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BACKGROUND: The usefulness of circulating tumor DNA (ctDNA) in detecting mutations and
monitoring treatment response has not been well studied beyond a few actionable biomarkers
in non-small cell lung cancer (NSCLC).

RESEARCH QUESTION: How does the usefulness of ctDNA analysis compare with that of solid
tumor biopsy analysis in patients with NSCLC?

METHODS: We retrospectively evaluated 370 adult patients withNSCLC treated at the City ofHope
between November 2015 and August 2019 to assess the usefulness of ctDNA in mutation iden-
tification, survival, concordance with matched tissue samples in 32 genes, and tumor evolution.

RESULTS: A total of 1,688 somatic mutations were detected in 473 ctDNA samples from 370
patients with NSCLC. Of the 473 samples, 177 showed at least one actionable mutation with
currently available Food and Drug Administration-approved NSCLC therapies. MET and
CDK6 amplifications co-occurred with BRAF amplifications (false discovery rate [FDR], <
0.01), and gene-level mutations were mutually exclusive in KRAS and EGFR (FDR, 0.0009).
Low cumulative percent ctDNA levels were associated with longer progression-free survival
(hazard ratio [HR], 0.56; 95% CI, 0.37-0.85; P ¼ .006). Overall survival was shorter in patients
harboring BRAF mutations (HR, 2.35; 95% CI, 1.24-4.6; P ¼ .009), PIK3CA mutations (HR,
2.77; 95% CI, 1.56-4.9; P < .001) and KRASmutations (HR, 2.32; 95% CI, 1.30-4.1; P ¼ .004).
Gene-level concordance was 93.8%, whereas the positive concordance rate was 41.6%. More
mutations in targetable genes were found in ctDNA than in tissue biopsy samples. Treatment
response and tumor evolution over time were detected in repeated ctDNA samples.

INTERPRETATION: Although ctDNA analysis exhibited similar usefulness to tissue biopsy
analysis, more mutations in targetable genes were missed in tissue biopsy analyses. Therefore,
the evaluation of ctDNA in conjunction with tissue biopsy samples may help to detect
additional targetable mutations to improve clinical outcomes in advanced NSCLC.
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Take-home Points

Study Question: How does the usefulness of circu-
lating tumor DNA (ctDNA) compare with that of
solid tumor biopsy analysis in patients with non-
small cell lung cancer (NSCLC)?
Results: Treatment response and tumor evolution
over time were detected in repeated ctDNA sam-
ples, with more mutations detected in targetable
genes through ctDNA than tissue biopsy samples.
Interpretation: ctDNA analysis offers similar use-
fulness to tissue biopsy analysis in detecting somatic
mutations, assessing mutual exclusivity, analyzing
co-occurrences, and determining prognosis along
with additional mutations detected and can serve as a
less invasive option for monitoring the temporal
evolution of NSCLC.
Despite advances in cancer treatments over the last
decade, lung cancer continues to be the leading cause
of cancer-related deaths.1 Non-small cell lung cancer
(NSCLC) accounts for 85% of all lung cancer cases
and is relatively resistant to chemotherapy. Although
targeted therapies such as EGFR and ALK tyrosine
kinase inhibitors often are used to treat NSCLC,
intratumor heterogeneity limits the efficacy of
targeted treatments owing to the nature of genetically
distinct subpopulations (ie, subclones).2,3 Tissue
biopsies have been considered as the gold standard in
guiding treatment, however, they are costly, painful,
and risky and often are not feasible owing to the
worsening conditions of patients with metastatic
diseases. Moreover, tissue biopsies are inherently
limited by spatial heterogeneity.4 Because tumors are
known to shed cell-free DNA into the blood, less
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invasive plasma samples may be an alternative to
tissue biopsies for solid tumors.5 These cell-free
circulating tumor DNAs (ctDNA)—also known as
liquid biopsy—are short-lived fragments of
extracellular DNA (approximately 160-180 bp; half-
life, approximately 2 h) and are thought to be the
result of the enzymatic degradation of dead tumor
cells.6 Numerous studies have demonstrated
promising results by using ctDNA to detect cancers,
to assess response to treatment and resistance, and to
monitor the evolution of cancers.7-10 However, most
of the retrospective studies that have used ctDNA in
patients with NSCLC have focused on the
relationship between somatic mutations in a single
gene (often in the EGFR gene) and corresponding
targeted treatments.2,3,9-13 With the exception of
EGFR mutations and clinical responses to EGFR-
targeting tyrosine kinase inhibitors, the
complementary roles of the tumor and liquid biopsies
in metastatic lung cancer have yet to be
explored.3,7,8,11 In addition, concordance in paired
tumor and ctDNA NSCLC samples to establish the
clinical validity of few actionable mutations for
routinely using ctDNA assays to monitor biomarkers
is limited.14-16 A recent large-scale ctDNA study
reported identification of actionable driver and
resistant mutations in ctDNA at comparable
frequencies and distributions as in tissue biopsies and
presented ctDNA potentially as a first-line biomarker
in cases of insufficient or incomplete or lack of tissue
biopsy samples.17 Therefore, the present study sought
to evaluate a retrospective repeated-measure NSCLC
dataset from the City of Hope Cancer Center to
investigate (1) somatic mutations and their role in
assessing prognosis, (2) concordance between tissue
and ctDNA samples, and (3) the evolution of cancer
as captured by repeated ctDNA sampling.

