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Purpose: To assess whether a generative adversarial network (GAN) could synthesize
realistic optical coherence tomography (OCT) images that satisfactorily serve as the
educational images for retinal specialists, and the training datasets for the classification
of various retinal disorders using deep learning (DL).

Methods: The GANs architecture was adopted to synthesize high-resolution OCT
images trained on a publicly available OCT dataset, including urgent referrals (37,206
OCT images from eyes with choroidal neovascularization, and 11,349 OCT images from
eyes with diabetic macular edema) and nonurgent referrals (8617 OCT images from
eyes with drusen, and 51,140 OCT images from normal eyes). Four hundred real and
synthetic OCT images were evaluated by two retinal specialists (with over 10 years of
clinical retinal experience) to assess image quality. We further trained two DL models
on either real or synthetic datasets and compared the performance of urgent versus
nonurgent referrals diagnosis tested on a local (1000 images from the public dataset)
and clinical validation dataset (278 images from Shanghai Shibei Hospital).

Results: The image quality of real versus synthetic OCT images was similar as assessed
by two retinal specialists. The accuracy of discrimination of real versus synthetic OCT
images was 59.50% for retinal specialist 1 and 53.67% for retinal specialist 2. For the
local dataset, the DL model trained on real (DL_Model_R) and synthetic OCT images
(DL_Model_S) had an area under the curve (AUC) of 0.99, and 0.98, respectively. For the
clinical dataset, the AUC was 0.94 for DL_Model_R and 0.90 for DL_Model_S.

Conclusions: The GAN synthetic OCT images can be used by clinicians for educational
purposes and for developing DL algorithms.

Translational Relevance: The medical image synthesis based on GANs is promising in
humans and machines to fulfill clinical tasks.

Introduction

Optical coherence tomography (OCT), which
typically uses near-infrared light to capture high-

resolution retinal images in vivo,1 is now a standard
of care for guiding the diagnosis and treatment of
some of the leading causes of blindness worldwide,
including age-related macular degeneration (AMD)
and diabetic macular edema (DME).2,3 Given the
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increasing prevalence of these diseases, deep learning
(DL) algorithms has been proposed as an alternative
screening tool to rectify the manpower and expertise
shortage.4–6 Kermany et al.7 recently demonstrated
highly accurate DL algorithms for OCT imaging
classification and performance is comparable to that
of human experts.

Despite these promising results, DL algorithms
require large, diverse, and well-balanced image training
datasets with labels defining structures.8 For example,
Kermany et al.7 trained a DL algorithm using a train-
ing dataset (hereinafter referred to as “Cell testing
dataset”) with a total of 108,312 images by sharing
data from different centers. Such approach has several
limitations. First, when data are to be shared between
different centers, regulations and state privacy rules
need to be considered. As defined by the US National
Institute of Standard and Technology, biometric
data, including retina images, are personally identi-
fiable information and could possibly be protected
from inappropriate access regardless of the original
individual study participant consent or local insti-
tutional review board (IRB) permission.9 Moreover,
larger datasets do not necessarily enhance the perfor-
mance of a DL algorithm. For example, adding
large amounts of unbalanced data, such as images
from healthy subjects, will most likely not improve
performance.

To address these disadvantages, several authors
suggested using generative adversarial networks
(GANs) to synthesize new images from a train-
ing dataset of real images.10 Using the Age-Related
Eye Disease Study dataset of 133,821 fundus images,
Burlina et al.11 generated a similar number of synthetic
images to train a DLmodel. They reported DLmodels
trained with only synthetic images showed perfor-
mance nearing that resulting from training on real
images.11 Therefore the aim of this study was to assess
whether a GAN neural network could synthesize
realistic OCT images that satisfactorily serve as train-
ing datasets for DL algorithms and education images
for retinal specialists.

Methods

Datasets

Approval was obtained from the IRB of Shang-
hai Children’s Hospital (identifier, 2018RY029-E01)
and Shanghai Shibei Hospital (SSH) (identifier,
YL_201805258-05) to conduct the study in accor-
dance with the tenets of the Declaration of Helsinki.
Informed consent was not required because of the

anonymized usage of images and the retrospective
study design.

