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Abstract

Background: Breast cancer resistant protein has an essential role in active transport of endogenous substances and
xenobiotics across extracellular and intracellular membranes along with P-glycoprotein. It also plays a major role in multiple
drug resistance and permeation of blood-brain barrier. Therefore, it is of great importance to derive theoretical models to
predict the inhibition of both transporters in the process of drug discovery and development. Hitherto, very limited BCRP
inhibition predictive models have been proposed as compared with its P-gp counterpart.

Methodology/Principal Findings: An in silico BCRP inhibition model was developed in this study using the pharmacophore
ensemble/support vector machine scheme to take into account the promiscuous nature of BCRP. The predictions by the
PhE/SVM model were found to be in good agreement with the observed values for those molecules in the training set
(n = 22, r2 = 0.82, q2

CV = 0.73, RMSE = 0.40, s = 0.24), test set (n = 97, q2 = 0.75–0.89, RMSE = 0.31, s = 0.21), and outlier set
(n = 16, q2 = 0.72–0.91, RMSE = 0.29, s = 0.17). When subjected to a variety of statistical validations, the developed PhE/SVM
model consistently met the most stringent criteria. A mock test by HIV protease inhibitors also asserted its predictivity.

Conclusions/Significance: It was found that this accurate, fast, and robust PhE/SVM model can be employed to predict the
BCRP inhibition of structurally diverse molecules that otherwise cannot be carried out by any other methods in a high-
throughput fashion to design therapeutic agents with insignificant drug toxicity and unfavorable drug–drug interactions
mediated by BCRP to enhance clinical efficacy and/or circumvent drug resistance.
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Introduction

ATP-binding cassette (ABC) transporters comprise a large super

family of transmembrane proteins that utilize the energy of ATP

hydrolysis to actively transport a broad range of endogenous

substances, such as bile acids, cholesterol, ions, and peptides,

across extracellular and intracellular membranes in an ATP-

dependent manner [1]. In addition, they also plays a dominant

role in detoxification and protection against cytotoxic agents by

effluxing xenobiotics from the cells [2]. As such, ABC transporters

play a critical role in drug absorption, distribution, metabolism,

excretion, and toxicity (ADME/Tox) [3].

Hitherto, 52 human ABC transporters, which can be divided

into 7 subfamilies, namely ABCA to ABCG based on sequence

similarities, have been identified [4]. Overexpression of ABC

transporters can lead to multi-drug resistance (MDR). This can be

resulted when susceptible cells or cell lines to a given drug becomes

cross-resistant to other co-administrated drugs, viz. polypharmacy.

In many cases, the emergence of MDR bacterial strains causing

gonorrhea, pneumonia, cholera, and tuberculosis appears as the

major cause of therapeutic failure [5,6]. As a result, MDR remains

a major obstacle to various kinds of clinical treatment.

In addition to the well-recognized role of P-glycoprotein (P-gp),

which is encoded by MDR1 (ABCB1) gene, breast cancer resistance

protein (BCRP), which is encoded by ABCG2 gene or mitoxan-

trone-resistance (MXR) gene and located on chromosome 7q22

[7,8], also plays an increasingly important role in producing MDR

tumor cells [9]. For instance, the sensitivity of the insulin-like

growth factor (IGF) inhibitor BMS-536924 was reduced in MCF-7

cell lines overexpressing BCRP [10]. On the other hand, its

sensitivity was restored in BCRP knockdown MCF-7 cell lines

[10]. Consequently, the BCRP inhibitors can be expected to be

clinically useful. For instance, the sensitivity of mitoxantrone,

which is a substrate of BCRP, can be restored by sildenafil, which

is a phosphodiesterase type 5 (PDE5) inhibitor for the treatment of

erectile dysfunction and pulmonary arterial hypertension [11].

Inhibition of BCRP can lead to adverse drug–drug interactions

(DDIs) [12]. For example, it has been observed clinically that loss-

of-function variants of ABCG2 affected the pharmacokinetics and

pharmacodynamics (PK/PD) profiles of the cholesterol lowering
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agent rosuvastatin in Chinese and Caucasian patients [13-15].

Therefore, inhibition of BCRP transport function by DDIs should

be preferably avoided to minimize drug toxicity [3].

Furthermore, it has been demonstrated that BCRP, P-gp, and

multidrug resistance-associated protein 4 (ABCC4/MPR4) are the

main ABC transporters responsible for limiting drug transport

across the blood-brain barrier (BBB) [16]. For instance, erlotinib,

which is an epidermal growth factor receptor (EGFR) tyrosine

kinase inhibitor (TKI), can be used for the treatment of non-small

cell lung cancer (NSCLC) and pancreatic cancer [17], which are

the leading causes of cancer-related mortality in the United States

[18]. The BBB permeation of erlotinib can be predominantly

limited by BCRP [19,20], reducing the likelihood of central

nervous system (CNS) adverse side-effects. On the other hand, the

clinical efficacy of erlotinib for treating patients with metastatic

brain cancer from both types of cancer will be restricted by BCRP

[21,22]. Thus, co-administration of BCRP inhibitors may provide

a potential therapeutic strategy to improve delivery and efficacy of

erlotinib against CNS tumors [23,24].

To this end, it is of practical importance to find inhibitors of P-

gp and BCRP transporters to circumvent MDR or to increase the

BBB permeation for CNS therapeutic agents in addition to their

pivotal and profound roles in PK/PD [25,26]. Unfortunately,

inhibitors of ABC transporters have little practical applications due

to their side effects [27]. It is important to note that the availability

of BCRP inhibitors is even more limited relative to those of P-gp

counterparts. In fact, there are a variety of molecules that can be

transported by both P-gp and BCRP [28], yet development of

BCRP-specific inhibitors remains an important task [29].

