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Abstract

Introduction and objectives

Although the Iberian Peninsula is a key area for understanding the Middle to Upper Paleo-

lithic transition and the demise of the Neandertals, valuable evidence for these debates

remains scarce and problematic in its interior regions. Sparse data supporting a late Nean-

dertal persistence in the Iberian interior have been recently refuted and hence new evidence

is needed to build new models on the timing and causes of Neandertal disappearance in

inland Iberia and the whole peninsula. In this study we provide new evidence from Los

Casares, a cave located in the highlands of the Spanish Meseta, where a Neandertal-asso-

ciated Middle Paleolithic site was discovered and first excavated in the 1960’s. Our main

objective is twofold: (1) provide an updated geoarcheological, paleoenvironmental and chro-

nological framework for this site, and (2) discuss obtained results in the context of the time

and nature of the last Neandertal presence in Iberia.

Methods

We conducted new fieldwork in an interior chamber of Los Casares cave named ‘Seno A’.

Our methods included micromorphology, sedimentology, radiocarbon dating, Uranium/

Thorium dating, palinology, microfaunal analysis, anthracology, phytolith analysis, archeo-

zoology and lithic technology. Here we present results on site formation processes,

paleoenvironment and the chronological setting of the Neandertal occupation at Los

Casares cave-Seno A.

Results and discussion

The sediment sequence reveals a mostly in situ archeological deposit containing evidence

of both Neandertal activity and carnivore action in level c, dated to 44,899–42,175 calendar
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years ago. This occupation occurred during a warm and humid interval of Marine Isotopic

Stage 3, probably correlating with Greenland Interstadial 11, representing one of the latest

occurrences of Neandertals in the Iberian interior. However, overlying layer b records a

deterioration of local environments, thus providing a plausible explanation for the abandon-

ment of the site, and perhaps for the total disappearance of Neandertals of the highlands of

inland Iberia during subsequent Greenland Stadials 11 or 10, or even Heinrich Stadial 4.

Since layer b provided very few signs of human activity and no reliable chronometric results,

and given the scarce chronostratigrapic evidence recorded so far for this period in interior

Iberia, this can only be taken as a working hypothesis to be tested with future research.

Meanwhile, 42,000 calendar years ago remains the most plausible date for the abandon-

ment of interior Iberia by Neandertals, possibly due to climate deterioration. Currently, a

later survival of this human species in Iberia is limited to the southern coasts.

Introduction

The Iberian Peninsula has long been considered a crucial scenario for the Middle to Upper

Paleolithic transition and the replacement of Neandertals by Modern Humans [1–6]. Since

the late 1980’s, a key point on these discussions was the contention that Neandertals persisted

in the center and south of Iberia until at least c. 36.7–34.5 ka cal BP [5], or even as late as c. 32–

28 ka cal BP [4, 7]. This suggested that Neandertals and Modern Humans coexisted for several

millennia, since Modern humans were presumably established in the northern regions of the

peninsula from around 42–40 ka cal BP, or even earlier [2, 3, 8]. Here we focus on the interior

lands of Iberia, which are dominated by the highlands of the Northern and Southern Mesetas
divided by the Central System mountain range (Fig 1). Despite these inland territories had tra-

ditionally contributed with some chronometric evidence to the late survival model, reevalua-

tion of the few sites involved has suggested however that no late Mousterian survival took

place in inland Iberia [6, 9]. Since still few sites from this area have contributed to this discus-

sion, new evidence is needed to build new models concerning the timing and causes of Nean-

dertal disappearance in inland Iberia and the whole peninsula. A new interdisciplinary

research project on Los Casares cave is aimed at moving forward in these scientific problems.

