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A B S T R A C T   

Statistical modelling is pivotal in assessing intensity of a stochastic processes. Novel Corona virus disease 
demanded proactive measures to understand the severity of disease spread and to plan its control accordingly. 
We propose estimation of reproduction number as a crucial factor to monitor the random dynamics of Covid-19 
in India. In the present paper, semi-parametric regression based on penalized splines embedded under Bayesian 
formulation is utilised to estimate reproduction number while incorporating effects of underreporting and delay 
in reporting for the actual number of daily occurrences. Monte Carlo Markov Chain approximations are utilised 
to perform simulation study and thereby to assess the impact of the reporting probability and misspecification of 
delay pattern on potential for further substance of the pandemic. For a cycle of reporting on weekly basis, the 
proposed penalized spline Bayesian framework fits closest to the empirical data drawn for a two-day delay in 
reporting with approximately half of the actual cases being reported. The present paper is a contribution towards 
estimation of the true daily reproduction number of Covid-19 incidences in its next generation cycle.   

1. Introduction 

It is difficult to capture the exact evolution and dynamics of any 
pandemic through deterministic modelling. Appearance of novel path
ogen leading to sustained pandemic, therefore calls for accounting of 
temporal piecewise changes in short time-spans. Existing count of 
infectees and transmission time of infection are the two-key factors in 
assessment of growth rate of the infection in a specified population. 
Transmission and propagation of any novel communicable pathogen is 
quantified through statistical models which are validated through short- 
history data curated from the current time-chain of the pandemic. 
Average infection transmissions generated from a currently active single 
infected unit in a given specified time t is called reproduction number 
(Rt). In simple words, Rt represents number of secondary infections that 
one infected individual can spread further on time t. Rt ≤ 1 indicates 
that the epidemic is under control and approaching a disease free state 
while Rt > 1 indicates that the control measures lack efficacy leading to 
the possibility of endemic transforming into epidemic. During progres
sion of any epidemic the expected rise or decline in the reproduction 
number explains the time-based renewals. These estimates are therefore 
vital in future medical-assistance and planning in terms of manpower, 
medical machinery, medicines and health care infrastructure. 

Spline is a flexible mathematical function that represents changing 
data through disaggregated polynomials. Splines have been an impor
tant key for addressing various mathematical problems in approxima
tion theory and in numerical analysis.1 Incorporating splines in 
modelling of Rt as an alternative to other popular mathematical models 
like SIR2 and SIERD3 portray challenges4 in modelling of Covid-19 data 
and create essential need to appropriately trace the sample-path of its 
evolution. Rapid changes in trends on daily incidence of Covid- 19 is 
modelled using semiparametric regression in conjunction with versatile 
penalized splines to estimate Rt.5 

Renewal equation-based estimates of Rt have been explored under 
closed population assumption which mirrors epidemic persistence under 
lockdown.6 This approach is motivated by the fact that Rt is viewed as an 
autoregressive entity determined completely by its present value and the 
transmission period only. This idiom is also studied through likelihood 
approach.7 Rt is also investigated under Bayesian lens for efficacy of 
control measures of communicable diseases in real time.8 Under
reporting of Rt is undertaken for H1N1 pandemic using Bayesian data 
augmentation and renewal process.9 Estimation of Rt based on various 
delay scenarios and misreported H1N1data is studied in context of 
Mexico and USA.10 

During any epidemic outbreak, regional governmental bodies are the 
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sole source of reporting of the related incidence data on infection and 
mortality. Potential for misreporting exists in such data sets due to un
certainties in the real-time reporting of the test outcome as well as due to 
the limitations of the capacity of the testing facilities usually when 
pandemic is close to its peak. These limitations have been classified as 
delay in reporting and underreporting respectively. Length of diagnosis 
method, limited testing centres, hospital holidays including its 
restricted-capacity functioning during weekends are multiple sources 
which cause delays in reporting, while misreporting may arise due to 
false negative test and ignorance among the population units during 
early stages of the pandemic. Distribution of the time-elapsed since onset 
of infection till its occurrence in the infectee is assumed to be known and 
is termed as serial (or generation) interval distribution. Use of Bayesian 
inference for semi-parametric regression model brings flexibility in the 
estimation process through sequential updation of the new infectee 
counts. In the present work, we adopt Bayesian semiparametric regres
sion model with splines to estimate Rt along with delay and reporting 
probability. The obtained Bayes estimates are expected to determine the 
degree of success of the epidemic control strategies. 