In silico ADME/Tox prediction plays an increasing role in drug

discovery and development because of its efficiency, low cost, and

throughput [30]. In fact, a number of pharmacophore, CoMFA,

and QSAR models have been proposed to predict the inhibition of

BCRP [31–39] and a brief summary can be found elsewhere

[35,40]. However, BCRP is highly promiscuous per se when

interacting with a broad spectrum of structurally diverse ligands

[41], making it rather difficult to accurately model drug-protein

interaction [42]. Such perplexing system, nevertheless, can be

resolved using a molecular modeling scheme, devised by Leong

[43], in which the pharmacophore ensemble (PhE) was construct-

ed by assembling a group of pharmacophore hypotheses to encode

the protein conformational flexibility and multiple ligand orien-

tations in conjunction with support vector machine (SVM)

regression. The PhE/SVM scheme is faster and less constraint

as compared with any other analog-based modeling schemes [44].

Practically, the PhE/SVM scheme has been employed to

accurately model human ether-á-go-go related gene (hERG)

potassium channel [43], human cytochromes [45,46], human

pregnane X receptor (hPXR) [47], and P-gp transporter [48],

which are highly promiscuous proteins per se [42]. Herein, this

study was aimed specifically at developing an in silico model based

on the PhE/SVM scheme to accurately and rapidly predict the

BCRP inhibition of a broad spectrum of molecules to greatly

facilitate drug discovery to design molecules with a better PK/PD

profile.

Materials and Methods

Data Compilation
The complete data set contains 135 molecules belonging to

different structural classes, which were collected from 5 different

sources after comprehensive literature search and cautious

examinations of their assay conditions [49–53]. If there were

more than one IC50 value for a given molecule and they were in

very close range, the averaged value was taken to assure better

consistency. Chemical structures without defined stereochemistry

such as racemates were excluded from selection. All molecules

enrolled in this study and references to the literature are listed in

Table S1.

Each molecule in the data set was subjected to conformational

search to generate the low-lying conformations using mixed Monte

Carlo multiple minimum (MCMM) [54]/low mode [55] in

conjunction with the GB/SA hydration algorithm [56] imple-

mented in the MacroModel package (Schrödinger, Portland, OR), in

which the energy minimization was carried out using the

truncated-Newton conjugated gradient method (TNCG) with the

selection of MMFFs force field [57], and the solvation effect was

taken into consideration using water as solvent with a constant

dielectric constant. No more than 255 unique conformations were

generated for each compound to maximize the coverage in the

conformational space within the energy window of 20 Kcal/mol

(or 83.7 KJ/mol) above the global minimum energy conformation

in order to be accommodated by HypoGen (vide infra), which takes

into account all conformations for each molecule in training set for

pharmacophore hypothesis generation as compared with any

other QSAR schemes, which normally employ only the most

stable single conformation.

Table 1. Statistic parameters correlation coefficient (r2),
maximum residual (DMax), mean absolute error (MAE),
standard deviation of residual (s), RMSE, and cross-validation
coefficient q2

CV evaluated by Hypo A, Hypo B, Hypo C, and
PhE/SVM in the training set.

Hypo A Hypo B Hypo C PhE/SVM

r2 0.69 0.67 0.59 0.82

DMax 1.26 1.08 1.12 0.87

MAE 0.42 0.42 0.50 0.33

s 0.31 0.34 0.34 0.24

RMSE 0.52 0.54 0.60 0.40

q2
CV

N/A{ N/A N/A 0.73

{Not applicable.
doi:10.1371/journal.pone.0090689.t001

Table 2. Statistic parameters correlation coefficients q2
F1, q2

F2,

and q2
F3, concordance correlation coefficient (r̂rc), maximum

residual (DMax), mean absolute error (MAE), standard deviation
of residual (s), and RMSE evaluated by Hypo A, Hypo B, Hypo
C, and PhE/SVM in the test set.

Hypo A Hypo B Hypo C PhE/SVM

q2
F1

0.45 0.63 0.54 0.75

q2
F2

0.45 0.63 0.54 0.75

q2
F3

0.76 0.84 0.80 0.89

r̂rc 0.69 0.78 0.71 0.86

DMax 1.30 1.50 1.55 0.88

MAE 0.31 0.21 0.29 0.23

s 0.34 0.31 0.31 0.21

RMSE 0.46 0.37 0.42 0.31

doi:10.1371/journal.pone.0090689.t002
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Pharmacophore Development
The development of PhE/SVM model can be divided into two

parts, namely pharmacophore ensemble and SVM regression. The

architecture of PhE/SVM scheme can be illustrated by Figure 3 of

Chen et al. [47]. The automatic pharmacophore generations were

carried out using the HypoGen module implemented in Discover-

yStudio (Accelrys, San Diego, CA). The theory and algorithm of

HypoGen have been described in detail elsewhere [58]. Basically,

HypoGen attempts to correlate activities with the spatial arrange-

ment of a variety of chemical features through three phases,

namely construction, subtraction, and optimization as compared

with any other QSAR techniques [59]. Generated hypotheses,

whose chemical features are shared by those most active molecules

in the training set, are identified in the constructive phase. Those

chemical features are common to the most and the least active

compounds are eliminated in the subtractive phase. Finally, small

perturbations are applied to those remaining hypotheses and their

corresponding scores are evaluated based on the predictive errors

as well as the level of complexity in the optimization phase.

