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Abstract
COVID-19 is an acronym for coronavirus disease 2019. Initially, it was called 2019-nCoV, and later International Committee 
on Taxonomy of Viruses (ICTV) termed it SARS-CoV-2. On 30th January 2020, the World Health Organization (WHO) 
declared it a pandemic. With an increasing number of COVID-19 cases, the available medical infrastructure is essential to 
detect the suspected cases. Medical imaging techniques such as Computed Tomography (CT), chest radiography can play an 
important role in the early screening and detection of COVID-19 cases. It is important to identify and separate the cases to 
stop the further spread of the virus. Artificial Intelligence can play an important role in COVID-19 detection and decreases 
the workload on collapsing medical infrastructure. In this paper, a deep convolutional neural network-based architecture is 
proposed for the COVID-19 detection using chest radiographs. The dataset used to train and test the model is available on 
different public repositories. Despite having the high accuracy of the model, the decision on COVID-19 should be made in 
consultation with the trained medical clinician.

Keywords Convolutional neural network · Deep learning · COVID-19 classification · Chest X-ray · Medical imaging · 
FocusCovid

1 Introduction

Coronaviruses are responsible for respiratory infections 
lining up from the common cold to severe diseases such 
as Middle East Respiratory Syndrome (MERS) and Severe 
Acute Respiratory Syndrome (SARS). MERS is a zoonotic 
virus that has spread in humans with direct or indirect con-
tact with camels. The first human infection was reported 
in the Arabian Peninsula in 2012, and since then, 27 
countries had been affected with a total of 2494 cases and 
a 34.4% fatality rate. SARS was first reported in Guang-
dong province of China in 2003 and spread to 28 countries 
with 8000 infected and 778 deaths. SARS can be transmit-
ted from person to person with close contact. COVID-19 
also belongs to the same family of coronaviruses. The first 

human COVID-19 case surfaced in December 2019 in the 
Wuhan province of China. Unknown pneumonia clusters 
were reported from Wuhan that quickly spread to the whole 
province and the world. WHO declared it pandemic on 
30th January 2020 after 7818 confirmed cases reported in 
19 countries worldwide. Till December 2020, 86,950,284 
persons are confirmed with COVID-19 including 1,878,504 
deaths, reported to WHO.

SARS-coronavirus (SARS-CoV) uses human Angioten-
sin-Converting Enzyme 2 (ACE2) as its receptor. There is 
a similarity between the spike proteins of SARS-CoV and 
SARS coronavirus 2 (SARS-CoV-2), for this reason, it is 
assumed that SARS-CoV-2 also uses ACE2 as its recep-
tor (Wan et al. 2020). COVID-19 is an infectious disease 
caused by SARS-CoV-2 (Huang et al. 2020) with average 
3.4% fatality rate. Massive alveolar damage and progres-
sive respiratory failure can result in death (Xu et al. 2020). 
The virus is highly contagious and can spread by human to 
human transmission with micron-size droplets from nose/
mouth or in close contact. The rate of reproduction ( R0 ) 
is greater than 3 for COVID-19, which means each person 
on average can infect three other (Grech 2020). Common 
symptoms associated with COVID-19 are fever, dry cough, 
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sore throat, shortness of breath, pneumonia. The fatality rate 
is high with comorbidities such as heart and lung diseases. 
With the studies available, it is reported that people aged ≥ 
65 with medical history are highly prone to infection than 
others. Fong et al. (2020) have given a detailed description 
of COVID-19 and its comparison with other pandemics.

Real-Time Reverse Transcription-Polymerase Chain 
Reaction (RT-PCR) and Rapid Anti-body Test (RAT) are 
commonly used tests for COVID-19 detection. In RAT, the 
blood samples are tested to detect the presence of antibod-
ies. It is not a direct method to detect the virus but shows 
the response of the immune system. The immune system 
produces antibodies to counter the virus. An antibody can 
take 9–20 days to show up, so it is not an efficient method to 
test COVID-19. In RT-PCR, a throat swab is taken from the 
patient, and ribonucleic acid (RNA) is extracted. If it shares 
the same genetic sequence as SARS-CoV-2, then the patient 
is positive for COVID-19. RT-PCR test takes 4–6 h to detect 
the presence of virus and is expensive. With the sudden rise 
in cases, medical infrastructure has started collapsing world-
wide. The medical community needs already available diag-
nosis techniques to detect the COVID-19. Radiography can 
be quite helpful because the symptoms of COVID-19 are 
similar to those of pneumonia. In COVID-19 cases, several 
lung abnormalities are identified in chest radiographs such as 
ground-glass opacity, lung consolidation, and others (Guan 
et al. 2020). Radiography is cheap and readily available 
so it can help in detecting COVID-19 in suspected cases. 
Lungs are the primary target of the virus. The presence of 
a virus brings changes in the lung field that can be visual-
ized in a chest radiograph. A trained radiologist is needed to 
read the COVID-19 biomarkers and differentiate them from 
other pulmonary diseases. With limited trained radiologists 
available, a reliable and fully automatic system is needed to 
detect the cases. Author(s) have shown in their study that 
radiology can also be used as an alternative approach for 
detecting COVID-19 (Ai et al. 2020).

In the 1960s, radiographs were getting analyzed with dig-
ital computers, and after 2 decades, computer-aided detec-
tion (CAD) was the area of focus for the research community 
to assist radiologists (Giger et al. 2008). Computer vision 
and recently deep learning models have helped the radiolo-
gist for better insight into radiographs. Deep learning mod-
els are state-of-the-art models for image classification, and 
they have gained popularity after successfully classifying 
the 1000 classes in the ImageNet dataset (Deng et al. 2009). 
Deep learning has played an essential role in the medical 
field. Recently, the release of Chest X-ray 14 (CXR-14) 
(Wang et al. 2017) and Chexpert (Irvin et al. 2019) dataset, 
has accelerated the lung segmentation and disease classi-
fication work. Wang et al. (2017) introduced the 112,120 
frontal chest radiographs of more than 30,000 patients for 
the first time. They labeled the dataset with natural language 

processing (NLP) techniques and presented that the disease 
can be detected by weakly supervised learning. They labeled 
presence or absence of fourteen conditions but Long Short 
Term Memory (LSTM) network also labeled the same 
with a better area under the curve (AUC) (Yao et al. 2017). 
CheXNet (Rajpurkar et al. 2017) proposed the 121 layers 
deep network for classification on CXR-14 dataset. CheXNet 
classified and localized the disease better than the trained 
radiologists on average F1 metric. So deep learning, in par-
ticular, can be used to identify the disease automatically. It 
helps in extracting features automatically and then in the 
disease classification/detection.