Methods

Participants

A retrospective analysis was performed using 473 ctDNA reports
from a cohort of 370 patients with NSCLC treated at the City of
Hope Cancer Center. ctDNA assays were analyzed using the
Guardant360 platform (Guardant Health) between November
2015 and August 2019 (e-Fig 1). The Guardant360 panel is a
Clinical Laboratory Improvement Amendments-certified and
College of American Pathologists-accredited assay that detects
single nucleotide variants (SNVs) of 73 genes, copy number
amplifications for 18 genes, fusions in six genes, and insertions
or deletions in 23 genes.18,19 Somatic mutations from 295
formalin-fixed paraffin-embedded tissue biopsy samples were
evaluated.
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Tumor analyses were performed according to the guidelines of an
institutional review board-approved protocol (City of Hope
Identifier: 19085; Chapman University Identifier: IRB-20-8). De-
identified patient data for treatment history, sex, ethnicity, smoking
status, tumor stages, age at diagnosis, vital status, progression, and
last follow-up were abstracted from electronic health records.

ctDNA Mutation Analyses

To assess the usefulness of mutations detected in ctDNA samples, we
evaluated mutation frequencies, variant allele frequencies (VAFs), co-
occurrences, mutual exclusivity, and prognostic values. All somatic
mutations detected by the Guardant360 panel in patients were
considered to be of NSCLC origin. ALK, EGFR, ERBB2, ROS1,
BRAF, AKT1, PIK3CA, MTOR, RET, and MET genes were
considered targetable genes. ALK-EML4 fusions, BRAF V600E, EGFR
exon 19 deletions, EGFR L858R, EGFR L861Q, EGFR T790M, EGFR
C797S, EGFR G719A, EGFR G719C, EGFR G719S, EGFR C797S,
MET exon 14 skipping mutations, RET fusions, ROS1 fusions, and
NTRK1/2/3 fusions were considered actionable mutations for current
availability of Food and Drug Administration (FDA)-approved
NSCLC treatments targeting these mutations according to the
National Comprehensive Cancer Network guidelines.20 VAF was
calculated as the fraction of ctDNA molecules harboring the variant
of interest divided by the total number of unique ctDNA molecules
mapped to the variant position. The cumulative percent ctDNA was
defined as the sum of VAFs from all detected mutations in a ctDNA
sample. The cumulative percent ctDNA level in a sample that was
equal or more than the median cumulative ctDNA was considered
high, with other percentages considered to be low. Overall survival
(OS) was assessed for mutations in EGFR, TP53, KRAS, PIK3CA,
MET, BRAF, and ERBB2 genes. OS and progression-free survival
(PFS) were assessed for cumulative percent ctDNA levels. Both OS
and PFS analyses were performed from the first ctDNA sample for
gene mutations in cases of $ 30 patients, and only the first ctDNA
sample was included for patients with multiple ctDNA samples.