As such, the chemical characteristics and their associated

activities of those selected samples in the training set predomi-

nately determine the predictivity of a generated pharmacophore

hypothesis. In other words, both structural diversity and wide

coverage of the activity range should be taken into consideration.

More specifically, the most active, several moderately active, and

some inactive compounds should be included in order to obtain

critical information on pharmacophore requirements. Theoreti-

cally, an ideal training set should comprise of at least 16 molecules

to warrant its statistical significance, 4–5 orders of magnitude in

biological activity, approximately equal compounds in each order

of magnitude, and novel information concerning structure-activity

relationship [58].

Twenty-two molecules, whose IC50 values spanned over 4

logarithm units, were deliberately selected from the compound

collections to construct the training set for automatic pharmaco-

phore generation and regression after manual scrutinization of

structure-activity relationship of all compounds to eliminate any

chemical or biological redundancy present in the samples. The

remaining ninety-seven molecules from the compound collections

with biological activities spanning over about 4 logarithm units

were treated as the test set to validate those generated models.

Initially, a number of test runs were carried out to evaluate the

selection of those molecules in the training set by selecting all

chemical features that have been adopted in previously published

pharmacophore models [31–34,37–39]. The preliminary calcula-

tions revealed the importance of hydrogen bond acceptor (HBA),

hydrophobic (HP), and ring aromatic (RA) chemical features,

which describe the intermolecular interactions between a highly

electronegative atom such as an O, N, or F atom on the ligand and

an H atom on the protein, between nonpolar moieties on both

ligand and protein, and between the p–systems over aromatic

rings on both ligand and protein, respectively. Consequently, those

Figure 1. Pharmacophore models in the ensemble. Generated pharmacophore models (A) Hypo A, (B) Hypo B, and (C) Hypo C, consisting of
hydrogen-bond acceptor (green), hydrophobic (light blue), and ring aromatic (orange) chemical features. The interfeature distances and angles
among features, depicted in white, are measured in Ångstroms and degrees, respectively.
doi:10.1371/journal.pone.0090689.g001
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chemical features as well as various combinations of the minimum

and maximum numbers of each selected chemical feature, the

total number of chemical features, chemical feature weights, and

chemical feature tolerances were adopted in order to maximize the

hypothesis diversity and performance.

SVM Calculations
The pIC50 values predicted by those pharmacophore hypoth-

eses in the PhE were treated as input for the SVM calculations. As

such, the number of pharmacophore models in the ensemble is

equivalent to the dimensionality of the SVM input space. The

SVM calculations were carried out by the LIBSVM package

(software available at http://www.csie.ntu.edu.tw/,cjlin/libsvm),

which consists of two modules for regression, namely, svm-train and

svm-predict, for producing SVM models based on those samples in

the training set and validating those generated models by

predicting those molecules in the test set, respectively. The

optimal SVM models were automatically yielded using an in-

house perl script [60] to systemically scan through those runtime

parameters, namely cost C, the width of the kernel function c, and

e and n in case of e-SVR and n-SVR, respectively.

Predictive Evaluations
The coefficient for the least squares regression line correlating

observed (ordinate) and predicted (abscissa) values (r2) was

calculated according to the following equation:

r2~1{

PnTR

i~1

ŷyi{yið Þ2

PnTR

i~1

yi{SŷyTRTð Þ2
ð1Þ

where yiand ŷyi are the observed and predicted values, respectively;

and SŷyTRT and nTR are the mean of predicted values and the

number of samples in the training set, respectively. Similarly, the

correlation coefficient r2
o and slope k were calculated from the

regression line correlating observed (ordinate) and predicted

(abscissa) values through the origin, respectively, and r0o
2 was

Figure 2. Superposed pharmacophore models. Superposition of
three pharmacophore models Hypo A, Hypo B, and Hypo C, denoted in
red, blue, and green, respectively.
doi:10.1371/journal.pone.0090689.g002

Figure 3. Observed vs. predicted pIC50 values in the training set. Observed pIC50 vs. the pIC50 predicted by Hypo A, Hypo B, Hypo C, and PhE/
SVM for those molecules in the training set. The solid line, dashed lines, and dotted lines correspond to the PhE/SVM regression of the data, 95%
confidence interval for the PhE/SVM regression, and 95% confidence interval for the prediction, respectively.
doi:10.1371/journal.pone.0090689.g003
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Figure 4. Superposition of pharmacophore models and 22. Pharmacophore models (A) Hypo A, (B) Hypo B, and (C) Hypo C fitted to 22 and
(D) overlay of these three models, which are color-coded by red, blue, and green, respectively. The chemical features are described in Figure 1.
doi:10.1371/journal.pone.0090689.g004

Figure 5. Observed vs. predicted pIC50 values in the test set. Observed pIC50 vs. the pIC50 predicted by Hypo A, Hypo B, Hypo C, and PhE/SVM
for those molecules in the test set. The solid line, dashed lines, and dotted lines correspond to the PhE/SVM regression of the data, 95% confidence
interval for the PhE/SVM regression, and 95% confidence interval for the prediction, respectively.
doi:10.1371/journal.pone.0090689.g005
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derived from the regression line correlating predicted (ordinate)

and observed (abscissa) values through the origin. Normally, a

derived model can be internally validated by n-fold cross-

validation, which is carried out by randomly dividing the samples

into n groups and each group being iteratively excluded once,

whose activities are then predicted by the model derived from the

remaining samples [61]. The developed SVM models were further

subjected to internal validation using the 10-fold cross-validation

scheme, which was proven to perform better than the widely used

leave-one-out [62]. Similar to r2, the correlation coefficient of 10-

fold cross validation q2
CV was computed based on the prediction of

the leave-out samples.