Los Casares is a limestone cave located in the interior regions of the Iberian Peninsula

(Spain). Its archeological potential is known since the late 19th century, when first scientific

explorations of the cavity pointed to the presence of bones and fossils in the floor and walls,

and a historical site was discovered outdoors [10]. However, the relevance of this cave for the

Paleolithic field became evident in the 1930’s, when its first Upper Paleolithic rock engravings

were described by J. Cabré [11–13]. Later, between 1966 and 1968, a team directed by I. Baran-

diarán conducted the first systematic excavations in Los Casares, showing archeological depos-

its containing Middle Paleolithic assemblages in two different areas [14]. First deposit was

located at the entrance hall of the cave, named Vestíbulo (Vestibule in Spanish), and it con-

sisted of clayey sediments filling a short gallery at the bottom of this area (Fig 2). As reported

by Barandiarán and recently observed by us, the presence of remnant sediments attached to

the walls at different parts of this vestibule suggests that a now-destroyed larger deposit proba-

bly existed in this area. This is a very plausible hypothesis considering the long history of occu-

pations and incursions documented both inside and outside the cavity from the Chalcolithic

to Modern times, including its use as a sheep shelter during the 20th century [14].
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The second site was found in a deeper area of the cave, the so-called Seno A, an interior

chamber where a larger deposit was discovered all along the place (Fig 2). Despite the area

excavated here was of 21 square meters, Mousterian assemblages were scarcer, and recorded

lithic artifacts were less than half in number than those found in the vestibule [15]. A

Fig 1. Regional setting of Los Casares. Location of Los Casares cave in the Iberian Peninsula (A) and in the Geologic map of the

Guadalajara province (B). C: 3D view of Los Casares cave and the Linares and Valdebuitre valleys (Aerial photography and Digital Terrain

Model—PNOA—from Instituto Geográfico Nacional de España).

https://doi.org/10.1371/journal.pone.0180823.g001
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Chalcolithic layer containing ceramics, lithics and faunal remains was also recorded at the top

of the sequence of the Seno A site [14].

Archeological assemblages recovered at the two areas excavated in Los Casares not only

included faunal and Mousterian lithic assemblages, but also a Neanderthal metacarpal bone

found at the Seno A Middle Paleolithic layers (Fig 3B). This finding, together with the interest-

ing nature of the lithic assemblages, composed of a high proportion of retouched tools, espe-

cially in the Seno A (Fig 3A), made Los Casares one of the most relevant sites for the study of

the Middle Paleolithic in interior Iberia during the last quarter of the 20th century. The scarcity

of Late Pleistocene sites in these regions at the time, and the high quality of the monographic

publication produced shortly after the excavations [14] were also key points stressing the rele-

vance of this site for the study of the Iberian Middle Paleolithic. Furthermore, the presence of

Upper Paleolithic rock art in such an interior region, far away from the classic Cantabrian and

Mediterranean clusters, and including a striking proportion of anthropomorph figures [16],

was also an indirect factor boosting the importance of Los Casares Middle Paleolithic site.

Despite this relevance, no scientific studies had been published on Los Casares Paleolithic

record since the 1970’s, besides some partial analysis of the rock art [16], and some reviews of

Fig 2. General plan of Los Casares cave showing Vestibule and Seno A areas.

https://doi.org/10.1371/journal.pone.0180823.g002
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the faunal [18,19], and lithic assemblages excavated by Barandiarán [20]. Therefore, there was

a significant scarcity of modern data hindering any attempt to integrate Los Casares evidence

in current debates on the Middle Paleolithic settlement of Iberia and southwest Europe. Data

on site formation processes were lacking, chronometric evidence was lacking, and paleo-

ecological information was virtually absent. In sum, Los Casares Middle Paleolithic record was

behind the times of current Paleolithic research.

