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Abstract: A successful passage of the blood–brain barrier (BBB) is an essential prerequisite for
the drug molecules designed to act on the central nervous system. The logarithm of blood–brain
partitioning (LogBB) has served as an effective index of molecular BBB permeability. Using the
three-dimensional (3D) distribution of the molecular electrostatic potential (ESP) as the numerical
descriptor, a quantitative structure-activity relationship (QSAR) model termed AlphaQ was derived to
predict the molecular LogBB values. To obtain the optimal atomic coordinates of the molecules under
investigation, the pairwise 3D structural alignments were conducted in such a way to maximize the
quantum mechanical cross correlation between the template and a target molecule. This alignment
method has the advantage over the conventional atom-by-atom matching protocol in that the
structurally diverse molecules can be analyzed as rigorously as the chemical derivatives with the
same scaffold. The inaccuracy problem in the 3D structural alignment was alleviated in a large part by
categorizing the molecules into the eight subsets according to the molecular weight. By applying the
artificial neural network algorithm to associate the fully quantum mechanical ESP descriptors with
the extensive experimental LogBB data, a highly predictive 3D-QSAR model was derived for each
molecular subset with a squared correlation coefficient larger than 0.8. Due to the simplicity in model
building and the high predictability, AlphaQ is anticipated to serve as an effective computational
screening tool for molecular BBB permeability.

Keywords: blood–brain barrier; 3D-QSAR; structural alignment; molecular ESP descriptor; artificial
neural network

1. Introduction

It is very restrictive for an external molecule to penetrate the blood–brain barrier (BBB)
that separates the central nervous system (CNS) from the systemic circulation. Therefore,
the ability of BBB passage is a key characteristic for evaluating the suitability of molecules
as a CNS drug candidate [1]. BBB permeability is also an important design factor for
non-CNS drugs because their significant exposure to the brain may cause a variety of
unwanted side effects including neurological disorders [2].

Molecular BBB permeability is usually quantified with the logarithm of blood–brain
partitioning (LogBB), the argument of which refers to the ratio of concentrations in brain
and plasma. Various computational modeling methods have been proposed so far to predict
the LogBB values of organic molecules. Among them, the development of a quantitative
structure-activity relationship (QSAR) model has been most actively pursued due to the
straightforwardness of the relation between the molecular descriptors and LogBB [3].

Since the development of the comparative molecular field analysis (CoMFA) method [4],
three-dimensional (3D) QSAR approaches have been widely applied in computational
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drug design. The predictive capability of a 3D-QSAR model is critically dependent on
the structural alignments among the molecules as well as on the descriptors required
for the numerical representations of individual molecules [5]. Although most molecular
descriptors are too imperfect to estimate a variety of pharmacological properties with
accuracy, 3D-QSAR models have become more predictive by using the quantum mechanical
descriptors rather than those calculated with the empirical potential functions [6–8].

A precise alignment of 3D molecular structures is the most important prerequisite for
the high performance of 3D-QSAR models. Because even a slight deviation from the perfect
molecular overlay may cause large errors in predicting biological activity [9], 3D molecular
alignment has remained as the most problematic obstacle that should be overcome in the
derivation of an accurate 3D-QSAR model. Hence, a great deal of effort has been devoted
to developing an efficient method for aligning the 3D atomic coordinates of structurally
diverse molecules. Although most molecular alignment methods were focused on the
superposition of similar chemical moieties, some novel techniques have also been proposed
to overlap whole molecular structures according to the 3D distribution of physicochemical
properties [10–14]. Nonetheless, it has been difficult to overcome the ligand alignment
bottleneck in 3D-QSAR models, especially in the case of coping with molecules of varying
sizes and shapes.

In recent years, the manifestation of sophisticated computational protocols including
machine learning and artificial intelligence (AI) algorithms has shed new light on the devel-
opment of an efficient QSAR model for drug discovery [15,16]. For example, QSAR models
became more accurate by implementing AI algorithms in predicting some pharmacological
properties because their functional relations with the numerical molecular descriptors were
determined more precisely than in the conventional QSAR approaches [17–22]. Machine
learning algorithms have also turned out to be efficient in deriving the accurate prediction
models for various molecular permeabilities [23–25]. AI and machine learning algorithms
are thus supposed to replace precedent optimization methods, such as multiple linear
regression and partial least square analysis.

In previous work, we established an efficient 3D-QSAR prediction model termed
AlphaQ by applying the artificial neural network (ANN) algorithm. As a consequence of
combining a rigorous structural alignment method and the quantum mechanical molecular
descriptors, the optimized AlphaQ model exhibited a high performance in predicting some
biochemical and pharmacological properties [26]. The present study was undertaken to
derive an accurate 3D-QSAR model for LogBB prediction through the ANN algorithm to
associate the LogBB data with the corresponding quantum mechanical molecular descrip-
tors. A method for alleviating the structural alignment bottleneck in the 3D-QSAR model
was also proposed.