The purpose of this paper is to provide a deep convolu-
tional neural network-based model for automatic COVID-19 
detection from chest radiographs with the help of a minimal 
dataset. Convolutional neural network (CNN) is the most 
popular deep learning approach with better results for clas-
sification or detection of diseases (LeCun et al. 2015). The 
model proposed in the paper is end-to-end CNN architec-
ture with no handcraft feature extraction techniques. Over-
fitting, vanishing gradient, and degradation are some of the 
many technical problems to address while training the deep 
learning model for COVID-19 detection. The COVID-19 
radiography dataset publicly available is small and to train 
deep CNN models, a large dataset is required. Training deep 
learning models with the small dataset can lead to overfitting 
even after applying the overfitting prevention methods. The 
main challenge in designing the architecture is to keep the 
trainable parameters minimum to avoid overfitting. Further, 
the data augmentation techniques can be applied to deal with 
small dataset issues. The vanishing gradient problem is also 
an issue to address while training the deep learning models. 
In the worst case, it can stop the model from further train-
ing. Additionally, degradation of accuracy while training the 
deeper network is also an issue to address.

The main contributions of the paper are summarized 
below:

– An efficient deep CNN model is proposed for the 
COVID-19 detection using chest radiographs. The pro-
posed model uses the residual learning and squeeze-exci-
tation network to improve the performance of the model.

– Proposed model is validated on two datasets for the dif-
ferent parametric values. A weighted F1-score is used for 
the evaluation of the proposed model on the imbalanced 
test dataset. The achieved results by the model show that 
it detects the COVID-19 accurately.

– To the author’s best knowledge, this is the only study that 
has used the largest COVID-19 X-ray images.

The rest of the paper is organised as follows: Sect. 2 pre-
sents the research work published for the classification 
of pulmonary diseases including COVID-19. Section 3 
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discusses the datasets and the proposed architecture. Per-
formance metrics, experimentation details, and obtained 
results are presented in Sect. 4 and finally, in Sect. 5, dis-
cussion and in Sect. 6, the conclusion of the research is 
presented.

2  Related work

Before the pandemic, researchers had already presented the 
models for automatic detection of pulmonary disease using 
the deep learning techniques with chest radiographs. Deep 
learning has established itself as state-of-the-art technology 
to provide solutions across many fields, especially in com-
puter vision. Radiography is the most common diagnostic 
tool used by physicians to examine, detect and monitor pul-
monary conditions such as tuberculosis (TB), consolidation, 
lung nodule, emphysema, pneumonia, etc (Candemir and 
Antani 2019). Numerous research work on the classifica-
tion of pulmonary diseases such as TB, lung nodule, etc., 
using deep learning are available. Recently, deep learning 
researchers are focusing on automatic diagnosis systems for 
COVID-19 detection. These diagnosis systems are aimed to 
support the existing medical infrastructure and reduce the 
burden on the medical staff. In the following sub-sections, 
research work conducted on the classification of pulmonary 
diseases such as TB, lung nodule using deep learning is 
briefly discussed along with COVID-19.

2.1  Pulmonary disease classification

Chen et al. (2011), deployed the CNN model for detecting 
the lung nodule from chest radiographs. They used the canny 
edge detector for removing the rib crossing. Then used the 
SVM classifier with Gaussian kernel for classifying the nod-
ule with better sensitivity and reduced false-positive (FP). 
Chen and Suzuki (2013) detected the nodule with massive 
training artificial neural network (MTANN), and virtual 
dual-energy (VDE) for rib and bone suppression in radio-
graphs. Subsequently, by suppressing ribs and bone, they 
reported an increase in sensitivity for detecting the lung nod-
ule. DeepCNets (Bobadilla and Pedrini 2016) classified the 
lung nodule using CNN. It detects the nodule directly from 
the pixels instead of extracting features. Data augmentation 
and ten-fold cross-validation were applied to validate the 
model. Lakhani and Sundaram (2017) used pre-trained and 
untrained CNN models like GoogleNet (Szegedy et al. 2015) 
and AlexNet (Krizhevsky et al. 2012) for the classification 
of pulmonary tuberculosis. For experimenting, they used the 
four publicly available tuberculosis datasets. The proposed 
method accurately classified the disease with 0.99 AUC.

2.2  COVID‑19 classification

Apostolopoulos and Mpesiana (2020) have used pre-trained 
VGG-19 and MobileNet-V2 for detecting the COVID-19 
from chest radiographs along with pneumonia. They have 
used two datasets for the training and testing of the models. 
First dataset contains the 1428 radiographs (224 COVID-
19, 504 Healthy, 700 Pneumonia) and the other 1442 radio-
graphs (224 COVID-19, 504 Healthy, 714 Pneumonia). 
VGG-19 reported 98.75% and 93.48% while MobileNet-V2 
reported 97.40% and 92.85% binary and multi-class accu-
racy. In their another study (Apostolopoulos et al. 2020), 
they have evaluated three learning strategies: training from 
scratch, transfer learning, and fine-tuning on the MobileNet-
V2 model. They used the 3905 chest images containing 
seven classes along with COVID-19 and achieved 87.66% 
seven classes and 99.18% binary classification accuracy 
when the training from the scratch strategy was followed. 
Vaid et al. (2020) proposed the deep learning method to 
detect the COVID-19 using fine-tuned VGG-19. VGG-19 
worked as feature extraction while a classifier with three 
fully connected layers and softmax function for predicting 
the labels. Total 364 chest radiographs are used for the train-
ing, validation, and testing of the model.