Furthermore, various modified versions of r2 proposed by Roy et

al. [63] were also evaluated.

r2
m~r2 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2{r2

o

�� ��q� �
ð2Þ

r0m
2~r2 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2{r0o

2
�� ��q� �

ð3Þ

Sr2
mT~ r2

mzr0m2
� ��

2 ð4Þ

Dr2
m~ r2

m{r0m
2

�� �� ð5Þ

When applied to the external data set, viz. any data set except

the training set, the predictive model was subjected to evaluations

by the correlation coefficients q2
F1, q2

F2, and q2
F3 and concordance

correlation coefficient (r̂rc), which were proposed by Golbraikh et

al. [64], Schüürmann et al. [65], Consonni et al. [61], and Chirico

and Gramatica [66].

q2
F1~1{

PnEXT

i~1

yi{ŷyið Þ2

PnEXT

i~1

yi{SyTRTð Þ2
ð6Þ

q2
F2~1{

PnEXT

i~1

yi{ŷyið Þ2

PnEXT

i~1

yi{SyEXTTð Þ2
ð7Þ

Table 3. Optimal runtime parameters for the SVM model.

Parameter Value

SVM type e-SVR

Kernel type Radial basis function

c 0.001953131

Cost 263

e 0.35

doi:10.1371/journal.pone.0090689.t003

Figure 6. Sample distribution in the chemical space. Molecular distribution for those samples in the training set (blue circle), test set (green
triangle), and outlier set (red square) in the chemical space spanned by three principal components.
doi:10.1371/journal.pone.0090689.g006
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q2
F3~1{

PnEXT

i~1

yi{ŷyið Þ2
nEXT

PnTR

i~1

yi{SyTRTð Þ2
nTR

ð8Þ

r̂rc~

2
PnEXT

i~1

yi{SyEXTTð Þ ŷyi{SŷyEXTTð Þ

PnEXT

i~1

yi{SyEXTTð Þ2z ŷyi{SŷyEXTTð Þ2znEXT SyEXTT{SŷyEXTTð Þ2

ð9Þ

where SŷyTRT and SŷyEXTT are the averages of predicted values in

the training set and external set, respectively, SyEXTT is the mean

of observed values in the external set, and nTR and nEXT are the

number of samples in the training set and external set, respectively.

In fact, q2
F2, which has been adopted by Organization for

Economic Co-operation and Development (OECD) for evaluating

the external predictivity of QSAR models, is similar to r2 except

that the former is applied to the external data set whereas the later

is applied to the training set [65].

Finally, the predictivity of all developed models were subjected

to evaluations by the most stringent criteria proposed by

Golbraikh et al. [64], Ojha et al. [67], Roy et al. [63], and Chirico

and Gramatica [66].

r2
w0:7 ð10Þ

q2
CV, q2

F1, q2
F2, q2

F3w0:7 ð11Þ

r2{q2
CV

�� ��v0:1 ð12Þ

r2{r2
o

� ��
r2

v0:1 and 0:85ƒkƒ1:15 ð13Þ

r2
o{r0o2
�� ��v0:3 ð14Þ

r2
mw0:5 ð15Þ

Sr2
mTw0:5 and Dr2

mv0:2 ð16Þ

Figure 7. Observed vs. predicted pIC50 values in the outlier set. Observed pIC50 vs. the pIC50 predicted by Hypo A, Hypo B, Hypo C, and PhE/
SVM for those molecules in the outlier set. The solid line, dashed lines, and dotted lines correspond to the PhE/SVM regression of the data, 95%
confidence interval for the PhE/SVM regression, and 95% confidence interval for the prediction, respectively.
doi:10.1371/journal.pone.0090689.g007

Table 4. Statistic parameters correlation coefficients q2
F1, q2

F2,

and q2
F3, concordance correlation coefficient (r̂rc), maximum

residual (DMax), mean absolute error (MAE), standard deviation
of residual (s), and RMSE evaluated by PhE/SVM in the outlier
set.

PhE/SVM

q2
F1

0.87

q2
F2

0.72

q2
F3

0.91

r̂rc 0.85

DMax 0.70

MAE 0.23

s 0.17

RMSE 0.29

doi:10.1371/journal.pone.0090689.t004
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r̂rcw0:85 ð17Þ

where r in equations (12)–(16) represents r and qF2 in the training

set and external sets, respectively.

Results

PhE
A great number of theoretical models were produced using

various selections of chemical features and runtime parameters

throughout the automatic pharmacophore generation procedure.

Three pharmacophore hypotheses, designated by Hypo A, Hypo

B, and Hypo C (listed in File S1), were enlisted to build PhE based

on their prediction performances on every individual molecule,

which are listed in Table S1, and statistical assessments in the

training set and test set, which are summarized in Tables 1 and 2,

respectively.

These three pharmacophore hypotheses are comprised of

different combinations of chemical features, namely one HBA,

one HP, and two RAs in Hypo A; two HBAs, one HP, and one

RA in Hypo B; and two HPs and two RAs in Hypo C as illustrated

by Figure 1, from which it can be observed that they also display

different spatial relationships. For instance, both HP and RA are

the common features among these three pharmacophore models,

and the shortest distances between them are 6.37 Å, 3.76 Å, and

3.15 Å in Hypo A, Hypo B, and Hypo C, respectively. The

discrepancies in the relative relationships and absolute topological

arrangements among these three theoretical models can be further

illustrated by their superposition as shown in Figure 2.