2. Computational and Experimental Methods
2.1. Preparation of the Experimental Dataset to Derive and Validate the LogBB Prediction Model

Molecular LogBB values have often served as a yardstick to assess permeability across
the BBB. Therefore, experimental LogBB data for molecules with varying size, shape, and
atomic composition were collected from the literature to construct a dataset with which the
3D-QSAR prediction model could be derived and validated appropriately [27,28]. Among
these molecules, a total of 406 molecules with molecular weight (MW) ranging from 200 to
600 atomic mass unit (amu) were included in the final dataset.

Although the pattern for structural alignments among the molecules has a critical
impact on the performance of the resulting 3D-QSAR prediction model, it is very difficult
to obtain an accurate molecular alignment, especially in the case that the dataset involves
a broad MW range [29]. This is due in a large part to the difficulty in determining a
representative molecule that has to serve as the template to align all the other molecules in a
common 3D box. For this reason, the initial molecular dataset was divided into eight subsets
to construct 3D-QSAR LogBB prediction models suitable for the molecules within a certain
range of molecular weight. The MW range in a given molecular subset was determined in
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such a way that the molecules with a MW between 250 and 453 amu were equally populated
among the six subsets. The smallest molecules with a MW lower than 250 amu and the
largest ones with a MW higher than 453 amu were then collected separately to constitute
the two additional subsets. The individual molecular subsets included 38–71 elements
with MW ranges of 200–250, 251–275, 276–301, 302–323, 324–360, 361–398, 399–453, and
454–600 amu. Some large molecules with a MW higher than 500 amu were also included
in the dataset because they have a wide spectrum of LogBB values. As widely adopted in
the literature [30,31], 80–85% of the molecules in a subset were selected as the elements of
the training set to construct a 3D-QSAR model, while the rest of the molecular elements
belonged to the test set to validate the optimized LogBB prediction model. In all eight cases,
the fivefold external cross-validation was carried out with five kinds of training and test sets
generated at random. The merit of fivefold external cross-validation lies in that selection
bias can be avoided by using different training and test sets in all five cases.

2.2. Calculations of the 3D Molecular Descriptors

Three-dimensional distribution of the electrostatic potential (ESP) in a molecule con-
taining 2n electrons was obtained from its determinantal wavefunction, consisting of n
molecular orbitals, which were calculated with the ab initio quantum chemical method
at the RHF/6-31G** level of theory. Using the individual molecular wavefunctions, the
charge density (ρ) values were calculated at 3D grid points placed with uniform spacing
of 0.212 Å in the common box. The ESP (ϕ) values were then determined at all the grid
points, embedding the molecule by solving the Poisson’s equation.

→
∇

2
ϕ(x, y, z) = ρ(x, y, z) (1)

Based on the 3D distribution of ESP in each molecule, the numerical molecular descrip-
tor was constructed preliminarily in the form of a K-dimensional vector comprising the ESP
values at the predefined K grid points in the common box. Due to a huge number of grid
points, it was necessary to reduce the dimensionality of the initial ESP descriptors to the
extent adequate for QSAR modeling. This was performed by principal component analysis
(PCA), which has been widely used to project the high-dimensional numerical data in the
low-dimensional space by extracting the principal components only [32,33]. The projected
ESP vectors were finally defined as the mathematical descriptors of individual molecules,
and served as the inputs to derive a 3D-QSAR model for LogBB prediction through the
ANN algorithm. Because the reduced molecular ESP descriptors were calculated on a fully
quantum mechanical basis, they seemed to outperform the conventional descriptors in
terms of correlation with the experimental data.

2.3. Pairwise 3D Molecular Alignments

Three-dimensional atomic coordinates for calculating the molecular ESP descriptors
were obtained by conducting structural alignments among the molecules in the common
rectangular box. The length, width, and height of the common grid box for a molecular sub-
set were determined according to the respective maximum distances along the coordinate
axes to encompass the van der Waals volumes of all the molecular elements. To provide
a sufficient space for translational and rotational movements during the 3D structural
alignments, a marginal distance of 2.7 Å was added to the length, width, and height of the
common grid box. Grid points were then placed with uniform spacing of 0.106 Å along the
three coordinate axes.

The starting structures for the 3D molecular alignment were prepared from the quan-
tum chemical geometry optimizations at the RHF/6-31G** level of theory. The pairwise
structural alignment proceeded by translating and rotating each molecule (target) in a
molecular subset so as to maximize the overlap with the representative one (template). The
position of the template molecule was fixed in the common grid box. A total of 2000 ro-
tamers along the three axes were taken into account for each target molecule to find the
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optimal atomic coordinates with respect to the template. These rotamers were prepared
by uniformly incremental sampling in the SO(3) rotation group using the Hopf fibration
method [34]. To reduce the computational cost, the charge density distribution of a target
molecule was calculated exactly for the initial structure only while those of the rotamers
were interpolated at all the grid points.

