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Abstract: Neutral N–heterocyclic carbene gold(I) compounds such as IMeAuCl are widely used
both in homogeneous catalysis and, more recently, in medicinal chemistry as promising antitumor
agents. In order to shed light on their reactivity with protein side chains, we have carried out density
functional theory (DFT) calculations on the thermodynamics and kinetics of their reactions with
water and various nucleophiles as a model of plausible protein binding sites such as arginine, aspartic
acid, asparagine, cysteine, glutamic acid, glutamine, histidine, lysine, methionine, selenocysteine,
and the N-terminal group. In agreement with recent experimental data, our results suggest that
IMeAuCl easily interacts with all considered biological targets before being hydrated—unless
sterically prevented—and allows the establishment of an order of thermodynamic stability and
of kinetic reactivity for its binding to protein residues.
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1. Introduction

The administration of gold complexes has been assessed for various pharmaceutical aims,
particularly in the treatment of cancer and arthritis [1–7]. A plethora of gold(I) and gold(III) complexes
with different ligands display substantial cell-growth-inhibiting properties [4,8]. Nevertheless, taking
into account the great structural variation of their ligands, it seems that there is no common mode of
action that could describe all of them [4,6,8]. Gold compounds target various cellular processes that
ultimately activate apoptosis: direct DNA damage, mitochondrial damage via thioredoxin reductase
inhibition, proteasome suppression, the modification of the cell cycle, and the modulation of specific
kinases [1–6,9–12].

Gold(I) N–heterocyclic carbenes (NHC) of the general formula [Au(I)(NHC)R], in which R is
an anionic or a neutral ligand such as Cl−, PH3, or another NHC moiety, leading to a neutral or
to a cationic complex, have been extensively utilized in homogeneous catalysis [13–16] and, more
recently, in medicinal chemistry [4,17,18]. Their unique chemical and biological properties make them
successful anti-arthritic [19], antibacterial [20], and anticancer [18,21–27] agents. At variance with
platinum-based drugs, DNA is not the main pharmaceutical target for these gold-based cytotoxic
agents that, conversely, mainly act through the modification of selected proteins with consequent loss
of function. This implies that selective “protein metalation” is the key feature in the mechanism of
action of anticancer gold drugs. In particular, several studies have recently highlighted that the crucial
role in the mode of action of N–heterocyclic carbene gold(I) complexes emerges from an efficient
selective inhibition of the enzyme thioredoxin reductase (TrxR) [1,7,25,28,29]. Electrospray ionization
mass spectrometry (ESI-MS) measurements indicate that gold carbene complexes preferentially attach
to free cysteine and selenocysteine side chains [19,30], with the thiol/selenol group being coordinated
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by [Au(NHC)]+ fragments or Au+ ions upon the release of carbene ligands. Linear Au(I) complexes
have also been shown to be effective inhibitors of the Se-free enzyme glutathione reductase (GR),
owing to the high thiol reactivity toward gold, as plainly manifested by the crystal structure of GR
inhibited by a gold(I) complex displaying Au(I) attached to the active site of Cys thiol with linear
S–Au–S coordination [23,27,31]. Detailed 1H NMR studies of the ligand exchange reactions of cationic
Au(I)(NHC) complexes with cysteine and selenocysteine reveal a two-step reaction comprising the
consecutive substitution of both NHC ligands to yield the [Au(Cys)2] compound [25]. Although as
a soft metal ion Au(I) shows a marked preference for soft ligands such as thiols of cysteines and
thioethers of methionines [32], multiple X-ray crystallography data have shown that Au(I) ions can
coordinate solvent-exposed His [33–35], even in the presence of free thiols. In particular, a recent
X-ray study [36] has shown that in the absence of free cysteines, methionines, and histidines, these
Au(I)(NHC) gold compounds are able to bind the side chains of Lys and Arg residues or the N-terminal
Ala amino group.