Our paper is organised as follows. Section 2 describes the statistical 
model for step-wise inclusion of the underreporting active cases and 
delay in the reporting process. In Section 3, we analyse corona virus 
disease (COVID-19) incidence data for India, estimate the daily repro
duction number and the delay parameter for the duration of the 
outbreak from 15th March 2020 up to 13th April 2020(https://www. 
covid19india.org/). We conduct a simulation study to assess and vali
date the proposed method of Bayes estimation of Rt , after adjusting for 
the impact of misspecification of delay patterns and different reporting 
probabilities. Section 4 is attributed to discussion. Section 5 concludes 
the study and explores avenues for further research. 

2. Methods 

The manuscript comprises of majorly four broad methodological 
concepts. First, observed cases and actual cases are assumed to follow 
Poisson distribution. Second, the epidemic renewal equation is incor
porated for reflecting the progression of disease spread. Third, semi- 
parametric spline regression which is used to model Rt incorporating 
effect of underreporting and delay structures fitted under Bayesian 
paradigm and different scenarios created are compared through Devi
ance Information Criterion (DIC). Fourth, the simulated Rt under various 
scenarios is compared with estimated Rt with Mean average square error 
(MASE) and its components. 

2.1. Notations and assumptions 

Let At = {A1,A2,……,AT} denote the actual cases of new disease 
counts during T days of an epidemic which consists of a reported part 
St = {S1, S2,……, ST} and an unreported part Ct = {C1,C2,……,CT}

such that At = St + Ct for t = 1, 2, 3 … T. During any epidemic, the total 
count of reported cases (St) are always less than the actual counts (At). 
This underreporting at time t and delay in reporting are responsible for 
underestimation of Rt. 

Reporting probability (τ) may be fixed or time dependent and is 
referred to as thinning parameter. Suppose maximum length of gener
ation interval is ‘r’ then the distribution of time interval between the 
infection times of an infected case and its infector is represented by the 
ordered set g = {g1, g2,…, gr} and termed as the generation interval 
probability. Hence, count of individuals infected on day t− i is given as 
giAt− i for i = 1, 2, …, r. 

Assuming that all the infected individuals on day t− i have the same 
capacity of further transmission (Rt) and the transmission capability Rt 
changes with each generation, the average infections at time t is denoted 
by λt = Rt(

∑t− 1
i=1giAt− i) for t = 2,3, ….,r while average infected in the first 

generation remains deterministic at λ1. Additionally, di→t represents 

delay probabilities which account for the percentage of cases on day i 
reported on day t. More specifically, di→t captures the delay structure or 
delayed cases and is the proportion of total cases which are reported on 
day t but actually belong to day i or in other words if total number of 
reported or observed cases are 100 on day t and di→t is 0.4 then 40 cases 
actually belong to day i and are reported on day t. Observed count of 
infectees, including delaying and underreporting is denoted by Ht =

{H1,H2,……,HT}. Due to delay structures, Ht would exceed At for some 
t. For constant value of τ and di→t over time T, shape of epidemic curve 
remains same accompanied by its positional shift only. For dynamic τ 
and di→t over a time period, epidemic curve experiences change in its 
shape. Each of the two types of cases, described observed and actual are 
assumed to follow Poisson distribution with different means. Observed 
cases which comprise of underreporting and delay structures ultimately 
are of great analytical importance for this study and are considered for 
estimation and inferential purposes. 