In this study, we used OCT images from the
Kermany et al.7 datasets (Cell testing dataset). The
detail of this study and Cell’s testing dataset has been
described previously.7 Briefly, a DL model was trained
using a dataset with a total of 108,312 images after
a tiered grading system. The whole training dataset
included 37,206 OCT images from eyes with choroidal
neovascularization (CNV), 11,349 OCT images from
eyes with DME, 8617 OCT images from eyes with
drusen, and 51,140 OCT images from normal eyes,
respectively. The study further categorized images with
CNV and DME as ‘‘urgent referrals,’’ and drusen and
normal as “nonurgent referrals.” In Kermany et al.,7
1000 images (250 from each category) were used as
a local validation set. To test the generalization of
synthetic OCT images and DL models, we collected
a second clinical testing set from the Department of
Ophthalmology at SSH from July 2018 to February
2019 (hereinafter referred to as “SSH testing dataset”).
Three senior independent retinal specialists (CZ, CJL,
and TQ, each with over 20 years of clinical retinal
experience) were invited to grade the images. Five
sets with 200 images (50 from each category) taken
from the Cell testing dataset were used in training the
graders. The results of graders were compared with
ground true label, and graders passed the training
when they achieved an unweighted k value of 0.75 or
more in any test set. After searching local electronic
medical record databases, a total of 278 OCT images
were downloaded using a standard image format
based on the manufacturer’s instructions (Heidel-
berg Spectralis ; Heidelberg Engineering, Germany).
For each patient, only one image most representa-
tive of the disease was chosen. As mentioned in the
Kermany et al.7 study, we chose foveal slice if possi-
ble. The clinical dataset comprised 130 OCT images
with urgent referrals (CNV and DME), and 148 OCT
images with nonurgent referrals (drusen and normal),
respectively.

Development and Evaluation of GAN
Synthetic OCT Images

We adopted progressively grownGANs (PGGANs)
to synthesis high-resolution OCT images.12 GANs
consist of a discriminator network (D) and a generative
network (G), which is trained by an adversarial learn-
ing strategy. With the adversarial learning between the
GandD, theG is promoted to generate artificial images
bearing greater similarity to real images. PGGANs
is an extension to the GAN training process, and
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achieves high-resolution synthetization (in this study,
256 × 256 pixels) by alternating training and adding
new networks G and D. To generate OCT images
with correct anatomic structures, a sketch guidance
modules G that contains the edge and detailed infor-
mation was added to growing networks G.13 With each
additional layer, the resolution is increased (e.g., from
4 × 4 to 8 × 8) allowing the generation of higher-
resolution images. All of the GAN development and
experiments were conducted using PyTorch (version
1.0, Facebook, USA). The GANs were trained on
an Ubuntu 16.04 operation system (Canonical Ltd.,
UK) with Intel Core i7-2700K 4.6-GHz CPU (Intel,
USA), 128-GB RAM, and NVIDIA GTX 1080Ti 12
GB GPU (NVIDIA, USA). In this study, GANs took
approximately 40 hours to generate 100,456 synthetic
OCT images, including 48,751 images as urgent
referrals and 51,705 images as nonurgent referrals,
respectively.

To assess whether synthetic OCT images appear
realistic to human experts and can be used for clini-
cal evaluation, 400 OCT images (equal numbers of
real and synthetic images) were evaluated by two
human experts to assess image quality and real versus
synthetic. Human experts included two retinal special-
ists who had more than 10 (retinal specialist 1; HYY)
and 20 (retinal specialist 2;WL) years of clinical experi-
ence, respectively. First, they were asked to deter-
mine whether the image quality was sufficient for clini-
cal grading. The OCT image quality is considered to
be good if complete structure of the retina can be
observed and is useful for diagnosis. The poor quality
of an OCT image is defined as total or partial loss
of retinal signal (signal-shield), or the retinal structure
cannot be fully displayed (off-center).14 Once complet-
ing image quality evaluation, the graders were informed
that the image set was composed of a mixture of real
and synthetic images and were asked to determine
whether the image was real or synthetic. Finally, the
graders were asked to grade each image as urgent refer-
rals or nonurgent referrals in the two testing datasets
(Cell and SSH testing datasets).