Even though the interaction of gold carbene compounds with many proteins (for example, TrxR,
phosphatases, glutathione reductases, serum albumin, Atox-1, or thaumatin) has now been widely
examined [1,7,17,19,25,28–30,36–44], their detailed mechanisms of reaction with protein side chains are
still lacking. In this study, we compute the reactivity of the neutral Au(I)NHC complex (Me2Imy)AuCl,
or IMeAuCl, with water, and with the main binding sites in a protein or a polypeptide, i.e., the side
chains of arginine, aspartic acid, asparagine, cysteine, glutamic acid, glutamine, histidine, lysine,
methionine, and selenocysteine residue, and the N-terminal group. We have used short models of
these residues (Scheme 1). Each side chain was represented by the nucleophilic group, while the rest
of the chain was represented by the ethyl group. A deeper insight into the binding mode of these Au(I)
complexes with protein targets and their binding preference would be very useful to fully comprehend
their mechanisms of action in vivo and may be useful to conceive novel and more effective gold(I)
anticancer drugs.
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2. Results and Discussion

A preliminary investigation on the isolated IMeAuCl complex has shown that at the selected level
of theory, the minimized structure matches the crystallographic data [45] accurately with Au–C and
Au–Cl bond distances within 0.05 Å, and Cl–Au–C angles within 2◦, thus indicating that the B3LYP
functional provides a good description of this molecular structure (Figure 1, Table S1).
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We first considered a dissociative mechanism with detachment of a chloride anion. The reaction
barrier of 26.5 kcal/mol and reaction energy of 13.1 kcal/mol make the dissociation unlikely. DFT
calculations were therefore carried out on the thermodynamics and the kinetics of the ligand exchange
of one chloride ligand by incoming nucleophile molecules. Simplified models of the residue’s side
chains (Scheme 1) were preferred to either free or capped amino acids for several reasons. First, free
amino acids are less representative of protein residues due to the presence of terminal amine and
carboxylic acid groups, in ionized zwitterionic form, which do not exist in proteins. The capped forms,
although chemically resembling protein residues, are connected to the side chain nucleophilic group
through hydrocarbon chains of different lengths, thus leading to large variations in the size of the
ligand reacting with the metal complex. This latter aspect may bias the calculation of solvation free
energies, thus affecting the comparison of amino acid reactivity. All residues were assumed to be in
their most stable protonation state at pH=7.2, i.e., positive for arginine, lysine, and N-terminal alanine;
neutral for histidine, cysteine, methionine, and asparagine/glutamine; and anionic for selenocysteine
and glutamic/aspartic acid. However, for arginine, lysine, and N-terminal alanine, we considered
as nucleophiles the neutral form taking into account the deprotonation energy. For cysteine, we
considered both the neutral form, expected to be the most stable at neutral pH and the anionic form,
which is still present in low concentrations, or is even the most stable form, when cysteine is close to
basic residues (such as histidine) which are known to stabilize the anionic form.

The reaction was investigated, taking into account that both reagents and products can form
stable non-covalent adducts both prior to and after the reaction takes place. We have thus optimized
the geometries of the reactant adducts (RA), transition states (TS), product adducts (PA) intermediates,
and their energies with respect to the isolated species that have been evaluated and given below. The
activation enthalpies and free energies have been calculated as the difference between TS and the
lowest between reactants and reactant adducts, while the reaction enthalpies and free energies have
been calculated as difference between reagents and products infinitely apart. The calculated values for
the IMeAuCl reactions with all considered molecular models are reported in Table 1, and the results
allow one to establish an order of thermodynamic stability and kinetic reactivity for the Au(I) binding
to the considered protein residues side chains.
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Table 1. Enthalpies/Gibbs free energies for reactions with various nucleophiles. Reported values are
calculated at the B3LYP/LACV3P**++//B3LYP/LACVP** level and reported in kcal/mol in format
Enthalpy (∆H)/Gibbs free energy (∆G) (in solution). R, P, TS, RA, and PA stand for reactant, product,
transition state, reactant-adduct, and product-adduct, respectively.