2.2. Building distributional structures 

Since Poisson process is a renewal counting process, therefore, total 
count of infected individuals on day t is assumed to follow Poisson law 
with parameter λt. Probability of observing At(t> r) conditional on the 
past prevalence Atr = (At− 1,At− 2,….,At− r ) is given as, 

P(At / Atr, g,Rt)=
exp (− λt)λAt

t

(At)!
, (1) 

More specifically Atr represents the process prior to the current 
renewal point. Probability of reported cases is assumed to follow Bino
mial law, while accounting for data augmentation of actual prevalence 
due to underreporting is expressed as, 

P(St /At , τ)=
(

At
St

)

τSt (1 − τ)At − St (2) 

Thus, the observed effective mean prevalence reduces to λtτt without 
disturbing the existing correlation dynamics in the chain of the infectee 
and the infected as follows, 

P(St /Atr,Rt , τ , g)=
exp (− λtτ)(λtτ)St

(St)!
, (3) 

Thus, (3) includes the impact of underreporting in the data. Further, 
incorporating impact caused by di→t , in (3), we have 

P(Ht / λtτ, di→t)=
exp (− ηt)(ηt)

Ht

(Ht)!
(4)  

where, ηt =
∑t

i=1(λiτ) di→t , represents the average number of infectees 
or the mean number of observed cases (Ht). Also, it is the ηt which in
cludes the three components as reproduction number, underreporting 
parameter and delay parameter, which are to be estimated. 

Symbolically, the effective mean due to underreporting is weighed 
by the accumulated cases in the time interval [i,t] being reported at time 
t. Physically, often the cases from temporal underreporting and from the 
delay in reporting are not distinguishable. Hence, to resolve such iden
tifiability10,11 usage of composite link function L is made to map tran
sition from {λt} to {λtτ}. Next, we describe the different delay structures 
as follows.  

(i) One-day delay: A fraction of the new cases on day t is reported on 
day t + 1, denoted by dt→t+1 

(ii) Two-day delay: Fraction of new cases on day t is respectively re
ported partially on days t +1 and t +2 respectively.  

(iii) Weekend Delay: Due to weekly off on Saturday and Sunday at the 
reporting health centres, no reporting is recorded on these days. 
Wednesday, Thursday and Friday will have the same delay 
pattern as in case (i) above. Monday and Tuesday will have 
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reporting of additional fraction which is carried over from the 
preceding Saturday and Sunday. 

We use a penalized spline model to allow Rt to change over time t. 
Furthermore, it is well known that penalized splines can be embedded in 
the linear mixed model framework where the selection of the smoothing 
parameter is provided by estimating the random-effects variance 
component.12,13 We model stochastic Rt in the epidemic renewal 
equation (5) by using a penalized spline as, 

P(Ht / ηt) ∼ Poisson(ηt)

ηt =
∑t

i=1
(λiτ)di→t = τ

∑t

i=1
di→tRi

(
∑k

s=1
gsAi− s

)

(5)  

log(Rt)= α0 + α1t +
∑E

j=1
uj
⃒
⃒t − εj

⃒
⃒3 (6)  

where θ = (α0,α1, u1,….…., uE)
⊺ is the vector of regression coefficients 

and εj:E is an ordered set of fixed knots such that ε1 < ε2 < .…. < εE and 
j = 1,2,3 …,E. Spline component in (6) represents the non-parametric 
part, which is amenable to mathematical computations. The statistical 
description of the considered model and its estimation through 
computational software is well documented12 in literature and appli
cation of the adapted model is being utilised well for H1N1 pandemic in 
USA.10 To ensure the desired flexibility, the number of knots E should be 
sufficiently large enough. The choice for number of knots is fixed to 15 
and is based on past implementations10,12 of similar model. The vector 
of random coefficients U = {u1, u2,……, uE} is assumed to be indepen
dent and normally distributed with E(U) = 0 and cov(U) = σ2

uΛ− 1
E where 

ΛE is a matrix in which the (m, n)th entry is |εm − εn|
3. The class of splines 

used in the present research is well formulated and decoded12 in past 
studies. We are modelling log(Rt) instead of Rt because Rt cannot be 
negative and can take any value between 0 to infinity. The right hand 
side of equation (6) can be negative after estimation of model parame
ters. Hence, log(Rt) instead of Rt . 