Using 2000 rotamers of a target molecule (j) and the corresponding charge density data
to reflect the intramolecular electronic redistributions, the optimal structural alignment
with the stationary template molecule (i) was explored by translating each rotamer. The
translational movements were iterated by changing the displacement vectors in such a way
as to maximize the quantum mechanical cross correlation (Eij), which was defined between
the ESP of i (ϕi(x, y, z)) and the charge density of j (ρj(x, y, z)) as follows.

Eij =
y

V
ϕi(x, y, z)ρj(x, y, z)dV (2)

In the physical sense, Eij corresponds to the energy caused by the repulsive electrostatic
interactions between the two molecules. Each Eij value was calculated in a straightforward
way using the fast Fourier transform algorithm [35]. The rotamer with the highest Eij value
was selected as the optimal alignment of j, and subsequently used as the input to calculate
the molecular ESP descriptor.

2.4. Determination of the Template for Multiple Pairwise Alignments

To accomplish the multiple pairwise molecular alignments, it was necessary to deter-
mine a representative molecule appropriate for the template with respect to all the other
molecules in a subset. The template molecule of each subset was identified with the aid
of the distance matrix comprising the distance (dij) values for all molecular pairs. More
specifically, the dij value between the two molecules was given by the difference between
the quantum mechanical cross correlation (Eij) and the average of the self-correlations (Eii
and Ejj) associated with the superposition of two identical molecules.

dij = Eij −
1
2
(
Eii + Ejj

)
(3)

In each molecular subset, the distance matrix was constructed as a yardstick to choose
the central molecule that served as a structural template in the pairwise 3D molecular
alignments. The determination of the template molecule in a subset began by representing
all the molecules with the vertices placed in a network according to the dij values. Each vertex
in the graph was characterized by a centrality parameter to measure the representativeness
of the corresponding molecule [36]. Of the known centrality indices, the betweenness
centrality parameter was used in this work because it had been most effective in measuring
the influence of a vertex on the information flow [37]. The betweenness centrality parameter
of a molecule i (Ci) was quantified by the number of the shortest paths involving the vertex
i out of the total number of the shortest paths for all vertex pairs (Npaths).

Ci =

∑
A

∑
B

fi(A, B)

Npaths
(4)

Here, fi(A,B) is 1 and 0 if the vertex i is included and excluded in the shortest path between
the vertices A and B, respectively. To identify the node with the highest Ci value in each
molecular subset, Monte Carlo simulations were carried out with the random walk algorithm.
The central molecules were determined in the same way for all eight molecular subsets, and
then served as the structural template in the multiple pairwise molecular alignments.

2.5. Derivation of the LogBB Prediction Models with ANN Algorithm

Following the structural alignments and the calculations of molecular ESP descriptors,
a 3D-QSAR model for LogBB prediction was derived for each molecular subset using the
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advanced computational protocols. Among a variety of machine learning and AI tools
available for public use, the ANN algorithm was applied in this work in a feed forward
fashion with the backpropagation of the error network [38]. The whole network consisted
of input, hidden, and output layers as described in Figure 1. The projected ESP vectors of
the training-set molecules constituted the neurons in the input layer. All the input neurons
( Îk’s) were combined into a sigmoidal function after multiplying the weighting factors
(wki’s) to generate the intermediate neurons (Ĥi’s) in the hidden layer, which were in turn
processed in a similar way to produce a single output neuron (Ô). The vector elements of
Ô (Oj’s) represented the predicted LogBB values of N molecules in the training set.

Ĥi = sgm

(
N

∑
k=1

wki Îk

)
and Ô = sgm

(
M

∑
i=1

wijĤi

)
(5)

Here, sgm(x) denotes the sigmoidal function given by (1 + e−x)−1. The output neuron
can thus be expressed with the input vectors as follows.

Ô = sgm

(
M

∑
i=1

wijsgm

(
N

∑
k=1

wki Îk

))
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Figure 1. Schematic diagram of N × M × 1 neural network to derive a 3D-QSAR model for LogBB 
prediction. Columns I, H, and O indicate the input, hidden, and output layers, respectively. Neurons 
in the three layers are mutually related with the weighting matrices wki and wij. 

For simplicity, the number of neurons in the hidden layer (M) was limited to 3 in the 
optimization of the 3D-QSAR model for LogBB prediction. All experimental data were 
transformed to range from 0 to 1 to be processed with the sigmoidal function. These nor-
malized experimental LogBB values functioned as the baseline for optimizing the 
weighting factors to complete a 3D-QSAR prediction model. The parameterization pro-
ceeded with a gradient-based minimization on the error hypersurface (F), which was 
given by the sum of the square differences between the experimental (Dj) and the esti-
mated (Oj) LogBB values of N molecules in the training set. 
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libitum (Envigo 2018S Diets, Envigo). Subjects receiving oral injection were food-deprived 
overnight. 

