced, and others.
The evolutionary dynamics of genome rearrangement

in nature are unlikely to match any of the one-para-
meter models considered here in detail. More richly
parametrized models can allow the frequencies of var-
ious rearrangement types, and the size distributions of
rearranged fragments all to vary independently. But
because one-parameter models are easy to understand,
implement, estimate, and compare with one another,
when they can account for the data, we contend they
are worth considering. The neighbor-joining analysis of

Table 1

Genomes markers p s n µ (%) nt

Hs-Bf 4408 .58 .0218 26441 7.27 1712

Hs-Nv 3451 .45 .0038 49650 7.93 2931

Hs-Ta 3557 .51 .0138 30122 6.96 2115

Hs-Aq 2400 .35 .0038 49550 6.89 3328

Bf-Nv 3972 .51 .0055 42970 8.17 2431

Bf-Ta 3970 .59 .0229 25492 7.39 1637

Bf-Aq 2690 .42 .0082 35917 6.62 2602

Nv-Ta 2664 .39 .0141 30652 7.75 1868

Nv-Aq 3972 .57 .0049 43878 6.90 3092

Ta-Aq 2953 .44 .0152 27394 5.96 2232
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rearrangement distances (Figure 5) groups human and
lancelet together, but does not clearly resolve any
other relationships. The short branch leading to the
Placozoan genome is consistent with previous observa-
tions of the conserved nature of Trichoplax genome
organization [3]. The long branch leading to human is
likely due in some part to the fact that DCJ-DS ignores
the scrambling effect of the two rounds of whole gen-
ome duplication, followed by extensive gene loss in the

Figure 4 Dependence of p and s (macro- and micro-synteny conservation rates) on n and µ (number of rearrangements and fraction
of dosage sensitive genes). Boxed and un-boxed numbers label contours of equal s and p respectively. Red contour lines have values equal
to pHsTa and sHsTa. Their crossing point indicates that observed levels of synteny conservation between human and placozoan genomes can be
obtained under the DCJ-DS model when µ ≈ 7% and n ≈ 30000.

Table 2

Model name n
Hs - Ta

parameter name value

DCJ-maxL - Lmax -

DCJ-maxT 28948 Tmax 20

DCJ-pfix 34532 pfix 0.0000267

DCJ-DS 30122 p 0.0696
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vertebrate common ancestor. Using divergence time
estimates based on a combination of molecular and
fossil data [16], the total lengths of the trees indicate
mean rates of 25 rearrangements per million years.
This rate is intermediate to rates estimated within ver-
tebrates (0.1 - 0.4 breaks / million years [17]), nema-
todes (48 / million years [18]) and flies (17-21 /
million years [19] ). However, rearrangement rate com-
parisons between studies must be interpreted cau-
tiously because estimated rates are dependent on the

density of markers used. On average, inversions
occurred approximately 15 times more frequently in
our DCJ-DS simulations with µ = 7% than inter-chro-
mosomal rearrangements.
The genomes selected for this analysis show extensive

macro-synteny conservation from the common ancestor
of metazoans, but what about those that are known to
conserve it to a much lesser extent (such as Ciona intes-
tinalis) or to have lost it entirely (such as Drosophila
melanogaster and other arthropods, Caenorhabditis

Table 3 List of symbols

n Number of genome rearrangements

N Number of shared markers (genes) used in a genome comparison

nt Number of interchromosomal genome rearrangements

µ The fraction of dosage sensitive genes

Sab The fraction of conserved gene adjacencies (micro-synteny)

pab The fraction of genes constributing to conserved macro-synteny

c Number of chromosomes

pfix Probability with which proposed interchromosomal rearrangements are accepted in the DCJ-pfix model