We assign diffused informative priors as α0 , α1 ∼ Normal(0, 104); 
σ2

u ∼ Gamma(105, 105) and postulating flat prior Beata(1,1) for τ and 
di→j each. The choice of priors has been considered after understanding 
the application of the considered model under Bayesian setup in past 
studies10,12 

3. Results 

Considering, E = 3 with fixed generation distribution g =

{0.2,0.3, 0.5} we estimate time varying Rt, with fixed τt for t = 1,…,30 
days. Smoothed estimate of Rt thus obtained are plotted in Fig. 1. We use 
R version 4.1.0 and OpenBUGS to execute the proposed theoretic for
mulations for estimation of di→j and Rt and used Deviance Information 
Criterion14 (DIC) to assess model adequacy and complexity (Tables 1–3) 
under fixed τ = 0.1, 0.5, 0.9. Posterior mean and posterior standard 
deviation are obtained based on Markov Chain Monte Carlo (MCMC) 
approximations. We run MCMC simulations for 105 iterations and attain 
convergence with respect to MCMC error (<0.05). Each simulation is 
repeated 1000 times to obtain the corresponding posterior estimate. 
First, we generate epidemic data on the basis of a “reference”, which we 
will refer to as the true underlying delay pattern, under τ = 0.5. Next, we 
estimate Rt ,t = 1, 2,3,……,30, on the basis of four other delay patterns. 
Five combinations or scenarios of underreporting and delay structures 
are considered.  

(i) Underreporting, one-day-delay (DUO).  
(ii) Underreporting, two day-delay (DUT).  

(iii) Underreporting weekend-delay (DUW).  
(iv) Underreporting, no-delay (DUN).  
(v) No-underreporting with no-delay (DNN). 

We perform the next stage of simulation to assess the impact of 
assuming a wrong delay pattern on the estimation of the Rt , t = 1,2, 3,
……,T. We calculate the Mean Average Squared Error (MASE) with N =
1000 replications for T = 30 days to assess model efficacy as under, 

MASE =
1
N

∑N

n=1

[
1
T

∑T

t=1
(R̂t − Rt)

2

]

MASE and its bias-variance components for Rt for each true delay 
pattern vis-à-vis other considered delay-underreporting combinations 
(Table 4 and Figs. 2–6). We conduct sensitivity analysis to examine the 
impact of varying reporting probability τ = 0.15, 0.2, 0.4 and 0.6. on the 
Rt estimates (Table 5). Estimates of τ are plotted under one-day, two-day 
and weekend delay misspecifications in Figs. 7–9. 

Table 1 exhibited overall decrease in estimated one-day-delay 
probability for increasing reporting probability. DIC shows best, when 
reporting probability is half the actual occurrence (i.e., τ = 0.5) 

Table 2 displayed mixed trend of estimated delay in probabilities due 
to increase in reporting probability under two day set-up. Again, DIC is 

Fig. 1. Smoothed mean estimates of the reproduction numbers for the one-day, two-day and weekend delay patterns with reporting probability of τ = 0.5.  
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observed to be lowest when number of reported cases are half of the 
actual cases. 

Estimates of delay in probabilities are same for all the considered 
reporting probabilities. Overall, among all delay structures considered, 
the lowest DIC is seen for τ = 0.5 under two-day delay setup for the 
considered data set. 

Table 4 shows the corresponding MASE and its bias–variance 
decomposition for estimates of the reproduction numbers based on 
different delay and reporting patterns. Accounting for delay and 
underreporting is seen to increase the accuracy for estimates of Rt. 
Lowest MASE is obtained for the correct delay pattern, which validates 
the model. Largest MASEs are obtained for misspecification in DUT. In 

general, Models with underreporting show less bias than those which 
incorrectly ignore underreporting. MASE’s for the two considered sce
narios of no-delay structures are closest to each other. 