Reaction with
R → P R → TS
∆H ∆G ∆H ∆G

H2O 7.2 1.3 16.8 23.0
Ala N-terminal −6.6 −11.2 11.9 18.8
Arg −11.0 −16.1 11.3 18.3
Cys −3.5 −9.1 10.9 18.1
Cys– −16.8 −21.4 11.6 17.4
His −8.3 −13.4 14.1 20.6
Lys −10.2 −14.4 9.0 16.2
Met −5.4 −9.8 11.5 18.2
Sec −2.2 −6.7 11.2 17.6
Sec– −19.2 −23.8 6.7 12.8
Gln/Asn (amidic form) 6.0 2.4 17.5 24.8
Gln/Asn (imidic form) * −7.3 −12.6 10.0 16.8
Glu/Asp acid −2.2 −7.0 18.2 24.7

* Reactant for the imidic form of Gln/Asn is 16.4 kcal/mol higher than its amidic form, so all the values for the
imidic form should be augmented by this value before its comparison with the amidic form. Additionally, see
Figure S1.

The results were compared to recent experimental X-ray and ESI-MS studies of the binding
of this Au(I)NHC neutral complex to peptides and proteins [30,46] showing Au(I) binding mainly
to cysteine and selenocysteine, and to the more recent results of the paper by Merlino et al. [36]
reporting the first distinct crystal structure of a gold N–heterocyclic carbene compound bound to a
protein—thaumatin—showing the Au(I) metal center binding lysine, arginine side chains, as well as
the N-terminal group.

We first considered the hydrolysis reaction with substitution of the chlorido ligand by a water
molecule to probe the stability of this chloro NHC complex in biological fluids. The transition
state (imaginary frequency of −62.92 cm−1) (Figure 2 and Figure S2) for the reaction with water is
characterized by the entering water molecule approaching the metal center with Au–O distance of
2.35 Å, whereas the leaving chlorine moves further at the distance of 2.73 Å.
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An approximately planar trigonal geometry is observed, with an acute leaving
ligand—metal—entering ligand angle of 70.4◦. Table 1 and Figure 3 and Figure S3 show that
this reaction is slightly endergonic, with a reaction-free energy of 1.3 kcal/mol.
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are calculated at the B3LYP/LACV3P**++//B3LYP/LACVP** level. R, P, TS, RA, and PA stand for
reactant, product, transition state, reactant-adduct, and product-adduct, respectively.

The calculated activation-free energy of 23.0 kcal/mol predicts this reaction to be relatively
fast at the physiological temperature, although its barrier is significantly higher than that of all
other nucleophiles examined in the present study, indicating that the IMeAuCl complexes are
likely to attack the biological targets before being hydrated. Although there are no experimental
data for the barrier of the hydrolysis of any [Au(I)(NHC)Cl] complex, nor is there any clear
indication of its stability in solution or neutral buffer, the calculated value of the activation-free
energy is reasonably consistent with the sparse experimental evidence showing that chlorido
1-butyl-3-methyl-imidazol-2-ylidene gold(I) complex is stable for at least 24 hours at room
temperature [47], while chlorido 1,3-methyl-benzimidazol-2-ylidene gold(I) complex undergoes
hydrolysis processes within a few hours in buffer solution pH 7.0 incubated at 37 ◦C [48]. The
B3LYP results for this prototypical process were benchmarked against latest-generation density
functionals, such as M06-2X, wB97X, and CAM-B3LYP-D3, which have been recently shown to be
among the best-performing density functionals in the calculations on main group molecules and metal
complexes [49–51] and against more accurate ab initio calculations such as MP2 with larger basis sets.
The results are reported in Table S2 and show that reaction and activation enthalpies and free energies
within 2–3 kcal/mol form the B3LYP results, thus indicating that the B3LYP functional provides a good
description of the energetics of this kind of process.
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Transition states for methionine, cysteine, and selenocysteine in their neutral form (with imaginary
frequencies of −50.43, −44.33, and −18.09 cm−1, respectively) have similar planar trigonal geometries,
with gold–sulfur/selenium and gold–chlorine distances being 2.6–2.7 A and the S/Se–Au–Cl angle
varying within 82–88◦, and show analogous reaction profiles with reaction activation barriers of 18.2,
18.1, and 17.6 kcal/mol, respectively. When cysteine and selenocysteine are considered in their anionic
form, lower activation energies have been calculated, respectively, 15.5 and 12.8 kcal/mol, as expected
on the basis of the better nucleophilicity provided by the negative charge.