Hs Homo sapiens; human

Bf Branchiostoma floridae; lancelet

Nv Nematostella vectensis; sea anemone

Ta Trichoplax adhaerens; placozoan

Aq Amphimedon queenslandica; sea sponge

DCJ Double cut and join

DCJ-[C] Double cut and join, with context-dependent constraints

DCJ-DS Double cut and join, with dosage-sensitive constraint

DCJ-maxL Double cut and join, with maximum rearrangement size

DCJ-maxT Double cut and join, with maximum translocation size

DCJ-pfix Double cut and join, with translocations made rare

PAL Putative ancestral linkage group

5000 moves

Sponge

Anemone

Placozoan

Lancelet

Human

500 inter-chromosomal rearrangements

Sponge

Anemone

Placozoan

Lancelet

Human

Figure 5 Neighbor-joining trees. Based on the total number of rearrangements (left) and the number of inter-chromosomal rearrangements
(right) indicated by the best fit to the DCJ-DS model.
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elegans and other nematodes, and Oikopleura dioica)
[2]? These losses may be due to a faster “molecular
clock” on these branches, increased rates of chromo-
some fusion (which are not allowed in DCJ-DS among
chromosomes containing sensitive genes), or a reduction
in the DS barrier. Additional genome sequences and
further comparative analysis may be able to distinguish
these possible explanations.

Conclusions
This study shows that the DCJ model of genome evolu-
tion can be extended to generate simple models suffi-
cient to explain the observed levels of micro- and
macro-synteny conservation, by directly limiting the size
and/or frequency of inter-chromosomal rearrangements,
or by constraining the movement between chromosomes
of a small fraction of genes.

Figure 6 Multi-species conserved macro-synteny. Normalized frequency distributions of the number of gene families (out of a total of 1144)
conserved in all five leaves of the tree for various models. The observed number in the real data (298) is indicated with a red arrow, and the
expectation of a simple model of independent gene movement (183) with a brown arrow.
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Of the models we examined, only the DCJ-DS model,
which singles out a class of genes for constraint, could
account for the observed levels of correlation in gene
fates across the tree. We argue that it is unlikely that
any model which treats all genes symmetrically can
account for this level of correlation, and that this result
strongly suggests a causal link of some kind between
gene function and the long-time scale evolution of
metazoan genome organization at the chromosome
scale.
We propose a simple model for such a causal link in

which a fraction of dosage-sensitive genes cannot move
between chromosomes because mutations which would
carry them to a new chromosome are subject to under-
dominant selection, preventing their spread in a popula-
tion. These results do not rule out other causal
mechanisms, such as a fraction of genes on each chro-
mosome which are constrained from moving by shared
regulatory elements. As the quantity and quality of gen-
ome sequence and functional annotation data increases,
it may soon be possible to distinguish these hypotheses
through comparative genomic analysis and modeling.

Methods
Genome comparisons
We used a modified version of a distance-based, species
phylogeny-guided gene ortholog clustering method that
has been previously described [1,2] (Havlak et al, unpub-
lished). To avoid the complications of gene gain and
loss, we restricted each pairwise analysis of genomes to
inferred one-to-one gene ortholog pairs. We pre-clus-
tered the scaffolds (or chromosome segments, in the
case of human) into PALs as previously described. [1-4]
To assign PAL homology relationships in pairwise com-

parisons of real and simulated genomes, we compute a z-
score for each pair of PALs ( , ) : ( ) /a b z x xab ab ab ab= − s ,
where x b xa ab, , and s ab

2 are the observed number,
expected number and expected variance in the number
respectively of orthologous markers shared by a and b
under a binomial approximation of the number of ortho-
logs at saturation [1]. Each PAL is considered homologous
to the PAL with which it has its highest z-score in the
other genome.