Ozturk et al. (2020) have tailored designed CNN model, 
DarkCovidNet for the automatic detection of COVID-19 
using chest radiographs. Instead of designing the model 
from scratch, the authors have used DarkNet-19 (Redmon 
and Farhadi 2017) model design as the starting point. The 
proposed model consists 1,164,434 parameters. Total 1127 
chest images containing 127 COVID-19, 500 normal, and 
pneumonia each are used for the training and testing of the 
model. The model achieved 98.08% and 87.02% average 
binary and multi-class accuracy. A deep learning model for 
the detection of COVID-19 using the chest radiographs is 
proposed by Panwar et al. (2020). They proposed 24 layer 
nCOVNet consisting of 18 layers of pre-trained VGG-19 and 
the rest are part of the classifier. They have used a total of 
284 chest images (142 COVID-19 and Pneumonia each) for 
the training and testing of the model. They used the random 
sampling for creating 70% training and 30% testing dataset 
and achieved 88.10% accuracy for the binary classification.

Toraman et al. (2020) presented an artificial neural net-
work based on Capsule Network (Sabour et al. 2017) using 
the chest radiographs for COVID-19 detection. The pro-
posed model, CapsNet used the 2331 images consisting of 
231 COVID-19 and 1050 normal and pneumonia each. The 
11 layer architecture achieves 97.24% and 84.22% accuracy 
for binary and multi-class classification. A tailored deep 
model for the COVID-19 detection, COVID-Net is proposed 
by Wang et al. (2020). They combined the dataset from five 
different repositories to create a COVIDx dataset. It con-
tains 358 COVID-19 radiographs along with normal and 
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pneumonia. The proposed deep learning model consists of 
11.75 Million parameters. It achieves an accuracy of 93.3% 
on the test dataset.

Apart from chest radiographs, many COVID-19 clas-
sification studies are performed using computed tomogra-
phy (CT) scans. Ahuja et al. (2020) have used ResNet18, 
ResNet50, ResNet101 and SqeezeNet with transfer learn-
ing and data augmentation for the COVID-19 detection. 
ResNet18 achieved the highest accuracy, precision, F1-Score 
in comparison with other models. The dataset used in the 
experiment consists of 349 COVID-19 and 397 normal 
CT-Scans. Konar et al. (2020) proposed a semi-supervised 
model for the diagnosis of COVID-19 using the CT-Scan. 
The model achieved an accuracy of 93.1% for binary classi-
fication. The study included two datasets, the first containing 
1252 COVID-19 and 1230 Non-COVID-19 CT scans while 
the second consists of only 20 COVID-19 CT scans.

2.3  Limitations

Various models have been proposed by the deep learning 
community for COVID-19 detection. Mainly, transfer learn-
ing and training from the scratch strategy are applied for 
COVID-19 detection. Most of the proposed models have 
used pre-trained VGG-19, ResNet, and MobileNet models. 
These models have large trainable parameters, and it results 
in a large computational cost. COVID dataset used in the 
above studies is taken from multiple public repositories but 
the instances available are very few. Almost every study has 
highlighted the limitation of the dataset. Limited dataset 
with large trainable parameters can result in overfitting. A 
brief summarize related work on COVID-19 detection is 
presented in Table 1.

3  Material and method

This section presents the dataset and proposed architecture 
of the FocusCovid. Section 3.1 describes the chest radio-
graph dataset and the pre-processing applied to it. Problem 
formalization and detailed description of the proposed archi-
tecture is presented in Sect. 3.2.

3.1  Dataset and pre‑processing

Sample distribution in the database impacts the developing 
model. It is important to have an equal number of samples 
that cover all classes to develop an efficient model. In order 
to deal with the class imbalance, oversampling techniques 
such as SMOTE (Chawla et al. 2002) can be used. In over-
sampling, minority class instances are generated to balance 
the distribution between different classes. It helps the model 
not to be biased towards the majority class. Collecting and 
annotating medical image datasets is extremely difficult. 
There are very few large medical image dataset available 
because of privacy issues. Few large datasets of chest radio-
graphs are available for many pulmonary disease classifica-
tion but the COVID-19 related datasets are small. Datasets 
used in the training and testing of the proposed model are 
publicly available.

3.1.1  Dataset collection

For collecting the dataset, we searched the Github, Kag-
gle repository, other sources such as the Italian Soci-
ety of Medical and Interventional Radiology (SIRM), 
Radiological Society of North America (RSNA), and at 

Table 1  Brief summary on related work for automatic COVID-19 detection

Model Dataset Instances Classification

MobileNet-V2 (Apostolopoulos et al. 2020) X-rays Total: 3905—COVID-19: 455; Rest: 3450 Binary and Seven-class
VGG-19 and MobileNet-V2 (Apostolopou-

los and Mpesiana 2020)
X-rays Dataset 1: Total: 1428—COVID-19: 224; Normal: 504; Pneu-

monia: 700 and Dataset 2— Total: 1442; COVID-19: 224; 
Normal: 504; Pneumonia: 714

Binary and Three-class

VGG-19 (Vaid et al. 2020) X-rays Total: 545—COVID-19: 181; Normal: 364 Binary
DarkCovidNet (Ozturk et al. 2020) X-rays Total: 1127—COVID-19: 127; Normal: 500; Pneumonia: 500 Binary and Three-class
nCOVNet (Panwar et al. 2020) X-rays Total:284—COVID-19: 142; Normal: 142 Binary
Capsnet (Toraman et al. 2020) X-rays Total: 2331—COVID-19: 231; Normal: 1050; Pneumonia: 

1050
Binary and Three-class

COVID-Net (Wang et al. 2020) X-rays Total: 13,975; COVID-19: 358; Normal and Pneumonia: 
13617