LogBB measurements began by the oral administration of each drug candidate to five 
mice (n = 5) at a dose of 5 mg/kg. The mice were then euthanized by carbon-dioxide as-
phyxiation at 5, 30, 60, 120, and 360 min after the oral dose. Blood samples were collected 
via cardiac puncture using heparinized plastic syringes, and centrifuged for 1 min at 9000 
rpm. Subsequently, the whole brain tissue was collected and homogenized (T18 digital 
ULTRA-TURRAX®, IKA, Staufen, Germany) with a phosphate buffer. Two 50 µL aliquots 
of the supernatant and plasma samples were collected and stored at −70 °C. 

Following the sample preparations, 0.1 mL of acetonitrile (Honeywell Burdick & 
Jackson, Morristown, NJ, USA) containing 20 ng/mL carbamazepine (Sigma, St. Louis, 

Figure 1. Schematic diagram of N ×M × 1 neural network to derive a 3D-QSAR model for LogBB
prediction. Columns I, H, and O indicate the input, hidden, and output layers, respectively. Neurons
in the three layers are mutually related with the weighting matrices wki and wij.

For simplicity, the number of neurons in the hidden layer (M) was limited to 3 in the
optimization of the 3D-QSAR model for LogBB prediction. All experimental data were
transformed to range from 0 to 1 to be processed with the sigmoidal function. These normal-
ized experimental LogBB values functioned as the baseline for optimizing the weighting
factors to complete a 3D-QSAR prediction model. The parameterization proceeded with a
gradient-based minimization on the error hypersurface (F), which was given by the sum of
the square differences between the experimental (Dj) and the estimated (Oj) LogBB values
of N molecules in the training set.

F =
N

∑
j=1

(
Dj −Oj

)2 (7)

The F value of 10−4 was used as the criterion for the convergence of weighting
parameters.
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2.6. Experimental Determination of Molecular LogBB Values Using Mouse Models

The protocols for animal study were approved by the Department of Laboratory Animals,
Institutional Animal Care and Use Committee of Whan In Pharm (Approval No. AEC-
20080430-0008; Suwon, Korea; Approval date: 30 April 2008). Male ICR mice of 7–8 weeks old
weighing 30–32 g were purchased from DooYeol Biotech (Seoul, Korea). All these mice were
housed 5 per cage under standard conditions (at 23–25 ◦C and 55–60% relative humidity) on
a 12 h light/dark cycle (light on at 7:00 a.m.) with food and water ad libitum (Envigo 2018S
Diets, Envigo). Subjects receiving oral injection were food-deprived overnight.

LogBB measurements began by the oral administration of each drug candidate to
five mice (n = 5) at a dose of 5 mg/kg. The mice were then euthanized by carbon-dioxide
asphyxiation at 5, 30, 60, 120, and 360 min after the oral dose. Blood samples were collected
via cardiac puncture using heparinized plastic syringes, and centrifuged for 1 min at
9000 rpm. Subsequently, the whole brain tissue was collected and homogenized (T18
digital ULTRA-TURRAX®, IKA, Staufen, Germany) with a phosphate buffer. Two 50 µL
aliquots of the supernatant and plasma samples were collected and stored at −70 ◦C.

Following the sample preparations, 0.1 mL of acetonitrile (Honeywell Burdick &
Jackson, Morristown, NJ, USA) containing 20 ng/mL carbamazepine (Sigma, St. Louis,
MO, USA) was added to 50 µL of aliquot for each biological sample. Carbamazepine
served as an internal standard in the mixture. After vortex mixing and centrifuging at
12000 rpm for 10 min, 10 µL of supernatant was analyzed using LC-MS/MS (API5500, AB
Sciex, Foster City, CA, USA). Finally, LogBB values of the ten drug candidate molecules
were calculated by the logarithm of a ratio of the area under the time-versus-concentration
curve (AUC) in brain and plasma.

3. Results and Discussion

With respect to the whole molecular dataset including 406 organic compounds, the MWs
and LogBB values ranged from 200 to 600 amu and from −2.69 to 1.64, respectively. Prior to
constructing a 3D-QSAR prediction model, molecules with varying shapes and sizes were
categorized into eight subgroups according to MW so that the 3D structural alignments could
be performed with accuracy. Table 1 lists the characteristics of the eight molecular subsets
prepared to derive and validate 3D-QSAR models for LogBB prediction separately. The
number of elements was kept almost the same among the subsets except for the two subsets
containing the smallest (Subset 1) and the largest (Subset 8) molecules. Each molecular subset
was divided further into a training and a test set with a ratio of 4.2:1 on average.

Table 1. Characteristics of the eight molecular subsets prepared to derive and validate 3D-QSAR
model for LogBB prediction.