In the summer of 2014 we started a new project aimed at the study of population dynamics

and human-environment interactions during the Late Pleistocene in the central region of the

Iberian Peninsula. A main factor driving this project was that record of this area was poorly

known compared to the coastal regions, and in the case of the Middle Paleolithic this was espe-

cially evident concerning occupation of caves [21, 22]. Together with other two sites in the

Guadalajara province (Spain), we selected Los Casares as a case study that could show relevant

data on the Middle Paleolithic settlement of inland Iberia. It was our contention that Los

Casares potential had been inexplicably neglected since the 1970’s, and therefore modern

geoarcheological investigations could bring into light new insights for the understanding of

Neandertal adaptations at this once key site of the Iberian Middle Paleolithic.

Overall, our main objective was to gain a better geoarcheological understanding of Los

Casares Middle Paleolithic site in order to contribute to current debates on the Neanderthal

settlement of inland Iberia. Among these debates, the long-claimed Mousterian late survival in

the central and southern areas of the peninsula [23], and the nature of human adaptations to

the harsh environments of the upland regions of the Spanish plateau [24], were the most rele-

vant. Both are currently under dispute [4–6, 9, 25–31].

Here we publish results of an interdisciplinary geoarcheological investigation of Los

Casares-Seno A site, where we conducted new field and laboratory works. We undertook

micromorphological, sedimentological and taphonomic analyses aimed at deciphering site for-

mation processes, we performed radiocarbon and U/Th dating for setting up a chronological

framework, we conducted palynological, anthracological, micromammal, phytolith and sedi-

mentological analyses for elucidating environmental and climatic settings, and we studied

lithic and faunal assemblages for discussing Neandertal techno-economic behaviours.

Fig 3. Main findings of the 1960’s excavations at Los Casares cave. A: Mousterian artefacts. All come from level c of Seno A except for

numbers 33, 34 and 36 (modified after [14]). B: Neandertal metacarpal found in square 8V’ of Seno A (bar is 5 mm) (modified after [17]).

https://doi.org/10.1371/journal.pone.0180823.g003
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Integration of results obtained by all these methods depicts an ecological and chronological

context for the last Neandertals living in this interior area of the Iberian Peninsula.

Regional and local setting

Los Casares is a southwest-oriented cave eroded in a limestone-dolomite cliff corresponding

to the Muschelkalk lithostratigraphic unit (Middle Triassic) (Fig 1B). It is in the environs of La

Riba de Saelices village (Guadalajara Province, Spain), located in the moorlands of Sigüenza

and Molina de Aragón belonging to the Iberian Range, at the northern fringe of the Southern

Meseta at about 1040–1060 m asl (40˚ 56’ 22’’ N, 2˚ 17’ 31’’ W, Datum ETRS89) (Fig 1A). The

cave entrance and vestibule are situated at about 40 m above the southward widening valley

floor of the Linares River (Upper Tagus basin), on its left bank (Figs 1C and 4). Los Casares is

a diaclase cave, with few and small lateral galleries, and with a total length of about 264 m from

West to East (Fig 1A). When studying cave art, J. Cabré [11] defined three different concavities

within the main passage that he called, from outside to inside, “Seno A”, “Seno B” and “Seno
C”. Seno A is found after leaving the vestibule and passing a narrow gallery about 20 m long

(Fig 1B). It consists of an east-west trending cavity with a complex topography, about 20 m

long, 10 m wide and up to 4 m high. The archeological deposit object of this study is found all

along the Seno A chamber (Fig 5)

Materials and methods

Permits and repositories

All necessary permits were obtained for the described study, which complied with all relevant

regulations. Field and laboratory works at Los Casares cave were authorized by the Dirección
General de Cultura de la Junta de Comunidades de Castilla–La Mancha (Spain) (Exp.:

14.0955-P1 and Exp.: 14.0955-P3). Study of lithic and faunal remains curated at the Museo
Arqueológico Nacional (Madrid, Spain) was authorized by the Prehistory Department of this

museum.

The Los Casares lithic and faunal assemblages excavated in 2014–2015 are housed in the

Museo de Guadalajara (Guadalajara, Spain). Assemblages from the 1960’s excavations are

housed at Museo Arqueológico Nacional (Madrid, Spain). Both repositories are accessible for

all researchers.