Three-class

ResNet-18 (Ahuja et al. 2020) CT-Scan Total: 746; COVID-19: 349; Normal: 397 Binary
Semi-supervised model (Konar et al. 2020) CT-Scan Dataset 1: Total: 2482—COVID-19: 1252; Non-COVID: 1230 

and Dataset 2: COVID-19: 20
Binary
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last Kaggle-1 (Chowdhury et al. 2020), Kaggle-2 (Asraf 
2020) are selected. Kaggle-1 dataset is used by Chowd-
hury et al. (2020) in their study and is the most popular 
dataset for COVID-19 detection studies. This dataset has 
13,282 downloads and is the winner of the COVID-19 
Dataset Award by the Kaggle Community. It is collected 
by researchers from Qatar University, the University of 
Dhaka along medical doctors from Malaysia. It consists 
of 1143 COVID-19 samples and 1345 samples each of 
normal and pneumonia radiographs with 1024 × 1024, and 
256 × 256-pixel resolution. The sample distribution in the 
dataset is even across all the classes. This dataset is itself 
collected from the different public repositories such as:

– COVID-19 Dataset: SIRM (2020), Cohen (Cohen 
et al. 2020), Github (2020a, b), Euro (2020)

– Normal and Pneumonia Dataset: Mooney (2020)

Mooney [43] dataset is another popular dataset among 
deep learning researchers consisting of normal and pneu-
monia chest radiographs. It consists 3883 pneumonia and 
1,349 normal chest radiographs from 5856 patients. Kag-
gle-2 (Asraf 2020) dataset is freely available on the Kag-
gle website. It consists of 1525 samples of COVID-19, 
normal, and pneumonia. It is used by Gianchandani et al. 
(2020) for the binary classification.

3.1.2  Pre‑processing on dataset

For better performance, the dataset is resized to 224 × 
224 × 3 (RGB). Data normalization is performed on the 
collected dataset by dividing the images by the number 
of channels (255) to ensure normalization in the range 
of [0–1]. The collected dataset is small for training deep 
learning models. Data augmentation can be applied as 
one method to deal effectively with the small dataset (Han 
et al. 2018; Perez and Wang 2017). It is often applied 
to deal with the overfitting problem and to improve the 
model generalization for better results. In this study also, 
augmentation techniques such as rotation, flipping, shear 
transformation, and zooming are used on the training data. 
Augmentation technique is not used on the test data to 
avoid the overfitting problem (Nour et al. 2020). Rota-
tion between (0◦ , 20◦ ), horizontal flip, zooming, and shear 
range (0.2) is applied to the dataset. ImageDataGenerator 
function provided by Keras is used for data augmentation. 
The augmentation strategy used in the proposed method 
provides the real-time data augmentation to fit the model, 
not increase the size of training datasets as proposed in 
Nour et al. (2020); Ahuja et al. (2020); Toraman et al. 
(2020). Figure 1 shows the instance of chest radiographs 
of the collected dataset.

3.2  Proposed architecture of FocusCovid

Improving behavior with experience is termed learning, and 
it also fits for deep learning (DL). DL is a sub-category of 
artificial intelligence and has improved the performance of 
machine learning projects. GPU-based computing power and 
non-linearity allow the deep architecture with hidden layers 
to perform better than artificial neural networks (Glorot and 
Bengio 2010). Research studies have shown that deep learn-
ing is popular in the medical field (Li et al. 2014). A simple 
neural network cannot learn complex features, unlike deep 
learning architecture. Deep CNN extracts the local features 
from high layer inputs and transfers them to the lower layers 
for the complex pattern analysis (Islam et al. 2020). CNN 
has shown remarkable capability for medical image analysis 
tasks such as disease classification and organ segmentation 
(Litjens et al. 2017). Research work presented in section 2 
has successfully demonstrated the capability of deep CNN 
for COVID-19 detection. Inspired by this, we have proposed 
the FocusCovid for the COVID-19 detection. In the follow-
ing, first the problem formalization and then the proposed 
architecture is described.

3.2.1  Problem formalization

In this paper, the supervised learning technique is used for 
the COVID-19 detection. Let consider, the dataset has Si 
training instances, M = {X, Y} , where X represents the input 
radiograph and Y represents the true labels. We can represent 

Fig. 1  Chest radiographs of COVID-19, Normal and Pneumonia
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the training samples as, X =
{
x1, x2,… , xSi

}
 , and the true 

label associated with each sample as Y =
{
y1, y2,… , ySi

}
 . 

The yi ∈ [1, 2, 3] , where 1,2 and 3 represents the COVID-
19, normal and pneumonia classes, respectively. The output 
predicted by the classifier, f w ∶ X → Z parameterized by a 
weight w, can differ from the true label Y. This difference in 
the predicted label (Z) and the true label (Y) can be termed 
as prediction error rate. The main aim is to keep error rate 
minimum by finding suitable parameters w during the train-
ing process.

3.2.2  Details of FocusCovid architecture

Encoder–decoder architecture is required for image segmen-
tation. The encoder is a CNN architecture that extracts the 
features and transfers them to the decoder for segmentation. 
The decoder uses those feature maps therefore, the better the 
encoder is, the better will be the segmentation results. So, 
instead of designing the proposed CNN architecture from 
scratch, the FocusNet (Kaul et al. 2019) was used as the 
initial point. FocusNet is the U-Net-based encoder–decoder 
architecture that was proposed for medical image segmen-
tation. This architecture has successfully demonstrated the 
segmentation capabilities on different medical datasets. It 
has two branches of encoder–decoder, so instead of using 
the encoders of both branches, we have modified the second 
branch according to needs for the COVID-19 classification. 
In the FocusNet (Kaul et al. 2019), there are three blocks 
of residual and strided residual layers with two Squeeze-
Excitation (SE) layer (Hu et al. 2018) in between. Having 
the two SE layers is the architectural requirement of Focus-
Net but it is not such for the FocusCovid. So, the second 
SE layer is removed from all the blocks. Additionally, we 
have increased the depth of the encoder by adding the fourth 
residual-strided residual block with a single SE layer. Fur-
ther, the number of filters is reduced to have less trainable 
parameters (16,32,64,128,256). The total number of param-
eters in the architecture is 2,940,122. To the author’s best 
knowledge, no study has proposed a similar architecture 
for the COVID-19 detection in chest radiographs. Figure 3 
shows the block diagram of the proposed architecture.