Nucleophiles attacking with their N-based moieties, His, Arg, Lys, and N-terminal amine, form
planar trigonal transition states with slightly smaller angles within 77–79◦, and Au–N distances of
2.3–2.4 Å, with imaginary frequencies of −59.6 −61.8, −60.8, and −52.9 cm−1 (Figure 2 and Figure S2).
Reaction activation barriers for the N-based moieties are also quite low in this case: 20.6 kcal/mol for
histidine, 18.3 kcal/mol for arginine, 16.2 kcal/mol for Lys, and 18.8 kcal/mol for N-terminal. When
binding to glutamine/asparagine is considered, two different tautomers could in principle be taken
into account, corresponding to the amide and imide forms (Scheme 2): for both tautomers, a TS was
found with geometries similar to those of the other N-based nucleophiles and activation-free energies
of, respectively, 24.8 and 16.8 kcal/mol.
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Scheme 2. Amidic/imidic tautomer equilibrium of glutamine/asparagine.

The barrier for the Cl substitution by the imidic form is much lower than that of the amidic form,
but it should be born in mind that the imidic form is significantly less stable, by 16.4 kcal/mol, and is
stabilized only in few protein systems by suitable adjacent catalytic residues [52] (Figure S1).

Finally, binding to glutamic/aspartic acid was considered, and we found a TS with the usual
distorted trigonal geometry and a relatively high activation free energies of 24.7 kcal/mol.

The results for chloride substitution from the other residue models are reported in Table 1
and show that all reactions are slightly to moderately exergonic with the following order of
thermodynamic stability:

Sec > activated-Cys > Arg > Lys > His > activated-Gln/Asn > N-terminal > Met > Cys > Glu/Asp
> Gln/Asn >

although the kinetic reactivity order is quite different:
Sec > Lys > activated-Gln/Asn > activated-Cys > Cys > Met > Arg > N-terminal > His > Gln/Asn

≈ Glu/Asp >
These results are consistent with the experimental evidence showing that the selenocysteine

residue of thioredoxine, and, to a lesser extent, the histidine-activated cysteine residues of several
enzymes such as glutathione reductase, react promptly with neutral Au(I)(NHC) complexes and are
considered the main physiological targets of this class of compounds. In particular, the low barriers
for Cys and especially Sec are in agreement with the results of a recent study on the thioredoxin
reductase inhibition by [Au(NHC)Cl] and on the reaction of the same complex with the reduced linear
dodecapeptide Ac-SGGDILQSGCUGNH2 investigated by ESI-MS, showing (i) a relevant inhibition
of thioredoxin reductase activity soon after mixing (about 30 s) and (ii) the prevalent binding of a
[Au(I)(NHC)]+ fragment to the selenocysteine residue and, to a much lesser extent, to cysteine [30].

On the other hand, glutamic/aspartic acid and glutamine/asparagine show high barriers around
25 kcal/mol, and slightly exergonic or even endergonic reaction free energies in agreement with the
experimental evidence, indicating that such residues are not good binding sites for [Au(I)(NHC)]+

complexes. However, the interaction of some Au(III) complexes with hen egg white lysozyme has
been observed to lead, upon metal reduction and ligand loss, to the binding of an [Au(H2O)]+ gold(I)
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fragment to a glutamine residue, probably preceded by a amide-imidic acid tautomerization of the
glutamine [46].