Fieldwork: Excavation, stratigraphy and sampling

Previous work at the Seno A conducted by I. Barandiarán in the 1960’s [14] consisted of the

archeological excavation of 21 square meters (Fig 6). A stratigraphic sequence of grey-greenish

and reddish-brown Holocene and Pleistocene sediments divided in eight sedimentary layers,

from level “a” to level “h”, was described in a test pit reaching a total depth of about 1 m

below the modern cave floor. However, in most of the excavated area only the first three layers,

subsequently divided in different sub-levels in some places, were reached, at a total depth of

30–40 cm (Fig 5). Archeological assemblages were found at layer a3, where ceramics, lithics

and faunal remains were assigned to the Chalcolithic and Early Bronze age. While layer b was

described as sterile, Middle Paleolithic assemblages, including a Neandertal metacarpal, were

identified at level c. Below this layer, a flowstone was identified as level d0, followed by a

heavily cemented layer d, very rich in animal bones but lacking any artefacts. Layer e was iden-

tified as a stalagmitic crust, and lower layers f1, f2, g and h were considered archeologically

sterile (Fig 7). Although Barandiarán judged that most of the deposit at the Seno A was

Los Casares cave revisited
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preserved in situ, he acknowledged the presence of post-depositional disturbance at some

areas, mainly related to clandestine excavations (Figs 5 and 6).

The southern profile produced by the above-mentioned test-pit, located in square 1-R’, was

still preserved at the site in 2014, hence allowing a direct inspection. We thus identified the

sequence published by Barandiarán, as well as a good example of one of the post-depositional

disturbance features referred by this author: a clandestine pit in the western part of the profile

Fig 4. Local setting of Los Casares. A: Los Casares cave and the narrowing of the Linares River downstream of the ‘Milagros’ valley. B:

Entrance to the cavity. C: General view of Los Casares cave from the south. D: View of the Linares River valley from the cave’s entrance.

https://doi.org/10.1371/journal.pone.0180823.g004
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(Fig 7). Since this profile offered an excellent platform for starting new excavation works, our

first task consisted on its rejuvenation 25 cm to the south. We thus produced a new profile in

square 3-R’, where the old sequence could be contrasted more in detail. In doing so, and in our

general fieldwork at the site, we used grid and datum established by Barandiarán’s team in the

1960’s (Fig 6). During the two campaigns conducted in 2014 and 2015 we excavated a total

extension of slightly more than 5 square meters, divided in four different areas located at the

perimeter of the 1960’s excavation. The first area consisted of the rejuvenation of profile 3-R’

South, the second was square 6-Q’, the third included squares 1-O’ and 2-O’, and the fourth

consisted of squares 6-V’, 8-V’ and 8W’. All these areas were relatively close and hence strati-

graphic correlations between them were feasible (Fig 6).

Fieldwork methodology followed the excavation of natural levels, which were divided in

artificial layers of 2–3 cm when needed. Both these layers and every archeological object or fea-

ture larger than 2 cm (lithics, bones, charcoal fragments and human-made structures) were

three-dimensionally recorded using a Total Station, and orientation and dip of elongated lithic

and bone products were registered. All excavation layers were digitally photographed before

collecting archeological assemblages, which were also pictured in detail in special cases (i.e.

concentration of objects or relevant lithic artefacts). Stratigraphic profiles and some excavation

plans were also hand-drawn. Every square meter was divided in sectors of 33 sq cm and sedi-

ment was packed accordingly. This sediment was later floated and wet-screened at 2 and 1

mm mesh sieves at the Laboratory of Prehistory of the University of Alcalá, where most of the

lagomorphs, micromammals, charcoals and lithic debris were acquired. Samples for micro-

morphology, pollen, phytolith and Uranium/Thorium dating of flowstone were also collected

during excavation.