Concordance Analyses

Concordance analyses were performed in matched samples to evaluate
the agreement in mutation detection in both tissue biopsies and ctDNA
samples. Tissue and ctDNA samples were considered to be matched if
both were collected within 7 days of each other regardless of the other
clinical factors (ie, number of prior treatments received, stage of
cancer, tissue biopsy sources), assuming that tumors remained
chestjournal.org
unchanged during the 7 days. Overall concordance was defined as
the absence or presence of somatic mutations at the gene level in
both tissue and liquid biopsies. Positive concordance was defined as
the concurrent detection of positive mutation at a target gene.
Although ctDNA results were obtained using the Guardant360
platform, 12 different platforms were used to analyze tissue biopsy
samples (e-Table 1). To assess concordance in common genes
consistent across all platforms, tissue biopsy results from platforms
that interrogated # 10 genes were excluded (n ¼ 6). Another patient
had two tissue samples matched with the same ctDNA sample. Of
these two, the tissue biopsy collected on the same day as the ctDNA
sample was included. Thus, somatic mutations in 64 patients with
NSCLC were analyzed for the concordance of SNVs and insertions
or deletions (32 genes), amplification (10 genes), and fusion (one
gene) across all molecular testing platforms (e-Table 2). The sources
of tissue for the biopsy are listed in e-Table 3.

Tumor Evolution Analyses

To assess tumor evolution, intratumor heterogeneity, and treatment
response, somatic mutations, corresponding VAFs, tumor biopsy
findings, and treatment data were investigated in five patients with
NSCLC. Treatment response or failure was assessed using
progression status and vital status at the final follow-up as noted in
the progress report in the City of Hope electronic health records.

Statistical Analyses

Patient demographics and somatic mutations were summarized using
descriptive statistics. To assess the impact of ctDNA-derived
biomarkers on survival, Cox regression models were used for
univariate and multivariate analysis of PFS and OS end points with
complete observations for variables considered. Cancer stages were
not considered in the PFS and OS because all the patients with
complete observation harbored stage IV disease. For survival
analyses, P < .05 was considered to be significant. For multiple
testing corrections, a false discovery rate (FDR) of < 0.05 was
considered to be statistically significant for analyses of co-occurrence
and mutual exclusivity. The R software packages used were:
ComplexHeatmap, GenVisR for heatmap analyses, discover for
mutation co-occurrence and mutual exclusivity, and survival and
survminer for OS and PFS analyses.10,21-25 All analyses were
performed using R version software 3.6.2 (R Foundation for
Statistical Computing).26
Results
Of the 370 patients included, 55.4% were women,
58.9% were White, and 95.9% received a diagnosis of
stage IV NSCLC. The median age at diagnosis was 65
years (range, 32-91 years), and most patients had lung
adenocarcinoma (93.2%) (Table 1).

ctDNA Mutation Analyses

Of 473 ctDNA samples from the included patients, no
somatic mutations were detected in 64 samples.
Although 290 (of 473 [61.3%]) ctDNA samples
harbored at least one somatic mutation in targetable
genes, 582 (of 1688 [34.5%]) somatic mutations were
found in ten targetable genes. Of 1,688 mutations, 235
mutations (13.9%) were considered actionable and 177
ctDNA samples (of the 473 [37.4%]) had at least one of
the 17 actionable mutations with currently available
FDA-approved NSCLC therapies. Somatic mutation
frequencies in the earliest ctDNA samples were highest
in TP53 (18.8%) and EGFR (15.6%), whereas other
prominent mutations were observed in KRAS (5.2%),
PIK3CA (4%), MET (3.9%), and NF1 (3.6%) (Fig 1, e-
Table 4). Mutations such as BRAF V600E sometimes
may arise from nontumorous sources (benign nevi or
polyps) and may be detected in the ctDNA samples.27