Table 5 yields the smaller MASE’s for high reporting probabilities 
(0.4 and 0.6) for two-day and weekend delay patterns as compared to 
one-day delay patterns. Figs. 2–6 depict the estimated daily reproduc
tion numbers are shown for different reference and fitted delay pattern 
combinations. Figs. 7–9 show the estimated reproduction numbers 
under different delay patterns for different values of reporting proba
bility. MASE is seen to be highest for DUW and lowest for DUO for all the 
reporting probability situations. MASE’s are seen to decrease with in
crease in reporting probability for DUT and DUW.

Table 1 
Posterior Summary for delay parameters under the case DUO.  

Delay Pattern One-Day Delay 

Reporting Probability τ = 0.1 τ = 0.5 τ = 0.9 

Delay Parameters Mean SD Mean SD Mean SD 

dM→Tu 0.219324 0.147898 0.166086 0.121979 0.151388 0.097722 
dTu→W 0.298863 0.145566 0.259786 0.122743 0.266019 0.106074 
dW→Th 0.214809 0.14309 0.204369 0.118502 0.213984 0.103941 
dTh→F 0.124743 0.139731 0.130401 0.115515 0.131481 0.098246 
dF→Sa 0.161193 0.140694 0.164848 0.115484 0.15224 0.095382 
dSa→Su 0.268178 0.141742 0.257018 0.115537 0.23405 0.093469 
dSu→M 0.159934 0.14653 0.122153 0.118508 0.096841 0.092972 
τ 0.863145 0.120171 0.868446 0.109787 0.891494 0.088073  

DIC ¼ 402.9 DIC¼ 396.5 DIC¼530.8  

Table 2 
Posterior Summary for the delay parameters under the case DUT.  

Delay Pattern Two-Day Delay 

Reporting Probability τ = 0.1 τ = 0.5 τ = 0.9 

Parameters Mean SD Mean SD Mean SD 

dM→Tu 0.822216 0.077909 0.851664 0.05909 0.364046 0.197813 
dM→W 0.103838 0.078686 0.075073 0.059053 0.457852 0.190282 
dTu→W 0.850603 0.101463 0.846367 0.098535 0.369343 0.20879 
dTu→Th 0.622934 0.102148 0.564462 0.100854 0.272469 0.153726 
dW→Th 0.261771 0.18307 0.31279 0.196005 0.435811 0.237962 
dW→F 0.592006 0.177213 0.544739 0.179981 0.317714 0.219379 
dTh→F 0.531526 0.188338 0.555002 0.19651 0.581797 0.210321 
dTh→Sa 0.157624 0.125782 0.161249 0.123321 0.065932 0.062097 
dF→Sa 0.867998 0.107157 0.857839 0.12485 0.109026 0.095322 
dF→Su 0.142462 0.103317 0.156039 0.108198 0.799582 0.149343 
dSa→Su 0.402618 0.114068 0.354112 0.112702 0.109246 0.088297 
dSa→M 0.689788 0.051635 0.720571 0.05094 0.200929 0.112594 
dSu→M 0.030094 0.028455 0.028453 0.026709 0.575438 0.128044 
dSu→Tu 0.61971 0.062831 0.565232 0.059512 0.168654 0.107355 
τ 0.857895 0.093755 0.884783 0.066689 0.87776 0.063583  

DIC ¼ 388.6 DIC ¼ 359.0 DIC ¼ 347.5  

Table 3 
Posterior Summary for the delay parameters under the case DUW.  