It can be observed from Figure 3, which displays the scatter plot

of observed vs. predicted pIC50 values for all molecules in the

training set, that the predictions by Hypo A, Hypo B, and Hypo C

are generally in agreement with observed values in the training set.

As such, they produced r2 values around 0.60 (Table 1), suggesting

that they are of modest statistical significance, which can be

further confirmed by their moderate corresponding residuals

(Table S1) as well as statistical assessments, namely RMSE, MAE,

and s (Table 1).

Hypo A yielded the maximum residual in the training set when

predicting 11 with an absolute value of 1.26, whereas Hypo B and

Hypo C generated absolute deviations of 0.95 and 0.54,

respectively (Table S1). The maximum residual produced by

Hypo B in the training set was resulted from the prediction of 8
with an absolute value of 1.08, yet those absolute errors by Hypo A

and Hypo C were only 0.32 and 0.09, respectively. The prediction

of 9 by Hypo C deviated most from the observed value with an

absolute residual of 1.12, whereas Hypo A and Hypo B showed

absolute deviations of 0.89 and 0.13, respectively. Furthermore,

the predictions of 5 by Hypo A, Hypo B, and Hypo C only yielded

absolute deviations of 0.21, 0.20, and 0.11, respectively. Such

discrepancies among these three pharmacophore hypotheses can

be further manifested by the predictions of 22 by Hypo A, Hypo

B, and Hypo C, in which these three theoretical models interacted

with BCRP using different conformations, yielding modest

absolute errors of 0.03, 0.38, and 0.07, respectively, as demon-

strated in Figure 4A, B, and C. This difference becomes more

obvious by the overlay of these three conformations as illustrated

in Figure 4D, suggesting the necessity of constructing a PhE to take

into account the conformational variations of BCRP.

Generally, the predictions by Hypo A, Hypo B, and Hypo C are

in agreement with observed values for those molecules in the test

set as shown in Table S1 and Figure 5, which exhibits the scatter

plot of observed vs. predicted pIC50 values for all molecules in the

test set. In addition, most of statistical evaluations listed in Table 2

also indicate their reasonable performances in the test set. For

example, the differences between q2
F1 and r2 and between q2

F2 and

r2 calculated by Hypo B and Hypo C are very small, suggesting

their performance consistency in both data sets. Nevertheless, the

parametersq2
F1 and q2

F2 yielded by Hypo A in the test set were

reduced by 0.24 from r2 in the training set, depicting the fact that

Hypo A is a statistically over-trained model. Conversely, some

other statistical assessments suggest otherwise. For instance, Hypo

A, Hypo B, and Hypo C produced the q2
F3 values of 0.76, 0.84,

and 0.80 in the test set, respectively, which were larger than their

r2 values, and their RMSE values unanimously decreased from the

training set to the test set. In general, these three theoretical

models did not show substantial performance decreases when

Figure 8. Residual vs. predicted pIC50 values. Residual vs. the pIC50 predicted by PhE/SVM in the training set (filled circles), test set (open
triangles), and outlier set (gray squares).
doi:10.1371/journal.pone.0090689.g008
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applied to those molecules in the test set. In addition, the

discrepancies among these three pharmacophore models that were

observed in the training set can also be found in the test set. For

example, Hypo A gave rise to the maximum residual resulted from

the prediction of 74 with an absolute value of 1.30 in the test set,

whereas Hypo B and Hypo C only produced absolute errors of

0.66 and 0.33, respectively.

PhE/SVM
The optimal PhE/SVM was generated by assembling those

pharmacophore hypotheses in the ensemble, viz. Hypo A, Hypo B,

and Hypo C, which were further subjected to the SVM regression.

The runtime conditions, which were selected based on the

predictions of all molecules in the training set and cross-validation,

are summarized in Table 3. It can be observed from the scatter

plot of observed vs. predicted pIC50 values shown in Figure 3 that

PhE/SVM produced residuals, which are smaller than the

maximum deviations yielded by those pharmacophore models in

the PhE for most of molecules in the training set, and even the

smallest in some cases. For instance, Hypo A, Hypo B, Hypo C,

and PhE/SVM gave rise to absolute deviations of 0.39, 0.19, 0.57,

and 0.15, respectively, when predicting 1. As such, PhE/SVM

generated the largest r2 value and the smallest DMax, MAE, s, and

RMSE (Table 1) relative to its counterparts in the PhE, suggesting

that PhE/SVM performed better than all of those individual

hypotheses in the ensemble in the training set.

The generated PhE/SVM was further subjected to 10-fold

cross-validation, resulting in the correlation coefficient q2
CV of 0.73

as compared with its r2 of 0.82. The large values of both

parameters and small difference between them indicate that this

PhE/SVM model shows highly statistical significance between the

predicted and observed data and it is highly possible that this SVM

model is an authentic model statistically.

Furthermore, little decrease in performance was observed when

PhE/SVM was applied to those molecules in the test set as

manifested by those statistic evaluations listed in Table 2. For

example, q2
F1 and q2

F2 only dropped from r2 by 0.07; and both q2
F3

and r̂rc were even higher than r2. In addition to those q2

parameters, the other statistic variables did not show substantial

variations from the training set to the test set, suggesting that PhE/

SVM is a statistically consistent predictor since it will otherwise

give rise to at least one substantial difference in case of

overtraining. More importantly, PhE/SVM also performed better

than any of pharmacophore models in the ensemble for those

molecules in the test set since PhE/SVM produced the highest

q2
F1, q2

F2, q2
F3, and r̂rc values and the lowest DMax, MAE, s, and

RMSE values, except MAE, which was 0.21 produced by Hypo B

as compared with PhE/SVM (0.23).