However, none of the patients with NSCLC harbored
nevi or polyps to our knowledge. Thus, the detected
BRAF alterations were related to the lung cancer. EGFR
L858R and EGFR E746_A750 deletion mutations were
mutually exclusive (FDR, 0.009). KRAS and EGFR
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TABLE 1 ] Patient Demographics and Tumor
Characteristics of the 370 Patients With
Lung Cancer in Whom ctDNA Was Analyzed
for the Present Study

Variables

Patient characteristics (n ¼ 370)

Sex

Female 205 (55.4)

Male 165 (44.6)

Race

Black 12 (3.2)

Asian 129 (34.9)

White 218 (58.9)

Other or unknown 11 (3)

Smoking status

Smoker 180 (48.6)

Never smoker 185 (50)

Unknown 5 (1.4)

ctDNA samples per patient 1 (1-5)

Age at diagnosis, median (range) 65 (32-91)

Age at diagnosis of metastasis,
median (range)

65 (32-91)

Tumor stage

I 1 (0.3)

II 2 (0.5)

II 7 (1.9)

IV 355 (95.9)

Unknown 6 (1.4)

Tumor type (n ¼ 473 samples)

Lung adenocarcinoma 345 (93.2)

Squamous cell carcinoma 13 (3.5)

Adenosquamous carcinoma 2 (0.5)

Large cell carcinoma 2 (0.5)

Adenocarcinoma to SCLC 2 (0.5)

Other or unspecified NSCLC 6 (1.6)

Genes altered per sample,
median (range)

3 (0-15)

Mutations per sample,
median (range)

3 (0-18)

Patients with ctDNA samples
(n ¼ 473 samples),
time point

1 293 (79.2)

2 57 (15.4)

3 15 (4.1)

4 4 (1.1)

5 1 (0.3)

(Continued)

TABLE 1 ] (Continued)

Variables

Type of mutation (n ¼ 1,688
mutations)

SNVs or indels 1,474 (87.3)

Amplification 196 (11.6)

Fusion 18 (1.1)

Interventions received before first
ctDNA sample obtained

None 8 (2.1)

First line 163 (44.1)

Second line 62 (16.8)

Third line 18 (4.9)

Unknown 60 (16.2)

Data are presented as No. (%) or median (range). ctDNA ¼ circulating
tumor DNA; indels ¼ insertions or deletions; NSCLC ¼ non-small cell lung
cancer; SCLC ¼ small cell lung cancer; SNV ¼ single nucleotide variant.
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gene-level mutations were mutually exclusive (FDR,
0.0001). The co-occurrences of amplifications in MET
with BRAF and CDK6 with BRAF were statistically
significant (FDR, 0.006 and 0.007, respectively).

Survival analyses were used to assess the usefulness of
ctDNA results in defining prognostic indices. The median
follow-up time in 330 patients with follow-up data was
5.6 months (IQR, 2.3-14 months). A low cumulative
percent ctDNA was an independent predictor of longer
PFS (hazard ratio [HR], 0.56; 95% CI, 0.37-0.85; P ¼ .006),
after adjusting for patient age, sex, and smoking status (Fig
2). Univariate analyses of OS were performed to evaluate
mutations in commonly mutated or targetable genes that
had at least 30 or more cases in our dataset (eg, EGFR,
BRAF, KRAS, TP53, PIK3CA, and MET). BRAF, KRAS,
and PIK3CA mutations were associated with a shorter OS
(Fig 2). The presence of BRAF (HR, 2.35; 95% CI, 1.24-4.5;
P ¼ .009), PIK3CA (HR, 2.77; 95% CI, 1.56-4.9; P < .001),
and KRAS (HR, 2.32; 95% CI, 1.30-4.1; P¼ .004) remained
significant predictors of the shorter OS when all significant
single-mutation statuses—along with age, sex, and
smoking statuses—were included in multivariate Cox
regression models. The presence of EGFR,MET, and TP53
was not associated significantly with OS.28 Therefore,
ctDNA results can be used for the assessment of PFS and
OS, similar to tissue biopsy findings.29