Molecular
Subset MW Range LogBB Range No. of Training-Set

Molecules
No. of Test-Set

Molecules

Subset 1 200–250 −2.09–1.40 57 14
Subset 2 251–275 −1.57–1.64 39 9
Subset 3 276–301 −1.42–1.30 40 10
Subset 4 302–323 −1.70–1.60 40 10
Subset 5 324–360 −1.48–1.44 40 10
Subset 6 361–398 −2.69–1.33 40 10
Subset 7 399–453 −1.30–1.51 40 9
Subset 8 454–600 −2.15–1.10 32 6

The derivation of a LogBB prediction model termed AlphaQ was initiated by prepar-
ing the optimal atomic coordinates of individual molecules in the training and the test set.
For this purpose, the pairwise 3D structural alignments were performed in such a way
as to maximize the Eij values with respect to the template molecule. All the molecules
were assumed to be neutral in calculating the Eij values to retain the original electronic and
structural features. Figure 2 displays the results of multiple structural alignments among
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the molecules in the same molecular subset. In all eight cases, the core structures of indi-
vidual molecules appear to be concentrated in the same region while the sidechains point
to different directions. Because Eij values were calculated on a fully quantum mechanical
basis, the AlphaQ program is meritorious over the conventional 3D-QSAR packages in
that it can be used to conduct 3D molecular alignments systematically, even in coping with
structurally diverse molecules with no identical chemical moiety. Unlike the conventional
atom-by-atom matching protocol, however, it is difficult to score the accuracy of 3D struc-
tural alignments in the quantitative manner. In the absence of a common chemical group
among the molecules, it would be desirable to assess the new structural alignment method
by the predictive capability of the resulting 3D-QSAR model.
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The reliability of the 3D-QSAR prediction models derived in this work was validated in
terms of the correlation between the experimental and the calculated LogBB data. Basically,
the squared Pearson correlation coefficient for the training set (R2

train) and that for the test
set (R2

test) served as yardsticks to measure the accuracy of the LogBB prediction models.
These two statistical parameters can be expressed in the following mathematical forms.

R2
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∑
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2
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∑
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2
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2
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Here, y is the average of the experimental LogBB data while yi and ŷi represent the
experimental and calculated LogBB values of molecule i, respectively. The summations
in the R2

train and R2
test parameters run over the molecules in the training and test set,

respectively.
Figure 3 shows the linear correlation diagrams for the experimental LogBB values

versus those estimated with the AlphaQ prediction model involving the Eij-based molecular
alignments and the quantum mechanical ESP descriptors. For each molecular subset, only
the best prediction result generated in the fivefold external cross-validation is presented.
The full results are provided in Supplementary Materials along with the molecular elements
of the training and the test set in each fold. The AlphaQ models for LogBB prediction
appear to be optimized successfully in all eight molecular subsets, as exemplified by the
R2

train values higher than 0.989. This indicates that the ANN parameterization converged
well irrespective of the MW range in the training set. In contrast to the close similarity
in R2

train values of the eight molecular subsets, the R2
test parameters range broadly from

0.820 to 0.963 with the variation of the MW range in the subset. The worst prediction
results were obtained for Subset 1 (Figure 3a) and Subset 6 (Figure 3f), which contain
compounds with MWs ranging from 200 to 250 and from 361 to 398 amu, respectively.
The lowest R2

test values in the two subsets can be understood in the context that Subset
1 and 6 had the widest range of experimental LogBB values including those lower than
−2.0 and those higher than 1.3. In both cases, the predictive capability seems to have
increased further by augmenting the dataset with molecules with maximal and minimal
LogBB values. Despite some defects in the molecular LogBB dataset, the difference between
R2

train and R2
test values fell to 0.176 in all eight test cases. This implies that the prevalent

overtraining problem was alleviated to a great extent in the present 3D-QSAR models for
LogBB prediction.



Int. J. Mol. Sci. 2021, 22, 10995 9 of 18

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 20 
 

 

problem was alleviated to a great extent in the present 3D-QSAR models for LogBB pre-
diction. 

  

  

  

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 11 of 20 
 

 

  
Figure 3. Linear correlation diagram between the experimental and calculated LogBB values for (a) Subset 1, (b) Subset 2, 
(c) Subset 3, (d) Subset 4, (e) Subset 5, (f) Subset 6, (g) Subset 7, and (h) Subset 8. Indicated in black and red circles are the 
molecules in the training and test sets, respectively. 

With respect to the performance of the AlphaQ prediction model for LogBB, it is 
noteworthy that the R2test values for all eight molecular subsets were higher than those 
obtained with a four-component partial least square analysis using 72 molecular de-
scriptors [27], and with the QSAR prediction model involving the ten molecular de-
scriptors selected by the genetic algorithm [28]. The accuracy enhancement in LogBB pre-
diction by AlphaQ can be attributed in a large part to the adequacy of the structural align-
ment method using the quantum mechanical Eij values, because the preparation of opti-
mal molecular atomic coordinates is the first prerequisite for obtaining an accurate 3D-
QSAR model. AlphaQ also appeared to produce the better prediction results than conven-
tional 3D-QSAR methods such as CoMFA and comparative molecular similarity index 
analysis (CoMSIA) in terms of the R2test values [39]. This indicates the superiority of the 
quantum mechanical ESP descriptors to the distribution of steric and electrostatic interac-
tion energies in CoMFA as well as to the molecular property fields in CoMSIA. 