Generally, increasing the depth of architecture might 
increase the accuracy but adding more layers can also 
lead to higher training error (He et al. 2016). With adding 
more layers, accuracy might increase but as reported in 
He and Sun (2015); Srivastava et al. (2015) with increas-
ing depth, accuracy gets saturated and then degrades 
rapidly. This problem is termed degradation. Vanish-
ing gradient is another problem to address while train-
ing the deep learning model, therefore, (He et al. 2016) 
introduces the residual learning concept to address this 
issue and the degradation problem. Further, in their other 

paper (He et al. 2016), introduced the concept of identity 
mapping to improve the generalization and make train-
ing easier. In the FocusCovid, there are four blocks of 
residual and strided residual layers. Increasing the depth 
of FocusCovid with such blocks will have two disad-
vantages. First, it will increase the number of trainable 
parameters that can lead to overfitting, and second, might 
have resulted in a degradation problem, as discussed 
above. Other than residual layers, the proposed model 
consists one Global Average Pooling (GAP) layer, two 
dropout, and three fully connected layers. In the archi-
tecture, strides are used for the downsampling instead of 
average/max pooling.

In the following, different blocks and layers used in the 
architecture are discussed.

– Initial block: The first block of the architecture is Initial 
block. It takes the input in 224 × 224 × 3 resolution. It 
consists of the convolutional layer, Batch Normalization 
(BN) layer, and the activation layer. The number of filters 
used in the convolution layer is 16 with 3 × 3 sizes. The 
convolutional layer is the basic layer found in all CNN 
architectures. It consists of filters whose parameters are 
updates (learned) during the model training. These filters 
are applied to the dataset to capture the low and high-
level features. Filters convolve with input to generate the 
activation maps and the output is obtained by stacking all 
activation maps along depth dimension. The convolution 
process is defined in Eq. (1) 

Yl
j
 and Yl−1

j
 represents the current and previous convolu-

tional layer, f l
ij
 represents the filter or kernel, bl

j
 shows the 

bias term and Nj matches the input map. BN (Ioffe and 
Szegedy 2015) technique is used for the training of the 
deep neural network. It performs the normalization on 
each mini-batch during training. It reduces the internal 
co-variate shift and accelerates the training process. The 
BN layer is followed by the activation layer. It gives the 
non-linear feature to the model. Many activation layers 
are proposed by the researchers but mainly the CNN is 
the combination of any of Sigmoid, ReLu, LeakyReLu, 
and Softmax layer.

– Residual learning block: Proposed architecture consists 
of four residual and strided residual learning blocks for 
the feature extraction. Block diagrams of residual and 
the strided residual learning are shown in Fig. 2a. We 
have introduced the residual mapping to address the 
degradation and vanishing gradient problem during the 
training of deep learning networks. Shortcut connection 

(1)Yl
j
= p

⎛
⎜⎜⎝
�
i∈Nj

Yl−1
i

∗ f l
ij
+ bl

j

⎞⎟⎟⎠
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Fig. 2  Building block a residual 
identical mapping, b SE block

Fig. 3  Block diagram of proposed architecture



526 Evolving Systems (2022) 13:519–533

1 3

introduced in ResNet (He et al. 2016) performs the iden-
tity mapping and their output is added with staked layers 
output, as shown in Fig. 2a(ii). In the strided residual 
block, pre-activation identity residual mapping is used. 
The advantage introduced to the architecture by this is 
twofold. First, network optimization is eased, and second, 
the use of the BN layer as pre-activation improves the 
regularization of the architecture (He et al. 2016). Gen-
erally, there is a tradition of using the max/avg pooling 
layers for the downsampling but in the proposed archi-
tecture, increased strides are used. As studied by Sprin-
genberg et al. (2014), max-pooling can be replaced by the 
strided convolutional layers. In the proposed architecture, 
we have used the stride = (2,2) for the downsampling. 
In each residual and strided residual block, there are two 
convolutional layers with 3 × 3 filter, batch normaliza-
tion layer and an activation layer (ReLu). Both block lay-
ers are similar in the number of filters (32,64,128,256) 
except for the first residual layer where 16 filters are used. 
There are total 18 convolutional layers in the architecture. 
Kernel is initialized with ‘he normal’ and regularized 
with L2(1e−4).

– Squeeze-Excitation (SE) block: Hu et al. (2018) in their 
paper studied the relationship between channels and pro-
posed the SE network that performs dynamic channel-
wise feature re-calibration. It helps the network to selec-
tively emphasize informative features by learning the use 
of global information. SE blocks in earlier layers excite 
informative features, strengthening the representation of 
lower-level features. While at later layers, it responds in 
a specialized manner to different inputs. In the proposed 
architecture, SE blocks are used at all levels to be ben-
efited from the feature re-calibration across the whole 
network. Figure 2b shows the SE block.

– Other layers: Global Average Pooling (GAP) (Lin et al. 
2013), dropout (Srivastava et al. 2014) and fully con-
nected layers(FC) are used after last strided residual 
block. GAP (Lin et al. 2013) can be used in two forms. 
In the first form, GAP replaces the fully connected (FC) 
layers completely and in another form, it feeds its out-
put to one or more FC layers. A fully connected layer is 
added after the GAP layer. It has full connections among 
neurons. These layers are generally located at the end of 
CNN. Input applied to these layers is multiplied with the 
FC weights to produce results. In the proposed archi-
tecture, the FC layer has 128 and 64 neurons with ReLu 
activation function. While dropout (Srivastava et  al. 
2014) adds the regularization to the CNN by randomly 
dropping the neurons at hidden layers. Dropped neurons 
have no role in forwarding or backward pass during the 
training. During each forward pass, the architecture is 
different despite sharing weight. This also helps in avoid-
ing overfitting. In the proposed architecture, it is charac-

terized by a 20% dropout rate. At last, for generating the 
output at the end, a dense layer with 2/3 neurons and a 
Softmax classifier is used.

4  Performance evaluation

The different evaluation metric used for the evaluation of the 
proposed model are described in Sect. 4.1. In Sect. 4.2, the 
experimentation details and results obtained for the binary 
and three class classifications are described.