Concordance Between Tissue and ctDNA Samples

A concordance analysis in 64 lung adenocarcinoma
patients with matched tissue and ctDNA samples
identified a total of 214 unique somatic mutations at the
gene level. Only gene-level concordance in matched
[ 1 6 0 # 3 CHES T S E P T EM B E R 2 0 2 1 ]
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Figure 1 – Circulating tumor DNA (ctDNA) analyses from 370 patients with non-small cell lung cancer. Co-mutation plot showing somatic mutations
identified in the ctDNA samples for the most prevalent genes (ie, with a mutation recurrence cutoff of $ 0.05).
samples from both tissue and ctDNA sources was
analyzed without differentiating them on actionability.
For example, the BRAF gene was considered to be a
targetable gene and BRAF V600E mutations were
considered actionable. However, all BRAF mutations
(fusion, E24E, V600E, K601E, L537L, L597R, I617V, and
amplification) were assessed for gene-level concordance.
The positive concordance rate—the concordance within
the detected mutations—was 41.6%. Sixty-six of the
detected mutations (30.4%) and 62 of the detected
mutations (28.6%) were found in ctDNA only and tissue
only, respectively (Fig 3). The overall concordance rate
between tissue and ctDNA samples was 93.8%. A
subanalysis of concordance for four patients with non-
stage IV NSCLC showed a high overall concordance of
90.6%. However, more discordant somatic mutations
were detected in tissue, 7% compared with 2.3% in
ctDNA, potentially because of low shedding of tumor
DNA in earlier stages.

Although somatic mutations detected via tissue biopsy
and ctDNA were highly concordant at the gene level,
chestjournal.org
both sources exhibited additional unique mutations that
were missed by the other (e-Fig 2). The concordance
analysis for amplification in 10 genes showed 39 unique
amplifications in 21 patients. Although the overall
concordance rate of amplification was 97.1%, the
positive concordance rate was 28.2%. Eighteen
discordant amplifications (46.2%) and 10 discordant
amplifications (25.6%) were found in ctDNA and tissue,
respectively (Fig 4). Similarly, the overall concordance
rate for ALK-EML4 fusion was 95.3%, with a
40% positive concordance rate. Overall, more SNVs,
insertions or deletions, and amplifications were detected
via ctDNA than by tissue biopsy analysis. In the
matched samples, ctDNA samples showed a higher
number of mutations in 10 targetable genes than tissue
biopsies.
Intratumor Heterogeneity and Evolution

Intratumor heterogeneity and tumor evolution were
investigated over time in all patients with two or more
ctDNA results (Fig 5, e-Figs 3-6, e-Table 5). All patients
1099
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Figure 2 – Survival analysis in ctDNA samples. A, Kaplan-Meier plot showing PFS for the cumulative percent ctDNA variant allele frequency (VAF).
Patient samples with a cumulative ctDNA VAF of $ 1.8% (ie, median cumulative ctDNA VAF of all samples) were considered to be high. A low
cumulative percent ctDNA VAF was associated significantly with a longer PFS after adjusting for age at diagnosis, sex, and smoking status. B-D,
Kaplan-Meier overall survival (OS) curves for patients with known BRAF (B), PIK3CA (C), and KRAS (D) mutations detected in ctDNA. Shorter OS
was associated significantly with the presence of BRAF, PIK3CA, and KRAS mutations after adjusting for age at diagnosis, sex, and smoking status.
ctDNA ¼ circulating tumor DNA; Cumul. % ¼ cumulative percent; PFS ¼ progression-free survival.
exhibited variations in the number of mutations detected,
and VAFs fluctuated during the course of disease and
therapy. Specifically, four ctDNA samples were collected
1100 Original Research
from patient G1 within 3 years of the first sample. Only an
ALK E1407Emutationwas detected at the first ctDNA time
point at 0.1% VAF, whereas EGFR sensitizing mutations
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detected for each gene. Female and male patients are shown as pink and blue, respectively. Nonsmokers and smokers are indicated in light green and
orange, respectively.