Fig 5. View of the Seno A chamber prior to our fieldwork. Profile 1R’ South produced by the 1960’s excavations and adjacent disturbed

area are shown.

https://doi.org/10.1371/journal.pone.0180823.g005
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Micromorphology

For micromorphology, five sediment monoliths were extracted from the upper part of the

sequence at different excavation areas, covering layers r to c2. Sampling of the heavily

cemented sediments of level d was not successful. Since sediments of the upper sequence were

very brittle, the samples were reinforced with gypsum bandages before extraction. The mono-

liths 1 and 2 were taken from the south profile of square 3-R’, monoliths 3 and 4 from the

south profile of square 1-O’ and monolith 5 from the north profile of 8-W’ (Fig 6). While

monolith 3 was kept for reference, the other monoliths were used for preparation of three

uncovered thin sections each (maximum size 60 mm x 80 mm), using methods described by

Beckmann [32]. The thin sections were scanned with a flatbed scanner using polarizing foil for

inspection at low magnification. A petrographic microscope was used to study sediment com-

position and fabric at magnifications of 12- to 500-fold using plane polarized light (PPL) or

crossed polarizers. In addition, oblique incident light (OIL) was used in some cases. The

Fig 6. Plan of the Seno A showing excavated areas in the 1960’s and in 2014–2015. For the latter, archeological assemblages from

level c are plotted. However, for the 1960’s excavations only lithic artefacts are plotted (after [14]), since no spatial recording of bone or

charcoals were done.

https://doi.org/10.1371/journal.pone.0180823.g006
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description of thin sections followed terminology suggested by Stoops [33]. All lab works were

conducted at the Institute of Geography of the University of Cologne.

Uranium/Thorium dating

Speleothem samples from level d0 were extracted with hammer and chisel from different areas

of the excavation. Two samples were extracted from square 3-R’, one from square 6-Q’ and

two more from square 2-O’ (Fig 6). All samples were flowstones presenting a good degree of

crystallisation except for that collected at square 6-Q’. The latter was better defined as a calcite

incrusted layer or stalagmitic crust (Fig 8).

Three of these samples, S1, S2 and S3, were processed in the Laboratory of Uranium Series

at the CENIEH (Burgos, Spain). S1 was taken at square 3-R’, while S2 and S3 were collected at

2-O’. Despite lateral variation of stratigraphic sequence all along the deposit, “z” values (deep-

ness) of these samples were very similar (Figs 9 and 10). At the lab, smaller samples were

extracted using a hand drill and 0.8mm tungsten carbide drill bits. From S1 two sub-samples

were taken: S1a and S1b (Fig 8). After weighing, around 50mg precisely measured samples

were dissolved in HNO3 and digested in several steps involving HNO3, H2O2 and HCl treat-

ments. Uranium and thorium were then separated and their solutions purified by using two

ion exchange resin column steps (AG1X8 and UTEVA) following [34 and 35] sample prepara-

tion protocols.

Uranium and thorium isotope measurements were performed using a Multicollector

Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS, Thermo NEPTUNE) with a

membrane desolvator Aridus 2, X-cones and Jet interface pumping to increase the signal. Neb-

ulizer consisted on a PFA microtip calibrated for 50μl/min. Measurement protocols followed

Fig 7. Stratigraphic sequence excavated in the 1960’s. A: Stratigraphy described by Barandiarán in profile 1-R’ South (modified after

[14]). B: Uncleaned profile 1-R’ South prior to our fieldwork. Post-depositional disturbance at the upper western part was easily recognized.

https://doi.org/10.1371/journal.pone.0180823.g007
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can be found in [34 and 35]. Spike working solution used was made of a 1M ultrapure HNO3

gravimetrically produced solutions of NIST 4328c for 229Th, and IRMM3636a for 236U. Stan-

dard solutions of those reference materials were used for standard sample bracketing. Both

standard solutions and samples were checked for U, Th elemental concentration by ICPOES

(PerkinElmer 5300DV) or ICPHRMS (ELEMENT XR).
230Th/U ages were obtained by solving numerically or graphically the corresponding

equation [36, 37]. Corrected ages were calculated assuming an initial isotope ratio
230Th/232Th = 4.4 x 10−6. Decay values considered for the equation were those found in [38].