4.1  Evaluation metrics

The confusion matrix is often used for checking the perfor-
mance of the classifier on test data. It is a tabular table with 
actual and predicted instances of the represented classes in 
test data. It can be used to find out other parameters such as 
F1-score, specificity, sensitivity, precision, and classification 
accuracy. For calculating these parameters from the confu-
sion matrix, few terms are needed to be mentioned, such as 

(a) True Positive (TP) for correctly predicting the positive 
class

(b) True Negative (TN) for correctly predicting negative 
class.

(c) False Negative (FN) for incorrectly predicting the posi-
tive class.

(d) False Positive (FP) for incorrectly predicting the nega-
tive class.

As the images for the test set are imbalanced, i.e. different 
testing classes have different image instances. So to evalu-
ate the model, we have used the area under curve (AUC) 
score for the binary classification and weighted F1 score for 
three class classification. For the three-class classification, 
precision (P) and recall (R) is calculated for all classes sepa-
rately based on one-vs.-rest and then the average of P and 
R is taken before calculating the F1 score. F1 score is the 
weighted harmonic mean of P and R, and it helps in model 
evaluation on the imbalance dataset (Bhagat et al. 2021).

The equations mentioned below calculates the above-
mentioned parameters:

(2)Accuracy = (TP + TN)∕(TP + TN + FP + FN)

(3)Sensitivity = Recall = R = TP∕(TP + FN)

(4)Precision = P = TP∕(TP + FP)

(5)F1 − Score = F1 =
2 × P × R

P + R
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4.2  Results

For training and testing the models, Google Colaboratory 
referred to as Colab is used. It provides a 12GB NVIDIA 
Tesla K80 GPU for use up to 12 h. In this work, we have 
used Adam optimizer with initial learning rate as 0.0005. A 
dynamic learning approach has been used for model training. 
ReduceLROnPlateau method is used to reduce the learning 
rate when the model stops improving. Factor = 0.5, patience 
= 3, and the min learning rate is fixed to 1e−6. EarlyStop-
ping method is also used with patience = 10 to monitor the 
validation loss. If validation loss is not improved for con-
tinuous ten epochs, the model will stop the training. Epochs 
are set to 65 and the batch size to 16. Models are trained for 
approximately 30 min and 40 min for both binary and three 
class classification, respectively. Categorical crossentropy is 
used as a loss function.

Cross-validation method is used to estimate the general 
effectiveness of the models. In K-fold cross-validation, the 
dataset is split into K mutually exclusive subsets. The model 
runs K times, each time taking (K−1) set for training and 
the rest for validating/testing the model. In this paper, we 
have performed the 5-fold cross-validation to evaluate the 
model. The dataset is divided into 5 sets, 4 sets were used 
for the training and remaining is used for the testing. This 
process is carried out for all the sets and results are recorded. 
The average is calculated to evaluate the performance of the 
model. Further, the Kaggle-2 dataset is used to validate the 
proposed model.

The most common findings of COVID-19 are ground-
glass opacity (GGO), thickening of the adjacent pleura, air 
space consolidation, bronchovascular thickening (Shi et al. 
2020), while of pneumonia is GGO, vascular thickening, 
bronchial wall thickening (Bai et al. 2020). There are some 
other findings in COVID-19 but rare such as multiple tiny 
pulmonary nodules, pneumothorax, smoother interlobular 
septal thickening with pleural effusion, some of the find-
ings are similar in pneumonia and COVID-19 (Kanne et al. 
2020). Keeping this in mind, two approaches are used in 
the study. In the first approach, binary classification is con-
ducted. Only two classes, normal and COVID-19 are used 
for the classification, and in the second, three class classi-
fications (Normal, COVID-19, pneumonia) are conducted. 
COVID-19 can be detected lonesomely with normal radio-
graphs but since it also has some findings similar to pneu-
monia, it is necessary to include it in classification.

4.2.1  Binary classification

The result for binary classification is presented in this sub-
section. 2484 chest radiographs of normal and COVID-19 
are used for the training and testing of the model. Precision, 

sensitivity, F1 score, and AUC are calculated for each fold 
for both classes (Table 2), and the overall average of each 
metric for both classes, and total accuracy is reported in 
Table 3.

For the COVID-19 class, lower performance values are 
reported at fold 4. Minimum precision, sensitivity, and 
F1-score reported in fold 4 is 0.98 while the higher values 
are reported in fold 2, fold 3 and fold 5. Precision, sensitiv-
ity, and F1-score values are 1.00 for each metric, respec-
tively in fold 2, fold 3 and fold 5. The average precision, 
sensitivity, and F1-score of COVID-19 are 0.994, 0.990, and 
0.990, respectively. For the normal class, a lower precision 
value of 0.98 is reported in fold 1 and fold 4, and a higher 
value of 1.00 in fold 2 and fold 5. A lower sensitivity value 
of 0.98 in fold 4 and a higher value of 1.00 is reported in 
fold 2, fold 3 and fold 5. F1-score value of 1.00 is in fold 1, 
fold 2 and fold 5, while 0.98 in fold 4. Precision, sensitivity, 
F1-score, and accuracy for both the classes are presented 
in Table 3. The overall average accuracy of both classes is 
0.992. Further, value 0.992 is reported for precision, sensi-
tivity, and F1-score, respectively. Further, to measure the 
class imbalance, AUC is also reported in Table 2

Table 2  Results for COVID-19 and normal class on Kaggle-1 dataset

Class Fold Precision Sensitivity F1 score AUC 

COVID-19 1 0.99 0.98 0.98 0.99
– 2 1.00 1.00 1.00 1.00
– 3 1.00 0.99 0.99 0.99
– 4 0.98 0.98 0.98 0.98
– 5 1.00 1.00 1.00 1.00
– Average 0.994 0.990 0.990 0.992
Normal 1 0.98 0.99 0.99 0.99
– 2 1.00 1.00 1.00 1.00
– 3 0.99 1.00 0.99 0.99
– 4 0.98 0.98 0.98 0.98
– 5 1.00 1.00 1.00 1.00
– Average 0.990 0.994 0.992 0.992

Table 3  Results of binary classification between COVID-19 and nor-
mal classes on Kaggle-1 dataset

Fold Precision Sensitivity F1 score Accuracy

1 0.99 0.99 0.99 0.99
2 1.00 1.00 1.00 1.00
3 0.99 0.99 0.99 0.99
4 0.98 0.98 0.98 0.98
5 1.00 1.00 1.00 1.00
Average 0.992 0.992 0.992 0.992
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Another experiment is done on the Kaggle-2 dataset 
to validate the results. This dataset is used by Gianchan-
dani et al. (2020) for the binary classification. Results are 
reported in Table 6. There is no major difference in the 
results that shows the efficiency of the proposed model. 