chestjournal.org 1101

http://chestjournal.org


0

2

4

6

8

0 5 10 15

Alterations

tissue
blood

Sex

Female
Male

Smoking.status

non-smoker
smoker

62%

48%

19%

14%

14%

14%

5%

5%

5%

EGFR

MET

KRAS

BRAF

PIK3CA

ERBB2

FGFR1

FGFR2

KIT

Sex

Smoking.status

A

22

Tissue

B

ctDNA

1

Source

ctDNA
Tissue

60

40

M
ut

at
io

ns
 in

Ta
rg

et
ab

le
 G

en
es

20

0
All Discordant Only

C

Figure 4 – Concordance analysis of amplifications, fusion, and actionable mutations. A, Concordance landscape of somatic amplifications at the gene
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and ctDNA samples. C, Bar graph showing percentage of mutations in targetable genes detected. ALK, AKT1, BRAF, EGFR, ERBB2, MET, MTOR,
PIK3CA, RET, and ROS1 genes were considered to be targetable. Of all the detected mutations, the number of mutations in targetable genes were
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were detected in a tissue biopsy sample at that time. Patient
G1 received afatinib as a first-line targeted treatment. At the
second time point, three novel somatic mutations (EGFR,
TP53, and TERT) emerged in ctDNA, of which EGFR and
TP53 persisted into the third and fourth time points.
Additionally, TSC1, ATM SNVs, and MYC amplification
were detected at the fourth ctDNA time point. Patient G1
participated in a blinded clinical trial after the second time
point, and further treatment information, other than
restarting afatinib, was unavailable. Patient G9 showed one
1102 Original Research
of the highest numbers of gene mutations detected in four
ctDNA samples within 3 years and showed multiple
mutations in EGFR in the first ctDNA sample (including
EGFR T790M), which was undetected in the tissue biopsy
examinations performed at that time. Patient G9 received
carboplatin plus docetaxel as a first-line treatment and
erlotinib as a second-line treatment after the first ctDNA
sample. Significant decreases in the percentage of detected
VAFs were observed from the first to the second ctDNA
time point after initiating osimertinib as a third-line
[ 1 6 0 # 3 CHES T S E P T EM B E R 2 0 2 1 ]
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Figure 5 – Tumor evolution analysis. Graphs showing tumor heterogeneity evolution as detected in ctDNA samples over time for patient G1 (A) and
patient G9 (B). The y-axis represents the VAF%, whereas the x-axis shows time in days since the first ctDNA sample was collected. Patient G1 began
afatinib therapy after the first ctDNA time point. Although the clinical trial drug was unknown, EGFR E746_A750 deletion continued to increase
despite the treatments. ctDNA from patient G9 showed lower EGFR T790M mutation after osimertinib treatment. However, EGFR E746_A750
deletion increased in ctDNA. ctDNA ¼ circulating tumor DNA; VAF% ¼ percent variant allele frequency.
treatment, indicating a response. However, EGFR T790M
persisted in the two subsequent ctDNA samples. Similar to
patient G9, EGFR T790M mutations were detected in
ctDNA samples in patient G220, which remained
undetected in tissue biopsy samples, highlighting the
usefulness of ctDNA in detecting mutations missed in
tissue biopsy analyses. In contrast, patient G59 showed
EGFR T790Mmutation detected both in ctDNA and tissue
chestjournal.org
biopsy samples. However, after osimertinib treatment, the
EGFR T790M mutation was undetected in tissue biopsy
samples, but was detected in ctDNA. Patient G8 harbored
EGFR andKRASmutations that were undetected in all four
ctDNA samples compared with tissue biopsy samples.
Therefore, although ctDNA assays often identified
actionable mutations in patients G1, G9, G59, and G220, it
was limited in detecting mutations in patient G8.
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Discussion
NSCLC is a molecularly heterogeneous disease with
wide variations in presentation, response to treatment,
and overall prognosis. Although repeated tissue biopsy
examinations have been the gold standard to guide
therapy and study tumor evolution, the collection of
multiple tissue biopsy samples is costly, painful, and
often risky. Recently, ctDNA has proven to be
promising in detecting and monitoring multiple
cancers by offering a less invasive option for
biopsy.13,30,31 ctDNA also addresses the inherent
limitation of solid tumor biopsies for spatial
heterogeneity. Currently, ctDNA tests such as
Guardant360 have been approved by FDA as an
alternative to tissue-based biopsies only when a tissue
biopsy sample is unattainable. Although EGFR is the
most studied biomarker in the treatment of NSCLC,
the role of other known biomarkers such as KRAS,
ERBB2, PIK3CA, MET, MEK1, ALK, BRAF, ROS1, and
RET, and other commonly mutated genes such as
TP53, have yet to be explored using ctDNA.
Furthermore, concordance between tissue and liquid
biopsy analyses has not been assessed beyond
actionable biomarkers in patients with NSCLC.12,15,32