Sample S1 showed some layers where oncolite accumulation is predominant. Since this is

usually related to bioturbations and could indicate open system conditions, attempts to date

those and surrounding areas would lead to obtain wrong U series dates. However, although

the lower layer sampled here (S1a) showed a high concentration of 232Th (151ng�g-1),
230Th/232Th ratio was high and hence U/Th dating was performed. On the other hand, sample

S1b was collected from a series of well laminated layers of calcite formed after the upper onco-

lite deposits at the top part of the speleothem (Fig 8). This area was wide enough to obtain

enough sample amounts suitable for U series dating over the brown-reddish narrow layer.

Concentration of 232Th (151ng�g-1) was lower in this sample.

Fig 8. Thin section scans of the flowstone of d0 at profile 3R under plain polarized light (A) and crossed polarizers (B). C shows a

scan of a calcite incrusted layer of d0 extracted from square 6-Q’. The lower image shows the three speleothem samples selected for

Uranium/Thorium dating (D). Note the small sampling areas.

https://doi.org/10.1371/journal.pone.0180823.g008
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Radiocarbon dating

From level b, two charcoal fragments and two faunal bones were selected for radiocarbon dat-

ing. From level c, one charcoal fragment and three bones were selected. All these samples

Fig 9. Stratigraphic sequence and vertical distribution of items recorded in profile 3-R’. Stratigraphic position of samples for pollen,

phytolith, micromorphology and Uranium/Thorium dating is shown.

https://doi.org/10.1371/journal.pone.0180823.g009
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(n = 8) were submitted to the CologneAMS centre at the University of Cologne. None of the

bones were anthropogenically modified, since no clear cut-marks or any other anthropogenic

sign were identified in the faunal assemblages collected at the 2014–2015 excavations. Mea-

surement of the five bones failed due to no collagen yield. Therefore, only three radiocarbon

measurements on charcoals could be obtained out of the eight samples tried.

Charcoal samples were first identified to taxon and then AAA (Acid-Alkali-Acid extrac-

tion) processed according to sample preparation described by Rethemeyer et al. [39]. Dating

results will be presented below in conventional radiocarbon years and as calibrated ages BP

using OxCal 4.3 [40] and IntCal13 [41].

Pollen analysis

Six sediment samples of 5 square cm were extracted from profile 3-R’ (Fig 9) during the 2014

excavation season following standardized techniques for archeological sites as described in [42

and 43]. Five of them (excluding that corresponding to the Chalcolithic a3 layer) were pre-

pared for pollen analysis at the CSIC labs (Madrid) using standard HCl sieving, HF and den-

sity separation techniques (solution density 1.9) outlined in Burjachs et al. [42]. After

processing, the samples were suspended in glycerin prior to being mounted on slides. Count-

ing was undertaken using a Nikon Elipse 50i light microscope at x400 magnification until a

sum of 300 total land pollen (TLP) had been achieved, excluding Aster type, Cardueae and

Cichorioideae with possible zoophily [43]. Pollens were identified with the aid of the key in

Moore et al. [44], photographs in Reille [45] and modern reference material. Pinus nigra-type

pollen grains were categorised following measurements in Desprat et al. [46]. Pollen diagrams

Fig 10. Stratigraphic sequence and vertical distribution of items recorded in profile 2-O’ West. Stratigraphic position of samples for

radiocarbon and Uranium/Thorium dating is shown.

https://doi.org/10.1371/journal.pone.0180823.g010
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were constructed using TILIA 2.0 and TGView software [47] and percentages were based

upon the TLP.