Confusion matrix and loss graph for both datasets are pre-
sented in Figure 4 and Figure 5.

4.2.2  Three class classification

In this section, three class classification results are pre-
sented. Total 3829 radiographs for all three classes are used 
in the experiment. Results obtained for the different metrics 
are reported in Table 4 and Table 5. In Table 4, precision, 
sensitivity, and F1-score of COVID-19, normal, and pneu-
monia are presented for all 5 folds, and at last, the average 
is reported. Table 5 presents the weighted average of preci-
sion, sensitivity, and F1-score of all three classes. Weighted 
F1-score enables us to evaluate the model on an imbalanced 
dataset.

A higher precision value of 0.99 is reported in fold 1, 
fold 2, fold 3 and fold 5 for the COVID-19. While the lower 
precision value of 0.98 in fold 4. The average precision, 
sensitivity and F1-score value of COVID-19 reported are 
0.988, 0.986, and 0.986, respectively. For the normal class, 
a lower precision value of 0.89 is reported in fold 3 and 
higher 0.93 in fold 4. The lower sensitivity value of 0.97 
in fold 2, while the higher value of 0.99 in fold 4 and fold 
5. The average precision, sensitivity, and F1-score for the 
normal class are 0.906, 0.982, and 0.942, respectively. For 
the pneumonia class, a lower precision value of 0.97 at fold 
1 and fold 2, and a higher value of 0.99 at fold 5. The lower 
sensitivity value of 0.87 is reported at fold 3, while a higher 
value of 0.92 at fold 4. The average precision, sensitivity, 
and F1-score for the pneumonia class are 0.978, 0,898, and 
0.936, respectively.

The test dataset is imbalanced for the three-class clas-
sification, so to evaluate the performance of the model, we 
have used the weighted F1-score. To calculate the F1-score, 
the precision and sensitivity for each class are calculated 
based on one-vs.-rest. Table 5 shows the weighted F1-score 
for the imbalanced test classes. The weighted F1-score value 
of 0.95 is reported at fold 1, fold 2, fold 3 and fold 5 and 
0.96 at fold 4.

As done for binary classification, results for three-class 
classification are also validated on the Kaggle-2 dataset. 

Table 4  Results for COVID-19, normal and pneumonia classification 
on Kaggle-1 dataset

Class Fold Precision Sensitivity F1 score

COVID-19 1 0.99 0.97 0.98
– 2 0.99 1.00 0.99
– 3 0.99 1.00 0.99
– 4 0.98 0.97 0.98
– 5 0.99 0.99 0.99
– Average 0.988 0.986 0.986
Normal 1 0.91 0.98 0.95
– 2 0.90 0.97 0.93
– 3 0.89 0.98 0.93
– 4 0.93 0.99 0.96
– 5 0.90 0.99 0.94
– Average 0.906 0.982 0.942
Pneumonia 1 0.97 0.91 0.94
– 2 0.97 0.90 0.93
– 3 0.98 0.87 0.92
– 4 0.98 0.92 0.95
– 5 0.99 0.89 0.94
– Average 0.978 0.898 0.936

Table 5  Results of three class classification between COVID-19, nor-
mal and pneumonia class classes on Kaggle-1 dataset

Fold Precision Sensitivity F1 score Accuracy

1 0.96 0.95 0.95 0.95
2 0.95 0.95 0.95 0.95
3 0.95 0.95 0.95 0.95
4 0.96 0.96 0.96 0.96
5 0.96 0.95 0.95 0.95
Average 0.956 0.952 0.952 0.952

Table 6  Results of binary classification between COVID-19 and nor-
mal class on Kaggle-2 dataset

Fold Precision Sensitivity F1 score Accuracy AUC 

1 0.97 0.97 0.97 0.97 0.97
2 0.96 0.96 0.96 0.96 0.96
3 0.96 0.96 0.96 0.96 0.96
4 0.95 0.95 0.95 0.95 0.95
5 0.96 0.96 0.96 0.96 0.96
Average 0.960 0.960 0.960 0.960 0.960

Table 7  Results of three class classification between COVID-19, nor-
mal and pneumonia class on Kaggle-2 dataset

Fold Precision Sensitivity F1 score Accuracy

1 0.95 0.95 0.95 0.95
2 0.96 0.95 0.95 0.95
3 0.95 0.94 0.94 0.94
4 0.94 0.94 0.94 0.94
5 0.94 0.94 0.94 0.94
Average 0.948 0.944 0.944 0.944
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Results are reported in Table 7. Obtained results for three-
class classification on the Kaggle-2 dataset validate the 
efficiency of the proposed model. Confusion matrix and 
loss graph for both datasets are presented in Figure 6 and 
Figure 7.

5  Discussion

The proposed model is compared with other states of the 
work and a brief discussion is presented in this section. 
This comparison is limited as the one-to-one comparison 

is not possible due to differences in sample size, simula-
tion environment, hardware, model parameters, and different 
methodologies. Table 8 presents all the studies included for 
the comparison of the proposed model with other state-of-
the-art models.