Therefore, our study evaluated a retrospective single-
center cohort of 370 patients to assess clinical
outcomes, concordance with tissue biopsy findings in
32 genes, and tumor evolution in five patients. To our
knowledge, this collection of ctDNA and clinical data
from patients with NSCLC is the largest compiled to
date. Furthermore, our concordance analysis was
evaluated in a broader panel of genes from patients
with diverse clinical statuses than previously published
in patients with NSCLC.

In agreement with biopsy-based findings, we found that
KRAS and EGFR gene mutations were significantly
mutually exclusive,33-35 whereas MET and CDK6
amplifications were significantly mutually co-occurring
with BRAF amplifications. A low cumulative percent
VAF in ctDNA was an independent predictor of longer
PFS after adjusting for patient age, sex, and smoking
status. Low levels of cumulative percent ctDNA
potentially indicate a low tumor burden as detected in
the blood, and thus less severe disease. Given the fleeting
nature of ctDNA, it is not surprising to find no
significant association of ctDNA with OS. Other studies
also have demonstrated the prognostic value of
pretreatment or presurgery cell-free DNA levels as a
surrogate marker for tumor burden and treatment
response in many cancers.29,36-39
1104 Original Research
Studies have demonstrated improved clinical outcomes
in patients harboring EGFR, ALK, ROS1, and BRAF
mutations when targeted agents were directed against
these driver and resistant mutations.40,41 In our study,
patients with BRAF, PIK3CA, or KRAS mutations, as
detected by ctDNA, showed significantly worse survival
rates. Although FDA-approved BRAF-targeted therapy
is available for NSCLC, patients with positive BRAF
findings received EGFR-targeted therapies or
chemotherapies because of the presence of actionable
EGFR-sensitizing or KRAS mutations. Despite the
PIK3CA mutations, PIK3CA-targeted therapies were
rare because PIK3CA mutations often went undetected
in tissue biopsy samples and are not considered
actionable in NSCLC. Currently, no KRAS-targeted
therapy is available, and biomarker detection is driven
by tissue biopsy findings. Hence, the worse prognosis
associated with BRAF, KRAS, and PIK3CA mutations
could be associated with a lack of targeted therapy use in
these patients. Similar to data derived from tissue biopsy
samples, EGFR, MET, and TP53 mutations were not
associated significantly with OS.28

Overall concordance, including presence and absence in
somatic mutations at the gene level, was 93.8%. Herein,
we assessed concordance in each patient regardless of
clinical status (eg, age, stage, sex, or smoking status) or
prior therapy received. Other studies that have
investigated gene-level concordance reported values of
52% to 94.2% for various cancers in demonstrating
potential clinical use of ctDNA for NSCLC
treatment.12,42-45 Concordance at the mutation level has
been shown to be 62.2% to 88.8% in patients with
NSCLC for EGFR mutations.46-49 Concordance rates
varied from 50% to 55% in early-stage cancers and
64% to 83% in late-stage and metastatic cancers.49-54