Robustness Evaluation
In general, it is of critical importance to detect those outliers

from the sample collections and remove them from model

development [68]. Nevertheless, of all adopted molecules in this

investigation, 16 molecules were intentionally selected as the

outliers to further challenge the extrapolation capacity of

developed models. The chemical similarity or dissimilarity can

be examined by inspecting the chemical space, which can be

constructed by principal component analysis (PCA) [69]. In

addition, it has been suggested that outliers can be detected by

checking their distributions in the chemical space [68]. To

investigate the chemical distinctions between those samples in

the outlier set and training set, the molecular descriptors of all

molecules adopted in this study were calculated by DiscoveryStudio

and E-Dragon (available at the web site http://www.vcclab.org/

lab/edragon/), followed by PCA calculations implemented in

DiscoveryStudio. Then, all molecules were further projected into a

three-dimensional space constructed by the first three principal

Table 5. Validation verification of PhE/SVM based on prediction performance of those molecules in the training set, test set, and
outlier set.

Training set Test set Outlier set

n 22 97 16

r2
o

0.84 0.80 0.80

k 0.99 0.96 0.99

r0o2 0.79 0.75 0.78

r2
m

0.70 0.74 0.54

r0m
2 0.68 0.62 0.58

Sr2
mT 0.69 0.68 0.56

Dr2
m

0.02 0.12 0.04

r2
w0:7 x N/A N/A

q2
CV, q2

F1, q2
F2, q2

F3w0:7 x x x

r2{q2
CV

�� ��v0:1 x x x

r2{r2
o

� ��
r2

v0:1 and 0:85ƒkƒ1:15 x x x

r2
o{r0o

2
�� ��v0:3 x x x

r2
mw0:5 x x x

Sr2
mTw0:5and Dr2

mv0:2 x x x

r̂rcw0:85 N/A{ x x

{Not applicable.
doi:10.1371/journal.pone.0090689.t005
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components (PCs), which explain 96.4% of the variance in the

original data, as illustrated by Figure 6. In fact, it can be found by

checking their chemical structures that those outliers with no more

than two methoxy groups do not contain any carbonyl, nitro,

trifluoromethyl, and oxoheterocyclic functionality, in contrast to

those training samples. As such, those sample in the outlier set are

completely positioned outside the periphery of the training set,

indicating their high level of dissimilarity and serving as a good

metric for evaluating the robustness of a predictive model [70].

The prediction results in the outlier set and their associated

statistical evaluations are list in Tables S1 and 4, respectively, and

the corresponding scatter plot is displayed in Figure 7. The

predictions by PhE/SVM are consistent with observed values for

all molecules in the outlier set as manifested by DMax (0.70), MAE

(0.23), s (0.17), and RMSE (0.29), which are smaller than their

counterparts in the training set. Furthermore, the parameters q2
F1,

q2
F3, and r̂rc are even larger than r2, suggesting that PhE/SVM

performed better in the outlier set than in the training set and test

set. This presumably can be due to the fact that those designated

Figure 9. Observed fold increase vs. observed IC50. Experimental fold increase of BCRP inhibition measured in Saos-2 cells vs. observed IC50

measured in MCF-7 MX cells.
doi:10.1371/journal.pone.0090689.g009

Figure 10. Observed fold increase vs. predicted IC50. Experimental fold increase vs. the IC50 predicted by PhE/SVM for those HIV protease
inhibitors.
doi:10.1371/journal.pone.0090689.g010
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outliers only spanned over 2 logarithm units. In addition, the

computed q2
F2 (0.72) is smaller than r2 and similar to q2

CV. Thus, it

can be found that PhE/SVM performed well even when applied

to structurally distinct molecules, suggesting that those outliers did

not influence the performance of PhE/SVM and PhE/SVM is

very robust, which is an important characteristic for a predictive

model in practical application.

Predictive Evaluations
It can be found from the scatter plot of the residual vs. the pIC50

values predicted by PhE/SVM for all of molecules in the training

set, test set, and outlier set (Figure 8) that the residuals are

approximately symmetrical to the axis of pIC50. As such, PhE/

SVM gave rise to the mean residuals of 0.03, 20.13, and 20.04 in

the training set, test set, and outlier set, respectively (Table S1).

These negligible values indicate that there is no systematic bias

associated with this PhE/SVM model.

When evaluated by those validation criteria proposed by

Golbraikh et al. [64], Ojha et al. [67], Roy et al. [63], and Chirico

and Gramatica [66], PhE/SVM showed very high level of

predictivity in the training set, test set, and even outlier set that

can be manifested by those parameters and assessments listed in

Table 5. For instance, PhE/SVM can fulfill the requirements of

Sr2
mT as well as Dr2

m, which were considered by Roy et al. to be the

best validation parameters [63]. Chirico and Gramatica, never-

theless, postulated that both q2
F3 and r̂rc are the most stringent

metrics to gauge the predictivity and they have even raised the

threshold of all q2 parameters from 0.60 to 0.70 [66]. Despite of

those facts, PhE/SVM still met those strict assessments. Accord-

ingly, it can be affirmed that this PhE/SVM is a very accurate,

precise, and robust predictive model regardless of the chemotypes.