Delay Pattern Week-Day Delay 

Reporting Probability τ = 0.1 τ = 0.5 τ = 0.9 

Parameters Mean SD Mean SD Mean SD 

dM→Tu 0.812555 0.060303 0.793482 0.063261 0.825231 0.057408 
dTu→W 0.948164 0.039235 0.941562 0.040913 0.972514 0.023348 
dW→Th 0.554671 0.048658 0.592335 0.046873 0.623621 0.037133 
dTh→F 0.238958 0.042592 0.290453 0.046945 0.282972 0.035502 
dF→Sa 0.039745 0.033162 0.058016 0.042654 0.024623 0.021552 
dSa→Su 0.070755 0.067146 0.091619 0.080396 0.06322 0.059453 
dSu→M 0.646307 0.10453 0.637999 0.119541 0.602709 0.092993 
τ 0.8435 0.093607 0.861299 0.073137 0.876365 0.070275  

DIC ¼ 6.914eþ13 DIC ¼ 6.914eþ13 DIC¼6.914eþ13  
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4. Discussion 

Estimation of reproduction number, usually referred to as “Ro” in 
most of the studies, comprises of sufficient number of classical statistical 
methods utilised in recent past in India. Exponential growth rate 
model15 in India for Covid-19 has gained decent popularity in estimation 
reproduction number by using “Ro pacakage”15,16 and “incidence 
package”16 in R software. Estimates for reproduction number ranged 
from 1.6 to 2.7 in studies for Covid-19 in India and its states.15–18 A 
series of studies19 was carried out for COvid-19 in China for estimation 
of reproduction number using all possible statistical techniques based on 
maximum likelihood estimation, SEIRD, and MCMC. The estimated 
reproduction number for Covid-19 ranged from 2 to 7 in most of the 
studies.19 

Renewal equations and their role in stochastic process20 is well 

known in understanding the time-based random phenomenon observed 
in real life applications. In context of epidemic modelling, renewal 
theory based21 applications are limited in number. Embedding renewal 
equation into spline regression for capturing the dynamics of pandemic 
caused by the novel corona virus under different scenarios is the soul of 
this research. More specifically, the present research was to estimate 
reproduction number incorporating the effect of underreporting and 
delay in reporting through innovative approach of penalized spline 
regression through Bayesian toolkit which isn’t being explored yet in 
context of Covid-19 in India. 

We note that there is a large variability in the estimation of the 
reproduction number for the first few observations. Often Information is 
scarce at the beginning of any epidemic break-out, hence Rt curve shows 
higher probability for the initial recorded cases. It can also imply that 
the initial infectees are responsible for larger number of secondary cases 

Table 4 
MASE and its bias–variance decomposition for the estimates of the reproduction numbers based on the sensitivity analysis of different delay patterns.  

True 
Delay 
Pattern 

Fitted Pattern  

DUO DUT DUW DUN DNN 

DUO MASE 3.96E-05 0.002195 0.000597348 9.81E-05 9.78E-05 
Var 1.388269 0.04243 4.084802 1.639246 2.187404 
(Bias)2 7.08E-06 0.311071 0.03845118 0.001879091 0.00971007  

DUT MASE 0.003539 6.27E-05 0.015843 0.00774084 0.008196599 
Var 3.209562 11.20448 0.159435 1.039951 1.325875 
(Bias)2 0.34943 0.01076476 2.002158 0.6281018 0.5307091  

DUW MASE 0.006787 2.31E-05 0.00808879 0.004091565 0.00454935 
Var 4.884714 0.044722 6.090793 2.966199 3.347738 
(Bias)2 1.10E-01 0.431851 1.34E-01 0.001808002 0.006190591  

DUN MASE 0.000771 0.001736 0.000747193 6.08E-05 8.00E-05 
Var 4.35536 0.037945 4.325529 2.21497 1.887889 
(Bias)2 0.03646 0.249005 0.03246108 0.00595966 0.003908461  

DNN MASE 0.000246 0.001586 0.003560694 5.88E-04 0.000183114 
Var 2.428834 0.030526 8.755043 3.494922 2.384256 
(Bias)2 0.02197 0.230976 0.202911 0.02573087 0.00244879  

Fig. 2. Estimation of Rt taking DUN as reference scenario.  
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Fig. 3. Estimation of Rt taking DNN as reference scenario.  