Binding to histidine shows the highest barrier after glutamic/aspartic acid and
glutamine/asparagine, 20.6 kcal/mol, and is therefore slower than the substitution by all
other residues, although the barrier is low enough to make the reaction still relatively fast at
physiological temperature. However, [IMeAu]+ binding to histidine is one of the most exergonic
processes involving the neutral residues, so it can be considered to be plausible when metal binding
to protein is under thermodynamic control. This result is consistent with previous X-ray studies
showing that the reaction of an analogous gold(I) complex—[Au(PEt3)Cl]—with cyclophilin-3 forms
an [AuPEt3]+ adduct with an histidine residue, despite the presence of four Cys thiol groups in the
protein [53], and that the interaction of several Au(III) complexes with hen egg white lysozyme
preferentially leads, upon metal reduction and ligand loss, to the binding of a AuCl gold(I) fragment
to histidine, even though several methionine groups are available in the protein [34].

Relatively low barriers are calculated for the N-based nucleophile sites—lysine, arginine, and
N-terminal amine (16–19 kcal/mol)—indicating little discrimination in terms of reactivity within
either S/Se or N-based nucleophile sites and suggesting that these N-based sites could also bind
an [Au(NHC)]+ moiety whenever cysteine or selenocysteine residues are absent or buried, and
that the binding preference to a protein side chain could be determined by its accessibility rather
than by its kinetic preference toward chloride substitution. These results are in agreement with a
recent crystallographic study showing that the reaction of 1-butyl-3-methyl-imidazol-2-ylidene gold(I)
complex with the model protein thaumatin leads to the binding of the [Au(NHC)]+ fragment to lysine
and arginine side chains and to the N-terminal amine [36] and suggest that the accessibility of amino
acids within the protein rather than reactivity could be the key point to comprehend the amino acid
targeting of the [Au(NHC)Cl] complex displayed in the experiment [36].

To better investigate the latter point, solvent-accessible surface (SAS) analyses (Figure 4 caption)
were carried out on the X-ray structure of the plant protein thaumatin-1 (pdb id 3qy5) showing that
Lys, Arg, Glu, Asp, Gln, Asn, and the only Met residues in thaumatin are markedly more exposed
than Cys and N-term, while His residues are absent.
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As shown in Figure 4, the gold(I) centers are always bound to highly-exposed amino acids—mainly
Arg and Lys—with the exception of N-terminal amine, which undergoes metal binding despite being
less exposed. However, the binding of the [IMeAu]+ fragment to the N-terminal amine [36] could
be related to the well-known flexibility of the terminal segment of the protein, whose SAS values
may vary within a large range in solution despite being restricted to smaller values by the crystal
packing. Notably, the preferential Au-binding on Lys106 compared to the sequentially close and
similarly exposed Met112 is consistent with the lower values of either reaction or activation-free
energies estimated for Lys.

3. Materials and Methods

All calculations were performed with the Jaguar 9.1 [54,55] and Gaussian 09 A.02 [56] quantum
chemistry package. Optimizations were carried out in gas phase using the density functional theory
(DFT) with the B3LYP hybrid functional [57,58], which is known to give a good description of
geometries and reaction profiles for transition metal-containing compounds [59], and particularly
antitumor compounds based on metals in different oxidation states [60–68] including gold(I) [28,69,70]
and gold(III)-based [71,72] anticancer compounds. Other latest-generation functionals explicitly
developed for systems with long-range electron correlations were used for benchmarking such
as M06-2X [73], wB97X [74], and CAM-B3LYP-D3 [75], which have been recently shown to be
among the best-performing density functionals in the calculations on main group molecules and
metal complexes [49–51], as well as explicitly correlated wave function based methods, such as the
Møller–Plesset perturbative approach MP2 [76–78].

All geometrical optimizations and single-point electronic energy calculations have been carried
out with the LACVP** and LACV3P**++ basis sets, respectively [79–82]. These basis sets describe
the 1s–4d core electrons of the gold atom with the Hay and Wadt core-valence relativistic (i.e., with
an implicit treatment of scalar-relativistic effects) effective core-potential (ECP) leaving the outer
electrons of gold as well as electrons of the remaining atoms to be treated explicitly by the 6-31G**
and 6-311++G** basis sets of double- and triple-ξ quality, correspondingly. Additionally, the basis
set aug–cc–pVTZ [83] was used for the MP2 single point energy calculations in order to assess the
high-level ab initio methodology performance with a large basis set.