CONISS [48] was used to assist with the biostratigraphic zonation of the pollen diagram in

Local Pollen Assemblage Zones (LPAZs) according to the dissimilarity matrix of Euclidean

distances and squared root transformed of percentage data. Ordination by principal compo-

nents analysis (PCA) was performed using CANOCO 4.5 software, as a linear interpretation

method for the fossil dataset since a previously detrended correspondence analysis (DCA)

pointed to a linear response of species data to environmental gradients [49]. Samples were

square-root transformed for a better comparability. In the PCA scatter plot, pollen taxa are

shown as distance biplot arrows, and the direction of the arrow indicates the direction in

which the values of the corresponding taxa increases.

Microfaunal analysis

Fossils of small vertebrates were collected by hand during fieldwork seasons of 2014 and 2015,

and by wet-screening of sediments at 2 and 1 mm mesh sieves at the Laboratory of Prehistory

of the University of Alcalá during 2015 and 2016. Microfaunal remains were found all through

the excavated areas in the Seno A, and in all stratigraphic layers besides a2, a3 and a4.

A total of 109 plastic bags filled with sediments were wet-screened at the laboratory. The

resulting concentrates were examined by naked eye as well as by optical microscopes. Micro-

fauna and other small fragments of large fossils were separated by picking up the elements.

The resulted 109 collections of fossils were then sent to the Department of Earth Sciences of

the University of Zaragoza, where assemblages were examined, photographed and stored.

A total of 102 out of the 109 analyzed samples showed fossil remains that were classified to

the species level. Additional washing with micro-mesh techniques and 10% HCl, and/or H2O2

was used when the surfaces of the molars, especially the enamel-dentine junction on the occlu-

sal surface, was covered with particles of sediment that impeded the visual analysis. This ana-

tomical region is needed pristine for the good classification and the morphometric analysis of

small mammals. Drawings were made after photographs taken with an Olympus SZ61 micro-

scope with a camera attached to it. Images and measurements were taken with the camera and

the LCMicro software provided for the Olympus equipment.

Classification of small mammals into species was based on the morphology and biometry

of the occlusal surface of the molars, following general criteria of systematic paleontology

[50–54]. In each sample, we counted the number of skeletal elements, mainly dentition, and

calculated the minimum number of individuals (MNI). The input for computing the MNI are

the diagnostic skeletal parts that represents one individual of the species in a sample; i.e. two

left lower first molars (m1) of a given species represents two individuals, whereas two m1, one

left and one right represents one individual.

Charcoal analysis

Charcoal remains were sampled by hand during fieldwork and by flotation in the Laboratory

of Prehistory of the University of Alcalá. A total of 44 fragments of carbonized wood from lev-

els b, c and a5 have been studied in the Archeological Analysis Service of the Autonomous

University of Barcelona. Identification of taxa was carried out following standard procedures.

The anatomical patterns of each wood species were observed along three sections (transversal,

longitudinal tangential, and longitudinal radial) using a reflected light microscope equipped

with light field/dark field and objectives of 4x, 10x, 20x and 40x. Archeological samples have

been compared with modern woods as well as with wood anatomy atlases [55].
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Phytolith analysis

Three sediment samples from profile 3-R’ were collected during the 2014 excavation season

for phytolith analyses. Samples were processed at the Laboratory for Palaeoecology and Plant

Palaeoeconomy–BioGeoLab (IMF–CSIC, Barcelona). The samples corresponded to sub-layers

c1, c2 and c3 of level c (Fig 9).