Fig. 4. Estimation of Rt taking DUO as reference scenario.  

Fig. 5. Estimation of Rt taking DUT as reference scenario.  
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in absence of either awareness or control measures or both. 
DIC being a measure of model adequacy and complexity gave us the 

answers for identifying the best case scenario for underreporting and 
delay parameters. Evidence from the analysis (Table 2) shows that 
among all the considered delay structures for different reporting prob
abilities two-day delay pattern with a reporting probability of 50% was 
the most suitable scenario which follows the considered dataset closely. 

Fig. (2 - 6) show that mis-specifying the delay pattern for DUO, DUT, DUW, 
DUN and DNN has a moderate impact on the estimated trend for the 
reproduction number. Note that the structure of the DUT pattern is an 
extension of the DUO pattern. There is a substantial impact when mis
specifying the DUW pattern. MASE with the help of simulation gave us 
the answers on how model estimates vary on mis-specifying a particular 
scenario and reflected the stability and suitability of the adopted 
modelling procedure. Simulation study (Tables 4 and 5) justified the 
modelling strategy adopted for the stated problem under different cases 
of misspecification of underreporting and delay structures. 

5. Conclusion 

Reporting of Rt instead of daily cases, alerts both the government and 
public to start and regulate preventive measures accordingly. In the 
present paper, explanation of the logarithmic transform of Rt through 
penalized splines under Bayesian setup have generated stronger evi
dence in favour of the proposed model as is evident from following 
discussion. The present paper follows Bayesian paradigm under diffused 
informative priors by treating the reporting fractions, reposting delays 
and their interactive influences distinctly. Time dependent Rt are seen to 
be influenced by reporting fractions and systematic delays in reporting. 
The present study conclude that observed data accompanied by 50% 
underreporting for a two day lag in recording the incidence of covid-19 
cases are closest to the empirical data. A precise estimate of Rt, there
fore, is crucial in formulation of corrective or preventive policies to
wards handling the epidemic and towards efficacy of intervention 

Fig. 6. Estimation of Rt taking DUW as reference scenario.  

Table 5 
Sensitivity analysis for non-constant reporting probability (τ).  

Delay Pattern One-Day 

Reporting Probability τ = 0.15 τ = 0.2 τ = 0.4 τ = 0.6 

MASE 1.38E-05 0.000979 8.57E-05 5.01E-05 
Var 1.559231 1.996115 2.196816 1.856806 
(Bias)2 0.000746 0.064864 0.002298 0.003574 

Delay Pattern Two-Day 

Reporting Probability τ ¼ 0.15 τ ¼ 0.2 τ ¼ 0.4 τ ¼ 0.6 

MASE 0.000218 5.89E-05 3.54E-05 3.24E-05 
Var 8.736962 9.81039 10.3802 12.301 
(Bias)2 0.015307 0.001446 7.41E-06 0.000477 

Delay Pattern Weekend 

Reporting Probability τ ¼ 0.15 τ ¼ 0.2 τ ¼ 0.4 τ ¼ 0.6 

MASE 0.009235 0.008048 0.007351 0.007217 
Var 7.788936 6.551135 5.816634 5.847377 
(Bias)2 1.067153 1.094236 1.10153 0.971853  

Fig. 7. Estimated Rt under different reporting probabilities.  
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indicators such as lockdown, quarantine and other related control 
measures. Future scope of study could include a stochastic serial dis
tribution, correlated reproduction numbers and a different delay pattern 
than the weekly logistics studied in the present paper. Also, propagation 
of pandemic is considered for closed population in the present work, 
which could be deviated from, to understand the advantage and ne
cessity of imposition of movement across spatial contours. Such a study 
could be useful in understanding cost-benefit bargains in economic ac
tivities. Rt can be computed geographically i.e., for each state, district or 
any other administrative boundary to understand the similarities and 
differences in dynamics of pandemic like Covid-19 for geospatial anal
ysis and local level covariates responsible for pandemic situation. 
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