Frequency calculations were performed to verify the correct nature of the stationary points
and to estimate zero-point energy (ZPE) and thermal corrections to thermodynamic properties.
Intrinsic reaction coordinate (IRC) calculations were employed to locate reagents and products minima
connected with the transition states for each considered reaction step.

Single-point electronic energy calculations were performed on the gas-phase geometries. The
Poisson–Boltzmann (PB) continuum solvent method was used to describe the solvation. It represents
the solvent as a layer of charges at the molecular surface, serving as a dielectric continuum boundary,
thus accounting for the detailed molecular shape [84,85]. Solvation energies were calculated on
gas-phase stationary points at the B3LYP/LACV3P**++ level of theory, taking a dielectric constant of
80.37 for water and the standard set of optimized radii in Jaguar. Experimental values have been taken
for the solvation-free energies of small ions. Thermodynamic properties in solution were calculated
as follows. Solvation-free energies were taken as the difference between the solution energies and
the gas phase energies. The calculation of entropic contributions in solution is a rather delicate issue,
and is particularly important when entropies (and free energies) need to be evaluated for bimolecular
reactions involving separated reactants and products. Indeed, in this case, the translational degree of
freedom in the reactants/products becomes a loose vibration for adducts or transition states, leading
to a loss/gain of entropy, much larger in the gas phase than in the confined condensed phase. For this
reason, the use of gas phase entropies in solution often leads to artificially too large results. A way to
overcome this problem was proposed by Werz [86] and proved to lead to solution entropies and free
energies in excellent agreement with experimental values [87–91]. Following this approach, a solute
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dissolved in a solvent loses a constant fraction of its entropy in vacuo. The amount of this loss, for
water, can be approximated as 50% of the gas phase entropy changed of sign.

Enthalpies and Gibbs free energies were obtained at 298.15 K and 1 atm from total electronic
energies including ZPE, thermal, and entropic corrections, and the addition of solvent corrections.
A further correction of ∆G◦→*=RT ln (24.6) was included to pass from ideal gas at 1 atm to ideal
solution at 1 mol/L as standard state [92].

The solvent-accessible surface (SAS) of each considered amino acid was computed by using the
sas option implemented in Gromacs software [93].

4. Conclusions

Detailed mechanisms of the reaction of gold carbene compounds with most amino acids and
protein fragments remain largely undisclosed. In this study, we have computed the reactivity of
IMeAuCl with the various nucleophiles water, side chains of arginine, cysteine, histidine, lysine,
methionine, and selenocysteine, and the N-terminal of any amino acid.

The activation-free energy of 23.0 kcal/mol calculated for the chloride substitution by water makes
this reaction relatively fast at a physiological temperature, although it shows a barrier significantly
higher than all the other nucleophiles examined in the present study, indicating that the [Au(I)(NHC)Cl]
complexes are likely to attack the biological targets before being hydrated.

The results for chloride substitution from the considered residues show that all reactions are
slightly to moderately exergonic with the following order of thermodynamic stability:

Sec > activated-Cys > Arg > Lys > His > activated-Gln/Asn > N-terminal > Met > Cys > Glu/Asp
> Gln/Asn >

but have a different kinetic reactivity order:
Sec > Lys > activated-Gln/Asn > activated- Cys > Cys > Met > Arg > N-terminal > His > Gln/Asn

≈ Glu/Asp >
The lowest barriers calculated for Cys and especially Sec are consistent with the experimental

evidence showing the prevalent binding of a [IMeAu]+ fragment to the selenocysteine residue and, to
a much lesser extent, the cysteine residue of thioredoxine.

Relatively low barriers are calculated also for the N-based nucleophile sites, lysine, arginine,
and N-terminal amine (16–19 kcal/mol), indicating little discrimination in terms of reactivity within
either S/Se or N-based nucleophile sites and suggesting that that these N-based sites could also bind
an [IMeAu]+ moiety whenever cysteine or selenocysteine residues are absent or buried and that the
binding preference to a protein side chain could be determined by its accessibility rather than by its
kinetic preference toward chloride substitution.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/4/
820/s1.
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