Mock Test
The derived PhE/SVM was further subjected to test by a

number of human immunodeficiency virus (HIV) protease

inhibitors (PIs) assayed by Matsson et al. [33] in order to mimic

the real-world application since HIV PIs are effective BCRP

inhibitors but not substrates [71,72]. Of all molecules assayed by

Matsson et al. [33], seven were also selected in this study and their

names are given in Figure 9, giving rise to a good way to calibrate

the testing system. Furthermore, those four HIV PIs were not

adopted in this study, representing a solid mock test. Nevertheless,

those molecules were assayed using Saos-2 cells to measure fold

increase with respect to Ko143, whereas all of compounds enlisted

in this investigation were assayed using MCF-7 MX cells to obtain

IC50 values. To eliminate the inconsistency, the linear correlation

between both assay systems for those common molecules was first

inspected and the obtained scatter plot is illustrated in Figure 9,

from which it can be observed that the experimental values in both

systems were highly correlated with each other with an r2 of 0.89,

suggesting that there is no significant discrepancy in both systems.

Thus, it is plausible to examine the PhE/SVM model with those

molecules assayed by Matsson et al. [33].

The tested results with those four HIV PIs illustrated in

Figure 10, which displays the scatter plot of experimental fold

increase vs. predicted IC50 along with their molecular names, gave

rise to an r2 value of 0.83 between both systems. The negligible

difference between both numbers (0.89 vs. 0.83) suggests that the

predictions by the PhE/SVM model can almost reproduce the

experimental observations and this mock test by HIV PIs

unambiguously affirmed the predictive capability of PhE/SVM.

Discussion

To date, there is only limited number of pharmacophore

hypotheses that have been proposed to predict the BCRP

inhibition as compared with its P-gp counterparts. Those

developed BCRP inhibition hypotheses along with those three

models generated in this study are summarized in Table 6. It

should be noted that the promiscuous nature of ligand-BCRP

interactions can be major hurdles in attempting to establish

reliable and predictive in silico models. As an example, compound

92 differs from compound 94 in an extra phenyl ring attached to

the carbonyl group, whereas their potencies differ by about one

order of magnitude, suggesting that the presence of an extra

phenyl ring plays a critical role in inhibiting BCRP. On the other

hand, Ko143 (9), which is a strong BCRP inhibitor, does not

possess that extra moiety. Thus, it can exert its potency without

aforementioned interaction. As such, different chemical structures

Table 6. Summary of developed BCRP inhibition qualitative and quantitative pharmacophore hypotheses.

n

Model type Training Test External Chemical features Reference

Qualitative

HipHop 4 3 HBAs, 3 HPs [31]

HipHop 23 2 HBAs, 1 HP, 1 RA [32]

HipHop 29 1 HBA, 2 HPs [33]

HipHop 30 79 1 HBA, 3 HPs [38]

LigandScout 4 3 HBAs, 2 HP, 1 RA [37]

QuaSAR 15 1 HBA, 2 RAs [39]

Pharmacophore 90 22 27 1 HBA, 1 HP, 2 RAs [34]

Elucidator

Quantitative

HypoGen (Hypo A) 22 97 16 1 HBA, 1 HP, 2 RAs This study

HypoGen (Hypo B) 22 97 16 2 HBAs, 1 HP, 1 RA This study

HypoGen (Hypo C) 22 97 16 2 HPs, 2 RAs This study

doi:10.1371/journal.pone.0090689.t006

Prediction of BCRP Inhibition

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e90689



can interact with BCRP in different manners. Therefore, it is

plausible to expect two different pharmacophore hypotheses

adopting different combinations of chemical features will be

required to model the inhibition of both types of chemical

structures accurately. Otherwise, if only a single theoretical model

is employed, substantial predictive errors can be resulted. Indeed,

this hypothesis is consistent with the fact that the reported models

are severely limited by their global applicability as observed by

Pan et al. [38].

Accordingly, once different training samples are selected,

different predictive models can be produced. In fact, those

published qualitative models by the common features algorithm

[31–34,37–39] comprised different combinations of chemical

features. Even the same molecule in different combinations of

training samples can generate different predictive models. As an

example, Ko143 was a common molecule in the model

development by Matsson et al. [33] and Pan et al. [38], which

selected 1 HBA and 2 HPs as well as 1 HBA and 3 HPs,

respectively. Thus, the derived predictive models heavily depend

on the samples selected in the training set, suggesting the

promiscuous nature of BCRP protein.

Furthermore, a fixed set of training samples do not always

guarantee to produce a single consistent model. Four pharmaco-

phore models with different orientations of the same chemical

features were derived by Pan et al. [38] by use of the same data set.

When mapped onto Ko143, the chemical feature HBA coincided

with the carbonyl group of the 1,1-dimethylethyl ester and the

oxygen atom of the dioxopyrazino ring by 3 and 1 pharmacophore

hypotheses, respectively, as demonstrated by Figure 3 of Pan et al.

[38]. Therefore, it is possible that the same inhibitor can interact

with BCRP using different orientations as in the case of hPXR, in

which the ligand SR12813 can adopt three different orientations

to form cocomplex with protein while the protein conformation

remains intact [73]. As a result, the possible multiple ligand

orientations imply the promiscuous nature of ligand binding by

BCRP. When subjected to validation by the samples in the test set,

these four theoretical models showed reasonable performances

possibly due to the restriction in model development as well as

diverse training samples.