Simulation
In all simulations, the genome is initialized with 20 lin-
ear chromosomes, and a total of 20,000 genes. DCJ
moves are proposed and either accepted or rejected
according to the rules of each DCJ-[C] model until the
desired number of moves (n) have been accepted and
applied.
In the DCJ-DS model each gene is independently

marked “sensitive” at random, with probability µ. Moves
are rejected if they would result in a change in

chromosome-scale linkage relationships among sensitive
genes. This constraint means that throughout the simu-
lation, the partitioning of sensitive genes by chromo-
some stays unchanged (Figure 3).
In the DCJ-maxT model translocation operations are

allowed only if one pair of exchanged fragments are
both smaller than a threshold size Tmax. For example,
the translocation illustrated in the top line of Figure 3b,
in which two fragment ab and cd become ad and cb,
would be allowed if either (a and c) or (d and b) are
both smaller than or equal to Tmax. Similarly, excisions
are allowed only if the excised fragment is not longer
than Tmax. All other moves are accepted.
The DCJ-maxL model imposes the constraints of

DCJ-maxT, and also rejects inversions if the inverted
fragment is longer than Lmax.
In the DCJ-pfix model, proposed translocations and

excisions are accepted based on the outcome of a Ber-
noulli trial with success probablity pfix.

Comparison of simulations to genomes
In order to compare the model to simulations, we define
two statistical summaries of a pairwise comparison of
genomes: s, the fraction of conserved marker gene adja-
cencies (s); and p, the fraction of marker genes with
conserved PAL context. To compute p, we count the
fraction of orthologous gene pairs (i, j) which reside on
homologous PALs. In graphical terms, p measures the
fraction of blue dots in the dense boxes of the genome
comparison dot plots like those is Figures 1 a and d.

Dealing with differing resolution in the pairwise
comparisons
When simulation runs are compared to a real datasets,
the statistics (p) and (s) are computed only on a set of
“marker genes”, a random subset of the modeled genes
selected to match the number of marker genes in the
data for each comparison (Table 1). Because the DCJ-
DS model is time-reversible, comparisons of simulated
ancestor and descendant genomes are equivalent to
comparisons of the leaves of two-taxon trees.

Model parameter estimation and tree construction
Best-fit model parameters were estimated by numerically
minimizing the sum of the squares of the normalized
deviations between simulation runs and data of s and p;
Χ2

0
2 2

0
2 2= − + −( ) / ( ) /s s p ps ps s , where s p p s, , ,s s

are the means and standard deviations of the statistical
summaries of ten simulation runs. We did this in two
phases: in the first, we optimized Χ2 as a function of n
and µ by successive one-dimensional minimization with
respect to these two variables using Brent’s method.
Because this method does not account for noise in the
values of s and p obtained by averaging over a small
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number of simulation runs, we ran additional simula-
tions to calculate s(n, µ) and p(n, µ) on a 7x7 grid in a
region spanning ± 15% of the optimal values obtained in
phase one. We fit a parabolic function in the neighbor-
hood of this minimum using the Mathematica software
package [20], and report the location of these minima as
the best-fitting values of (n, µ).
We built the distance-based phylogenetic tree with the

neighbor-joining method [21] based on the pair-wise dis-
tances n listed in Table 1, as implemented in version 3.68
of the program neighbor of the PHYLIP package [22].

Multiple-species macro-synteny comparison and
simulations
In the real data we found 1144 gene ortholog groups
represented exactly once in the PALs of the five gen-
omes examined here. 298 of them are in conserved
macro-synteny for all pairwise comparisons among the
five genomes.
For the DCJ-maxT and DCJ-maxL models, to simulate

evolution on star-shaped phylogenetic trees (with pair-
wise divergence n between leaves), we created a set of
100 simulation realizations of length n/2, all starting
from the same gene order, with different random num-
ber seeds. We sampled five of them at a time without
replacement, selected a common set of 1144 marker
genes, and counted the number that remained in homo-
logous chromosomes along all five simulated branches.
To simulate evolution on a star-shaped tree under the

DCJ-DS model, five simulation runs were carried out
from the same starting gene order and the same choice
of sensitive genes, but with different random number
seeds. To simulate evolution under DCJ-DS on the NJ
trees, simulations were carried out along each branch,
one set of simulations maintaining a fixed choice of
marked genes, the other using an independent choice
along each branch.
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