To further address the performance of AlphaQ, we also calculated the external pre-
dictivity parameter (r2pred) that has been widely used to quantify the accuracy of statistical 
prediction methods [40,41]. Mathematically, this parameter is expressed as follows. 

( )

( )



=

=

−

−

−=
test

i
traini

test

i
ii

pred

yy

yy
r

1

2

1

2

2

ˆ

1  (9)
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With respect to the performance of the AlphaQ prediction model for LogBB, it is note-
worthy that the R2

test values for all eight molecular subsets were higher than those obtained
with a four-component partial least square analysis using 72 molecular descriptors [27],
and with the QSAR prediction model involving the ten molecular descriptors selected by
the genetic algorithm [28]. The accuracy enhancement in LogBB prediction by AlphaQ
can be attributed in a large part to the adequacy of the structural alignment method using
the quantum mechanical Eij values, because the preparation of optimal molecular atomic
coordinates is the first prerequisite for obtaining an accurate 3D-QSAR model. AlphaQ also
appeared to produce the better prediction results than conventional 3D-QSAR methods
such as CoMFA and comparative molecular similarity index analysis (CoMSIA) in terms
of the R2

test values [39]. This indicates the superiority of the quantum mechanical ESP
descriptors to the distribution of steric and electrostatic interaction energies in CoMFA as
well as to the molecular property fields in CoMSIA.

To further address the performance of AlphaQ, we also calculated the external predic-
tivity parameter (r2

pred) that has been widely used to quantify the accuracy of statistical
prediction methods [40,41]. Mathematically, this parameter is expressed as follows.

r2
pred = 1−

test
∑

i=1
(yi − ŷi)

2

test
∑

i=1
(yi − ytrain)

2
(9)

Here, yi and ŷi are the experimental and calculated data for the test set while ytrain
denotes the averaged value of the data for the training set. The r2

pred parameter is mer-
itorious over the corresponding R2

test value in that the data for the training set can also
be reflected in validating a prediction model as well as those for the test set. As shown
in Figure 3, the r2

pred parameters for varying training and test sets ranged from 0.809 to
0.954, which exceeded those yielded in the QSAR prediction models for the biochemical
potencies of structurally similar molecules with classical and 3D quantum mechanical
descriptors [6,42]. It is also worth noting that the difference between the r2

pred and R2
test

values was negligible in all eight cases, indicating that the training and test sets would be
divided reasonably well in terms of model validations. Thus, both statistical validation
parameters support the suitability of the AlphaQ model in estimating the molecular LogBB
values.

The relatively high predictive capability of AlphaQ is consistent with the precedent
computational finding that the quantum mechanical ESP descriptors would be superior
to the 3D molecular interaction fields as well as to the classical 1D descriptors [8,26]. The
usefulness of quantum mechanical ESPs as molecular descriptors can be elucidated in
the context that the ESP distribution on the molecular surface acts as a determinant for
biochemical reactions and intermolecular interactions [43]. For example, the ESP values on
the van der Waals surface of a molecule turned out to be highly correlated with the potency
of ice recrystallization inhibitors [44]. The 3D ESP descriptors used in this work differ from
those of the other groups in that the molecular ESP values were calculated at all 3D grid
points in the common box, embedding all the molecules instead of those at the surface
points only. This modification seems to be necessary to derive a reliable 3D-QSAR model
for predicting complicated biological properties such as LogBB as accurately as simple
intermolecular interactions. Such a full 3D distribution of quantum mechanical ESPs is
anticipated to be an effective numerical molecular descriptor for estimating a variety of
pharmacological properties of drug candidates.

Most probably, the good performance of AlphaQ in all eight test cases for LogBB
stems from the categorization of the molecules according to the MW range. This can be
understood on the grounds that the size dependence has been a major drawback of 3D
molecular structural alignments [45], which has in turn acted as the largest error source
that affects the accuracy of a 3D-QSAR model. To address the effect of such an alignment
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problem on the accuracy of AlphaQ, we also constructed and validated a 3D-QSAR LogBB
prediction model using a total of 406 molecules in the whole dataset. Figure 4 shows the
linear correlation diagram between the experimental and calculated LogBB values using
the training and the test set comprising 328 and 78 molecules, respectively. Although the
ANN model for LogBB prediction converged successfully with the associated R2

train value
of 0.997, both R2

test and r2
pred values dropped sharply to 0.205 and 0.103, respectively. In

this case, the optimized 3D-QSAR model seems to have become elusive as the overtraining
problem was too severe. When the correlation diagram in Figure 4 is compared with those
for Subsets 1–8 (Figure 3), it can be argued that the poor 3D structural alignments between
the molecules with a large difference in MW was responsible for the poor predictive
capability of the AlphaQ model derived with all the molecules in the dataset.
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Although the LogBB values of some test-set molecules deviated considerably from the
corresponding experimental data (Figure 3), it was difficult to further improve the accuracy
of AlphaQ either by changing the number of hidden layers in the ANN optimization of the
3D-QSAR model or by upgrading the level of quantum chemical method for calculating
the ESP descriptors. The largest errors in LogBB prediction were observed for lorazepam
(1 in Figure 5a) and CID 50599 (2 in Figure 5b) with absolute unsigned errors of 0.60 and
0.53, respectively. The poor LogBB prediction results for these two molecules exemplify
that the accuracy of a QSAR model may be influenced to a great extent even by changing a
few molecules in the dataset [27]. If 1 and 2 are excluded from the dataset, for example,
the R2