A possible concern was how the GAN generated
images that are different from training images, or even
just copied and pasted original training images. To
evaluate performance of GANs at image generation,
Fréchet Inception Distance (FID) was used to capture
the similarity of generated images to real images, as the
FID is amethod to compare these statistics.15 We calcu-
lated FID among four different datasets, including
the SSH testing dataset, 200 GAN-generated images,
200 real images (directly copied from the Cell testing
dataset), and the Cell testing dataset. A lower FID
indicated better similar images.

Evaluation of GAN Synthetic OCT Images
Used for DL Classification

To assess whether synthetic OCT images can be
used as a training dataset for DL model, we evalu-
ated diagnostic performance of urgent versus nonur-
gent referable classification by comparing two DL
models trained on real (DL_Model_R) and synthetic
(DL_Model_S) OCT images, respectively. Transfer
learning with fine-tune technique was adopted to build
the DL models by using a modified Inception V316
architecture with weights pretrained on ImageNet.16,17
After removing the final classification layer from the
network, we further retained DL models with real
and synthetic OCT images independently. DL models
were implemented in Tensorflow framework (Google,
version 1.10.0) with Keras API (version 2.2.4). All
images were resized to 299 × 299 pixels as required
by Keras’ API. Data augmentation were performed to
increase the amount and type of variation within the
training dataset, including horizontal flipping, rotation
of 10°, and sharpening and adjustments to saturation,
brightness, contrast, and color balance. Training was
then performed by a stochastic gradient descent in a
minibatch size of 32 images with an Adam optimizer
learning rate of 0.001. Training was run for 200 epochs,
as the absence of further improvement in both accuracy
and cross-entropy loss.

To test the generalization of DL models, we used
two different test datasets. The first local validation
dataset was composed of the same testing dataset from
the Cell testing dataset (with 1000 images in total),
and the second clinical validation dataset was collected
from the SSH testing dataset. The DL models’ classi-
fication performance in both local and clinical valida-
tion datasets were then compared for DL_Model_R
and DL_Model_S. To test whether DL model perfor-
mance could be improved by includingGANgenerated
images, we also trained another two DL models classi-
fying between the SSH testing dataset, but only using
the Cell testing dataset during training to compare
to results using a dataset combining the Cell testing
dataset and a small GAN generated dataset (with 1000
images total). Figure 1 is the assessment workflow of
using the synthetic OCT images in the classification of
various retinal disorders.

Statistics

The performance of our algorithm was evaluated in
terms of area under the receiver operating characteris-
tic curve (ROC; area under the curve [AUC ]), accuracy,
sensitivity, and specificity with two-sided 95% confi-
dence intervals (CIs). The formulas for calculating the
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Figure 1. Assessment workflow of using the synthetic OCT images in the classification of various retinal disorders.

accuracy, sensitivity, and specificity were defined as:

Accuracy = TP + TN
TP + TN + FN + FP,

(1)

Sensitivity = TP
TP + FN

, (2)

Specificity = TN
TN + FP

, (3)

where TP, TN, FP, and FN are the true positives, true
negatives, false positives, and false negatives, respec-
tively. Intraclass agreement of real and generated image
quality for the two retinal specialists was evaluated with
kappa statistics (k).

All statistical analyses were performed using the
Python and Scikit_learn modules (Anaconda Python,
Continuum Analytics, USA).

Figure 2. Examples of the synthetic OCT images (the real OCT images are above, and the synthetic OCT images are below).
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Figure 3. Confusion matrix of two DL models testing in local Cell validation dataset.

Figure 4. Confusion matrix of two DL models testing in clinical validation dataset.