COVID detection is the trending topic in these days. 
Many models are proposed for it such as Apostolopoulos 
et al. (2020), Apostolopoulos and Mpesiana (2020), Vaid 
et al. (2020), Panwar et al. (2020), Toraman et al. (2020), 
Wang et al. (2020), Ozturk et al. (2020). Table 8 provides 
the details for comparison of proposed model with oth-
ers for binary and three class classification for different 

Fig. 4  Confusion matrix for the binary classification on a) Kaggle-1 and b) Kaggle-2 dataset

Fig. 5  Loss graph for the binary classification on a) Kaggle-1 and b) Kaggle-2 dataset
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parametric values. For binary classification, proposed 
model has outperformed all the models for precision, sen-
sitivity, F1 metric and accuracy. It has comparable results 
with MobileNet-V2 (Apostolopoulos and Mpesiana 2020) 
for sensitivity (99.10%) and MobileNet-V2 (Apostolopou-
los et al. 2020) for accuracy (99.18%). Apostolopoulos 
and Mpesiana (2020) have used the pre-trained VGG-
19 and MobileNet-V2 to detect the COVID-19. In com-
parison to these models, FocusCovid has achieved better 
results with fewer parameters. In (Apostolopoulos et al. 
2020), MobileNet-V2 have achieved the 99.18% accuracy 
and 97.36% sensitivity. In comparison, FocusCovid has 

achieved better sensitivity (99.20%) and comparable accu-
racy (99.20%).

Vaid et al. (2020) have used the pre-trained VGG-19 for 
COVID-19 detection. They have achieved 96.30% accuracy 
for the binary classification. While the proposed FocusCovid 
has achieved 99.20% accuracy for the binary classification 
on more radiographs. DarkCovidNet (Ozturk et al. 2020) is 
the CNN based architecture used for the binary and multi-
class classification. It has less trainable parameters in com-
parison to FocusCovid but the proposed FocusCovid has 
shown superior results for both binary and three class classi-
fications. FocusCovid have outperformed the DarkCovidNet 

Fig. 6  Confusion matrix for the three class classification on a) Kaggle-1 and b) Kaggle-2 dataset

Fig. 7  Loss graph for the three class classification on a) Kaggle-1 and b) Kaggle-2 dataset
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(Ozturk et al. 2020) on every parametric value. Panwar 
et al. (2020) performed the binary classification using the 
nCOVnet. nCOVnet is the pre-trained VGG-19 network with 
14, 846, 530 parameters. It achieved an overall accuracy 
of 88.10% that is far less than the FocusCovid (99.20%). 
Toraman et al. (2020) proposed the convolutional capsnet 
for COVID-19 detection with capsule network. It achieved 
the accuracy of 97.24% and 84.22% for binary and three 
class classification. It has comparable accuracy with the 
FocusCovid but has not performed well for the three-class 
classification. Additionally, among the related studies done 
in this paper, FocusCovid has been evaluated on the largest 
COVID-19 chest radiographs.

Chest radiography is preferred by the radiologist to detect 
and get a glimpse of the lungs. Capturing X-rays is sim-
ple and has a low cost. When the cases of COVID-19 are 
increasing many folds and the RT-PCR test takes many hours 
to give the results, radiography can be used to detect and 
isolate the COVID-19 patient. The conducted experiments 
have given encouraging results but some limitations of the 
dataset need to be overcome in the future. A strongly labeled 
larger dataset of COVID-19 is needed for truly exploiting 
deep learning. Cases of patients showing mild symptoms 
can also be included in the dataset. Many models that are 
proposed uses the pre-trained models for feature extraction 
such as Apostolopoulos et al. (2020), Apostolopoulos and 
Mpesiana (2020), Vaid et al. (2020) and some has focused 
on training the model from scratch such as Toraman et al. 
(2020), Wang et al. (2020), Ozturk et al. (2020). In this 
study, instead of using the transfer learning strategy, a CNN 
model is designed and trained from scratch for classification.

Results are encouraging but need to be cross-validated 
with the medical radiologists as this is preliminary work. 

This study aims to check the deep learning models to auto-
matically detect the COVID-19 and to release the burden 
from the medical fraternity. More experiments with in-
depth large data needed to be performed for further test-
ing the proposed model. Further, segmentation and rib 
suppression can be used to increase the detection rate of 
COVID-19. Most of the studies that are performed have 
used the Cohen (Cohen et al. 2020) dataset directly or 
indirectly. More diversified data needs to be released so, 
experiments can be performed to differentiate the COVID-
19 from other viral pneumonia such as SARS or MERS.

6  Conclusion

The number of COVID-19 cases is rising daily. The exist-
ing medical infrastructure is collapsing and the medic is 
working for late hours to assist. In this study, a model has 
been proposed for the COVID-19 detection automatically. 
The automatic system can help in detection of COVID-
19 cases early and help to stop the spread of the virus. 
No handcraft feature extracting technique is used in the 
model. The proposed CNN architecture is trained from 
scratch instead of using the transfer learning techniques. 
Two separate datasets are used to validate the proposed 
model. A drawback of this study is that a limited dataset 
is used. More samples of COVID-19 and other pulmonary 
disorders are needed to be used for validating the proposed 
model.

Table 8  Comparison of the state of the art models for binary and three class classification

Models that have performed better on a different metric values are marked in bold along with the proposed FocusCovid

Model Dataset Class Precision Sensitivity F1 score Accuracy

MobileNet-V2 (Apostolopoulos et al. 2020) X-rays 2 – 97.36 – 99.18
VGG-19 (Apostolopoulos and Mpesiana 2020) X-rays 2 - 92.85 – 98.75
MobileNet-V2 (Apostolopoulos and Mpesiana 2020) X-rays 2 – 99.10 – 97.40
VGG-19 (Vaid et al. 2020) X-rays 2 95.15 96.55 95.80 96.30
DarkCovidNet (Ozturk et al. 2020) X-rays 2 98.03 95.13 96.51 98.08
nCOVNet (Panwar et al. 2020) X-ray 2 – 97.62 – 88.10
Capsnet (Toraman et al. 2020) X-rays 2 97.08 97.42 97.24 97.24
Proposed FocusCovid X-rays 2 99.20 99.20 99.20 99.20
DarkCovidNet (Ozturk et al. 2020) X-rays 3 89.96 85.35 87.37 87.02
VGG-19 (Apostolopoulos and Mpesiana 2020) X-rays 3 – 92.85 – 93.48
MobileNet-V2 (Apostolopoulos and Mpesiana 2020) X-rays 3 – 99.10 – 92.85
Capsnet (Toraman et al. 2020) X-rays 3 84.61 84.22 84.21 84.22
COVID-Net (Wang et al. 2020) X-rays 3 – 93.3 – 93.3
Proposed FocusCovid X-rays 3 95.60 95.20 95.20 95.20
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