test values of Subset 1 and Subset 4 increase significantly from 0.820 to 0.877 and
from 0.881 to 0.928, respectively. With respect to the poor accuracy in LogBB prediction,
it is noteworthy that 1 contains 3-hydroxy-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one
moiety as the molecular core (Figure 5a), which is absent in all the other molecules in the
dataset. Therefore, the large error in the estimated LogBB value of 1 would stem from the
poor learning of ESP descriptors owing to the rarity of similar functional groups in the
training set.

As with other 3D-QSAR prediction models, the limitation of AlphaQ lies in that
only a single representative molecular conformation can be taken into account both in 3D
structural alignments and in the calculation of ESP descriptors. This restraint is supposed
to cause an error in estimating the molecular LogBB values. We note in this regard that 2
can exist in different tautomeric structures, as illustrated in Figure 5b. Only one tautomer
possessing an OH moiety on the six-membered aromatic ring was considered in the LogBB
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prediction on the grounds that its electronic energy calculated at the RHF/6-31G** level of
theory is lower than that of the other tautomer by 7.52 kcal/mol. The contribution of the
minor tautomer of 2 was thus excluded during the entire course of validating the 3D-QSAR
model, which would culminate in a large error in the predicted LogBB value. In general,
the exact enumeration of all molecular tautomers is required for the resulting 3D-QSAR
model to be precise in predicting the pharmacological properties because the experimental
data for model building are prepared under consideration of all the tautomeric states [46].
To enhance the performance of AlphaQ in LogBB prediction, therefore, it seems to be
necessary to reflect the contributions of multiple tautomers and conformers both in the 3D
structural alignment and in the ESP descriptor calculations.
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To estimate the applicability domain of the AlphaQ prediction model for LogBB, the
outliers and the high-leverage molecules were determined with the leverage approach [47]
using the prediction results. The applicability domain could be visualized explicitly with
the two boundaries in the William plot of the standardized residuals of the estimated LogBB
values versus the corresponding leverage (h) values given by the molecular descriptors. In
general, a molecule is considered as an outlier unless the absolute value of its standardized
residual is less than three times the standard deviation unit. A molecule also falls outside
the applicability domain if the h value of the molecule exceeds the warning leverage (h*)
defined as follows.

h∗ = 3p
n

(10)

Here, p and n are the number of ESP descriptors and the number of molecules in the
training set, respectively. Predictions with an h value higher than h* may not be reliable
because the results can be regarded as a consequence of extrapolation instead of an exact fit.

The William plots of AlphaQ LogBB prediction models for the eight molecular subsets
are displayed in Figure 6. We see that all the molecules in the eight subsets had h values
substantially lower than h*. Similarly, the standard residuals of the molecules in Subsets 3
and 4 also appeared to reside between the bordering lines. Judging from the William plots
for Subsets 3 and 4, the AlphaQ prediction model for LogBB seems to be reliable, at least for
molecules with MWs ranging from 276 and 323, on the grounds that all the associated data
points reside in the satisfactory realm. On the other hand, the data points of one or two
molecules in Subsets 1, 2, and 4–6 turned out to be outliers as they exhibited standardized
residuals beyond the boundaries. Overall, 97.3% of the data points were located in the
applicability domain. This indicates that LogBB predictions with AlphaQ may involve a
high degree of extrapolation for a small number of molecules.
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As an additional validation of the LogBB prediction results, the response permutation
test or what is also called Y-scrambling was also carried out to check whether the experi-
mental LogBB values were correlated with the molecular ESP descriptors by chance. The
AlphaQ prediction model for LogBB would be regarded as suspect if a high correlation
remained between the ESP descriptors and the randomized LogBB values. Table 2 lists the
R2

train, R2
test, and r2

pred parameters obtained after 10% of the experimental LogBB data
were permutated at random and regressed with the unchanged molecular descriptors. Al-
though all eight randomized models were optimized well with the high R2

train values, they
became less efficient in LogBB prediction as both R2

test and r2
pred parameters decreased

significantly when compared to those of the original prediction models (Figure 3). This
result confirms that the predictive capability of the AlphaQ model for LogBB stems from a
true relationship instead of a correlation by chance.

Table 2. Results of the Y-scrambling tests to validate the LogBB prediction models built by shuffling
10% of the experimental LogBB values in the dataset.