Results

Image Quality and Discrimination Between
Real and Synthesizing OCT Images by
Human Experts

Calculations based on the Cell testing dataset,
FID was 5.49, 10.70, and 60.38 for 200 real images
(directly copied from Cell testing dataset), 200 GAN-
generated images, and the SSH testing dataset, respec-
tively. Figure 2 demonstrates some examples of the

synthetic OCT images. Overall, our approach is capable
of generating OCT images that are realistic. The results
of image quality graded by two retinal specialists are
shown in Table 1. Retinal specialist 1 rated 1.5% of real
images to be poor quality versus 2%of synthetic images
(k = 0.976). Retinal specialist 2 rated 2% of real images
to be poor quality versus 2.5% of synthetic images (k=
0.921). Our results revealed that both real and synthetic
OCT images have approximately the same quality for
human experts.

When comparing discrimination between real
versus synthetic OCT images, our results showed that
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Figure 5. ROC curves of the two DL models tested in the local Cell validation dataset (left) and clinical validation dataset (right).

Table 1. Proportion of Poor Quality for Real and
Synthetic OCT Images

Poor Image Quality (%)

Retina Specialist 1
All 7 (1.75%)
Real 3 (1.5%)
Synthetic 4 (2%)

Retina Specialist 2
All 9 (2.25%)
Real 4 (2%)
Synthetic 5 (2.5%)

two human experts had limited ability to discern real
from synthetic images, with an accuracy of 59.50%
(95% CI, 53.5%–65.3%) for retinal specialist 1, and
53.67% (95% CI, 47.8%–59.5%) for retinal specialist 2.

Performance of DL Classification on Real and
Synthesizing OCT Images

Figure 3 and Figure 4 are the confusion matrixes of
two DL models testing in local Cell validation dataset
and clinical validation dataset, respectively. Figure 5
shows the ROC curves. Overall, moderate performance
decrease was achieved in both Cell and SSH testing
datasets when using the DL model trained only with
synthetic OCT images, but the performance was still
considered to be good. After adding GAN-generated
images into the Cell testing dataset as the DL model
training dataset, the AUC was improved from 0.84

(95% CI, 0.80–0.88) to 0.87 (95% CI, 0.82–0.90) as
shown in Table 2.

Discussion

In this study, we developed and evaluated GANs
adopted to generate high-resolution OCT images with
urgent and nonurgent referrals. The results suggest that
synthetic OCT images can be used by clinicians in
place of real images for education or clinical training
purposes. Moreover, there was moderate performance
decreaseusing the synthetic training dataset, suggesting
that synthetic OCT images can also serve as augmen-
tation of training datasets for use by DL models.

DL has made dramatic progress for discrimina-
tive medical image analyses tasks and achieved perfor-
mance exceeding traditional machine learning and
close to that of human experts.6,18,19 However, DL
approaches require a large number of high-quality
data. An obvious approach is data sharing from differ-
ent centers. This is often impeded by IRB concerns,
patients’ consent, or proprietary data restrictions.
Moreover, the implementation of data sharing requires
hardware and software investments, expertise, and
is labor-intensive. Recently, GANs were proposed to
generate synthetic images that matched the real images
via an adversarial process. GANs have been success-
fully applied to many medical image syntheses tasks,
including retinal fundus, melanoma lesion, computed
tomography, and magnetic resonance images synthe-
sizing.20–22 Burlina et al.19 suggested that GANs-
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Table 2. Diagnostic Performance of two DL_Models and Retinal Specialists Testing in Cell and SSH Testing
Datasets

Accuracy (95% CI) Specificity (95% CI) Sensitivity (95% CI)

A: Testing in Local Cell Validation Dataset
DL Models
DL_Model_R 0.96 (0.95–0.98) 0.99 (0.98–1.00) 0.93 (0.91–0.95)
DL_Model_S 0.91 (0.90–0.93) 0.82 (0.80–0.84) 0.99 (0.98–1.00)

Human experts
Retina specialist 1 0.97 (0.96–0.98) 0.97 (0.96–0.98) 0.98 (0.97–0.99)
Retina specialist 2 0.98 (0.97–0.99) 0.98 (0.97–0.99) 0.97 (0.96–0.98)