The lower concordance in early-stage NSCLC may be
contributed by a lack of sensitively to DNA shedding of
early tumors and overall low tumor mutation
burden.16,55 Furthermore, more gene mutations and
actionable gene mutations were found in ctDNA than in
tissue biopsy samples in the matched samples, in
agreement with the findings in other studies.12,42 A
prospective trial observed 98.2% concordance with
100% positive predictive value for cell-free DNA
vs tissue genotyping of EGFR, ALK, ROS1, and BRAF
genes in previously untreated metastatic NSCLC.56 Some
previous studies have suggested that the discordant
mutations found in ctDNA are potential false-negative
results from tissue biopsy samples and can be related to
temporal and spatial heterogeneity.18,32,57 The
[ 1 6 0 # 3 CHES T S E P T EM B E R 2 0 2 1 ]



discordant mutations found only in tissue could be
indicative of the low disease burden or nonporous
nature of the tumor, and thus are undetected in plasma.

To assess tumor evolution, we selected five lung
adenocarcinoma patients with NSCLC with $ 4 ctDNA
samples. Not all mutations were detected in both tissue
and ctDNA samples when they were collected at
approximately the same time, similar to other studies.17

However, the trends in ctDNA data were more
consistent (ie, although the same mutations often were
detected in subsequent samples, they would go
undetected in the tissue biopsy samples obtained
between ctDNA sample collections). Incidences of
mutations that were undetected in ctDNA but were
detectable in tissue biopsy samples also have been
reported, and the use of ctDNA in addition to tissue
biopsy examination has been suggested for detecting
more targetable mutations.

It is worth noting that our study has several limitations.
Most of the patients in the cohort had advanced-stage
NSCLC. Therefore, our findings may not be
generalizable to patients with early-stage NSCLC.
However, a prospective trial showed similar
concordance and usefulness in early-stage cancer.58

Additionally, because this was a single-center
retrospective study, the patient population at City of
Hope may not be representative of other patient
populations with NSCLC. Many observations had to be
excluded owing to missing data for the PFS and OS
analyses. Also, the multivariate models were not
exhaustive in developing the comprehensive OS and PFS
prognostic models. Instead, oversimplified multivariate
models were assessed to evaluate the risk of ctDNA-
derived biomarkers on PFS and OS, controlling for
common clinical factors. Some patients were part of
masked clinical trials, and thus treatment information
was not specified in their electronic health records.
chestjournal.org
Because the first ctDNA sample was obtained at
different time points of the disease course, OS and PFS
analyses were biased. The prognostic value of using
ctDNA biomarkers may be biased owing to having
targeted therapies available to some, but not all, patients.
Concordance analyses were performed for only 32 genes
that were common across the ctDNA and tissue-based
next generation sequencing platforms, and concordance
may vary depending on the gene mutations analyzed.
Furthermore, samples were matched if the patient’s
ctDNA and tissue biopsy samples were collected within
7 days of each other with the underlying assumption
that the tumor likely would not change significantly
within 7 days. However, concordance rates would be
underreported if tumors indeed evolved at a detectable
rate during the 7-day period. In addition, the tissue
sources for biopsy were heterogeneous, which may show
variation in intratumor mutational burden. Because the
mutational frequencies predominately were less than 20
counts, the City of Hope dataset may not capture the
true diversity of somatic mutational co-occurrences or
mutual exclusivity, at least at the mutation level. Since
most patients had advanced NSCLC, the median follow-
up time was short for both OS and PFS analysis. In the
future, larger clinical trials are necessary to explore the
prospective role of ctDNA in the treatment of patients
with NSCLC at all stages to address these limitations.
Interpretation
ctDNA captured clinically useful, actionable, and
dynamic information by identifying targetable
mutations regardless of patients’ clinical status. Thus,
ctDNA analysis can provide complementary
information to tissue biopsy examination in cancer
management and surveillance, and may offer additional
targetable opportunities beyond when a tissue biopsy
samples are not attainable.
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