Subset
1

Subset
2

Subset
3

Subset
4

Subset
5

Subset
6

Subset
7

Subset
8

R2
train 0.998 0.997 0.998 0.998 0.997 0.999 0.998 0.997

R2
test 0.592 0.785 0.601 0.748 0.656 0.749 0.692 0.703

r2
pred 0.559 0.694 0.597 0.714 0.655 0.659 0.663 0.658

To further validate the performance of the AlphaQ LogBB prediction model on the
experimental basis, we calculated the LogBB values of ten molecules that have been under
development as drug candidates in the pharmaceutical industry. Compared in Table 3
are the LogBB values calculated with the optimized AlphaQ model and those obtained
by experimental measurements, along with the chemical formula and MWs of the ten
molecules under consideration. The corresponding data for 1, 2, and carbamazepine are
also listed for comparison. It is seen that the calculated LogBB values compare reasonably
well with the experimental ones, with a root mean square deviation of 0.297. As shown
in Figure 7, the squared linear correlation coefficient (R2) between the experimental and
calculated LogBB values amounted to 0.843, which is between the R2

test values for Subset 1
and Subset 6 (Figure 3). These experimental validation results confirm the usefulness of
the AlphaQ model in estimating molecular LogBB values.

Table 3. Characteristics of the ten molecules used for the experimental validation of the AlphaQ
prediction model for LogBB in comparison with those of 1, 2, and carbamazepine.

Molecules Chemical Formula MW Calculated
LogBB

Experimental
LogBB

1 C15H10Cl2N2O2 321.2 −0.16 0.44
2 C10H12N4O3 236.2 −0.77 −1.30

carbamazepine C15H12N2O 236.3 −0.04 −0.14
3 C17H17ClN8O 384.8 −0.02 −0.25
4 C22H25ClN6O3 456.9 −0.67 −0.39
5 C23H27ClN6O3 471.0 −0.24 −0.44
6 C25H32ClN7O2 498.0 0.26 −0.09
7 C19H21F4N5O3 443.4 −0.21 −0.07
8 C25H26F3N5O3 501.5 −0.74 −0.21
9 C24H20F3N5O3 483.5 −2.07 −1.70

10 C28H31N7O3 513.6 −0.25 −0.38
11 C17H23N5O2 329.4 0.46 0.54
12 C24H31N3O2 393.5 −0.73 −0.38
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To the best of our knowledge, AlphaQ may be viewed as the first reliable 3D-QSAR
model for predicting the LogBB data of structurally diverse molecules with no common
scaffold. In terms of the predictive capability given by the R2

test value, AlphaQ outperforms
quantum mechanical solvation models [48] as well as 2D-QSAR models involving the deep
neural network algorithm [49]. Furthermore, AlphaQ has a computational advantage over
atomistic statistical simulations and high-level quantum mechanical calculations in the
context that a highly predictive model can be derived in a straightforward way using
a moderate amount of experimental data. In the presence of such a reliable prediction
model for molecular pharmacological properties, the drug discovery process would be
facilitated by limiting the candidates in the early stage to the druggable molecules only. An
accurate QSAR model has become more valuable due to the global requirement for reducing
experiments on animals [50]. The AlphaQ prediction model is therefore anticipated to
serve as an effective in silico screening tool for druggable molecules because a vast number
of molecules can be evaluated in a high-throughput fashion with the advanced graphics
processing unit (GPU) architecture.

Although ab initio quantum chemical calculations were applied both in 3D structural
alignments and in ESP descriptor calculations, the AlphaQ model for LogBB prediction
has much room for further improvement. Most importantly, a large error may arise
because the minor tautomers and conformers of each molecule are excluded in model
building, as mentioned above. This problem becomes severe in particular when the dataset
contains a number of molecules with many torsional degrees of freedom. Hence, the
predictive capability of AlphaQ would be enhanced further upon the implementation of
4D-QSAR formalism to calculate the molecular descriptors under consideration of the
conformational diversity in molecules [51]. Since a variety of simulation protocols are
available for rigorous conformational sampling, our future research will be focused on the
improvement of AlphaQ’s predictability within the 4D-QSAR framework.

4. Conclusions

In the attempt to obtain a reliable computational tool for predicting molecular LogBB
data, a 3D-QSAR model termed AlphaQ was derived with an ANN algorithm using
the distribution of quantum mechanical ESPs as the numerical descriptor for individual
molecules. To raise its predictive capability, pairwise 3D structural alignments were carried
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out in such a way as to maximize the quantum mechanical cross correlation between
the template and a target molecule. This alignment method has an advantage over the
conventional atom-by-atom matching protocol in that structurally diverse molecules can
be analyzed as rigorously as the chemical derivatives of the same scaffold. As in other
3D-QSAR prediction models, the performance of AlphaQ was limited by the difficulty
in finding the optimal structural alignment between large and small molecules. This
alignment problem was alleviated in a large part by dividing the molecules in the dataset
into eight subsets according to MW. As a consequence, a highly predictive QSAR model
was derived for each molecular subset, implying the adequacy of the new 3D structural
alignment method and the quantum mechanical ESP descriptors in the development of
LogBB prediction models. Due to its high predictability and simplicity in model building,
AlphaQ is anticipated to serve as an effective computational screening tool for molecular
BBB permeability.
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