B: Testing in Clinical Dataset
DL Models
DL_Model_R 0.85 (0.81–0.89) 0.77 (0.72–0.82) 0.93 (0.90–0.96)
DL_Model_S 0.82 (0.78–0.87) 0.96 (0.94–0.98) 0.67 (0.62–0.73)

Human experts
Retina specialist 1 0.95 (0.93–0.98) 0.93 (0.90–0.96) 0.98 (0.97–1.00)
Retina specialist 2 0.90 (0.86–0.94) 0.87 (0.84–0.90) 0.95 (0.92–0.98)

synthesized fundus images of AMD are realistic and
could be used for both education and for machine
training. Using a similar GANs model mentioned in
a previous study, our results also show the ability
of GANs to synthesize realistic OCT images. This
result was encouraging in that the GANs can gener-
ate synthetic OCT images with high quality assessed by
human experts.

The potential application of this technique is
promising, as our study also showed that GAN OCT
images can also be served as image augmentation for
both clinical purpose and DL models training. Previ-
ously, most of DL research groups used data sharing
from different centers to increase the number of input
data for network training. For detecting glaucomatous
optic neuropathy, Li et al.5 reported a DL model with
AUC of 0.996 training on 6 different eye centers with
more than 200,000 fundus images. Using datasets from
two different countries, Gulshan et al.4 reported AUC
of 0.974 for detection of diabetic retinopathy. Recently,
Kermany et al.7 reported a DL model with AUC of
0.999 for screening common treatable blinding retinal
diseases, such as CNV or EMD, using OCT images.
This study involved more than 100,000 OCT images
in four eye centers from two different countries. It is
interesting to note that, using the same Cell testing
dataset, ourmodel trained on all-syntheticOCT images
achieved a similar AUC of 0.98 with that of the
DL model trained on all-real OCT images. Our result
suggests that this technique could also hold promise for
augmentingDLmodels, whereas preserving anonymity
and obviating constraints owing to IRB or other use
restrictions.

It is important to ensure the generalizability of aDL
model by testing in independent datasets with clinical
settings.21 As recently work showing highly accurate
DL algorithms for various medical image classifica-
tion tasks in well-labeled dataset, it is interesting to
validate the performance of DL models in real-life.
Ramachandran et al.23 reported a moderate decrease
of AUC (0.901 vs. 0.980) when using a clinical valida-
tion dataset for screening diabetic retinopathy. In our
study, moderate performance decrease was achieved in
two testing datasets when using DLmodel trained only
with synthetic OCT images. Although the performance
was still considered to be good, it should be noted that
DL_Model_S can only achieve sensitivity of 0.67 when
tested in the SSH testing dataset. Therefore caution
should be exercised when interpreting results of theDL
model.

One limitation of this study was that images synthe-
sized were 256 × 256 pixels, which is lower than that of
OCT images used in the original Kermany et al.7 study.
The default input size for the inception model is 299 ×
299 pixels. It is possible for GANs to generate higher
resolutions (e.g., 1024 × 1024 or above), however,
it requires a longer training time (at least 1 month
for the hardware used in the current study), which
was impractical for this study. Second, although four
classes of OCT images were generated by PGGANs
separately, we combined them into two groups to train
DL models. It would be more clinically useful if DL
models could be trained to do multiple classifications
in the future. Third, other retinal disorders, such as
macular hole, epiretinal membrane, or pigment epithe-
lium detachment, were not included in the current
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study as they are less common conditions. Future work
will involve generating such rare retinal disorders and
might help improve diagnostic accuracy of DLmodels.
Finally, as we used same reference standard as in the
Kermany et al.7 study to determine the results of retinal
specialists’ grading, graders’ diagnostic accuracy may
be overestimated due to incorporation bias.

Conclusions

The GAN synthetic OCT images can be used by
clinicians in place of real OCT images for develop-
ing DL algorithms. Further studies are warranted to
investigate where this technology could be best utilized
within clinical and research settings.
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