The discrepancies among published qualitative models are

consistent with differences among the three quantitative pharma-

cophore hypothesis derived in this study. For instance, most of

developed models employed 1 or 2 HBAs except the one proposed

by Chang et al. [31], which enlisted 3 HBAs based on a very small

number of inhibitors (n = 4). Such discrepancies in the number of

HBA selection can also be observed from Hypo A and Hypo B,

which recruited 1 and 2 HBAs, respectively. Conversely, Hypo C

did not consist of any HBA, which is seemingly unusual as

compared with published models. Nicolle et al., nevertheless,

suggested that the HBA feature is not essential for flavonoid-like

inhibitors [40].

The predictive model proposed by Sim et al. [34] and Hypo A

selected 1 HP and 2 RAs that are seemingly inconsistent with the

models derived by Chang et al. [31] and Pan et al. [38], which

included 3 HPs. Nevertheless, all 4 models can have the same

number of hydrophobic moieties when the two RA features are

replaced by the HP groups as suggested by Sim et al. [34], giving

rise to totally 3 HP features. Also, once the replacement of RA by

HP takes place, the predictive models built by Cramer et al. [32]

and Hypo B, composing of exactly 1 HP and 1 RA features, can

have the identical number of hydrophobic moieties with the ones

reported by Matsson et al. (2 HPs) [33] and Sim et al. (2 RAs) [39].

Thus, it can be concluded that those pharmacophore hypotheses

in the ensemble can justify the discrepancies among those

published models qualitatively.

It has been demonstrated by Sim et al. [34] that parts of their

model resembled to the model proposed by Matsson et al. [33]

once the RA feature in their model was replaced by HP and the

HP feature in their model was neglected as shown in Figure 4 of

Sim et al. [34]. However, such geometric constraints seemingly

cannot be found from any pharmacophore models in the

ensemble. Once those chemical features adopted by those

pharmacophore models in the ensemble are taken into account

individually, this quantitative inconsistency between PhE and

published models can be resolved. For instance, the distance

between both HPs in the model built by Matsson et al. [33] is

6.75 Å as shown in Figure 11A, which is in good agreement with

that between an HP and an RA in Hypo A (6.3762.90 Å) as

illustrated in Figure 11B. The marginal difference between both

lengths can be attributed to the tolerances associated with each

chemical feature, viz. the radius of each sphere. Similarly, the

distances between 1 HBA and 2 HPs in their model are 3.47 Å

Figure 11. Model proposed by Matsson et al. and excerpted model of this study. Geometrical relationships in the pharmacophore models
(A) proposed by Matsson et al. and (B) excerpted from the PhE in this study. The interfeature distances are measured in Ångstroms.
doi:10.1371/journal.pone.0090689.g011
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and 9.84 Å, which are in the close ranges of the interfeature

distances excerpted from Hypo A (4.1062.75 Å) and Hypo B

(10.6563.80 Å). When the chemical features associated with each

pharmacophore model were treated in an integrated manner,

none of pharmacophore models in the ensemble showed

significantly quantitative similarity to the model proposed by

Matsson et al. [33]. Conversely, once those chemical features were

treated separately, high levels of quantitative resemblance between

the model reported by Matsson et al. [33] and those pharmaco-

phore models in the ensemble were yielded.

The similar observations can also be found in the comparisons

between the model reported by Sim et al. [34] and those models in

the ensemble. The distance between 2 RAs is 6.89 Å in their

model (Figure 12A), which is in close range of 7.1963.20 Å found

in Hypo C (Figure 12B). In addition, the interfeature lengths

between 1 HBA and 2 RAs are 4.69 Å and 9.00 Å in their model,

which, in fact, correspond to the counterparts found in Hypo A

(3.2663.35 Å) and Hypo C (9.3763.20 Å), respectively. Accord-

ingly, the predictive model built by Sim et al. [34] can be

reproduced by excerpting some of chemical features from the

ensemble. Thus, it can be asserted that PhE/SVM can clearly

justify the discrepancies among published models qualitatively and

quantitatively.

Consequently, all of those molecules were accurately predicted

by PhE/SVM (Table S1), suggesting that PhE/SVM can be

applied to a wide range of structurally diverse inhibitors without

significant deviations due to the fact that it can properly take into

account the promiscuous nature of BCRP as well as the possible

ligand orientations. These are normally difficult to be achieved by

convention pharmacophore-based modeling techniques.

Conclusion

BCRP inhibition is critical for drug pharmacokinetics and

pharmacodynamics profiling due to its profound involvement in

drug-drug interactions as well as its potential influence on clinical

efficacy. A theoretical model that can accurately and rapidly

predict the inhibition of BCRP can greatly facilitate and expedite

the drug discovery and development accordingly. An in silico

model was derived to quantitatively predict the inhibition of

BCRP based on the pharmacophore ensemble/support vector

machine scheme to properly address the promiscuous nature of

BCRP, which otherwise cannot be reliably modeled by any other

analogue-based molecular modeling schemes, when applied to

structurally distinct inhibitors. The predictions by the PhE/SVM

model are in good agreement with the observed values for

structurally diverse 22 and 97 molecules in the training set and test

set, respectively. In addition, its robustness was further verified by

a group of 16 outliers, which were structurally different from those

in the training set. The accuracy and predictivity were assured by

a variety of rigorous statistical assessments. When mock tested by a

group of HIV PIs to mimic the real challenge, the PhE/SVM

model also executed equally well. Furthermore, this theoretical

model is able to justify the differences in hitherto reported

pharmacophore hypotheses qualitatively and quantitatively. Thus,

it can be assured that this PhE/SVM model is an accurate,

predictive, and rapid tool that can be employed to facilitate and

expedite the drug discovery and development.
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