The extraction process follows the methods proposed by Madella et al., [56]. Samples were

oven-dried at 80˚C for 24 hours and screened with a 1 mm mesh to remove sands larger than

1000 μm. 15 millilitres of a 5% solution of hydrochloric acid (HCl) was added for 3 hours to

dissolve carbonate minerals and after the reaction ceased the acid was removed by centrifuging

the sample at 2000 RPM in 50 ml tubes. Samples were then de-flocculated with a 5% weight

solution of sodium hexametaphosphate ((NaPO3)6) for 36 hours, in order to disaggregate and

remove the clays, and centrifuged at 2000 rpm with distillate water. 30% solution of hydrogen

peroxide was added to samples for 3 hours to remove organic material. The resulting sediment,

what is the Acid Insoluble Fraction (AIF) [57], was then oven-dried at 60˚C. A 10 ml of

sodium polytungstate solution (SPT) (Na6(H2W12O40)H2O) with a density of 2.35 g/cm3 was

added to separate siliceous minerals by density, vortexed and centrifuged for 3 min at 2000

rpm. The supernatant, where phytoliths are, was recovered with a Pasteur pipette discarding

the heaviest fraction and oven-dried at 40˚C for 72 hours. 5μg per sample were finally placed

on microscope slides, mixed with Entellan and covered with 20 x 20 mm cover slips for exami-

nation under the petrographic microscope (Olympus BX43) at 400x. The analysis of phytoliths

was conducted during 2016 in the Archeological Analysis Service of the Autonomous Univer-

sity of Barcelona.

Morphological and taxonomical identification of phytoliths was based on standard litera-

ture [58–62], including the PhytCore online data base [63]. Other references from paleocli-

matic and ecological analogues, such as the areas from the Mediterranean-Alpine climatic

zones [64], as well as references from sedimentological and paleoenvironmental contexts from

the Iberian Peninsula albeit from different chronologies (MIS 4–5), were also consulted [65].

Special attention was paid to the presence of weathered phytoliths due to postdepositional pro-

cesses [66, 67].

Archeozoology and taphonomy

52 faunal remains from level b, 1,318 from level c and 85 from level d were subject to zooarch-

eological and taphonomic analyses at the Prehistory Department of the Complutense Univer-

sity of Madrid. No human remains where identified despite close inspection by

paleoanthropologists. While all remains from levels b and d corresponded to the 2014–2015

fieldworks, assemblages from level c included 515 remains from the 1960’s excavations

[19, 68], housed at the Museo Arqueológico Nacional (Madrid), and 803 from the recent ones.

Since it was hypothesized that an archeological selection of bone fragments could have be

done during the 1960’s fieldworks [19], most probably due to a lack of wet-screening, data

from the two assemblages were recorded separately in a first stage of research.

Studied remains included both identifiable and unidentifiable fragments and the taxonomi-

cal identification was based on reference materials. When the identification was not feasible,

epiphyses, axial and shaft fragments were assigned to three animal weight/size classes: 1)

small-sized carcasses, <100 kg (e.g. Capra pyrenaica, Rupicapra rupicapra), 2) medium-sized

carcasses, >100–300 kg (e.g. Cervus elaphus) and 3) large-sized carcasses, >300 kg (e.g. Equus

ferus, Bos primigenius).

The estimation of NISP (Number of Identified Specimens) and MNI (Minimum Number

of Individuals) was used to determine the most appropriate features of the faunal taxonomic
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distribution. NISP follows Lyman’s synthesis [69] and MNI is based on Brain’s model [70] that

includes bone laterality -right/left- and animal age. Furthermore, skeletal profiles and MNI

consider shaft thickness, section shape and medullar surface properties [71]. In this way, bones

were divided into four anatomical regions: 1) cranial (antlers-horn, skull, mandible and denti-

tion), 2) axial (vertebrae, ribs, pelvis and scapula, sensu [72]), 3) upper appendicular limbs

(humerus, radius, ulna, femur, patella and tibia) and 4) lower appendicular limbs (metapodial,

carpals, tarsals, phalanges and sesamoideal).

Mortality patterns were divided into (1) infants (individuals dead before the first six months

of life, as shown by the absence of the first permanent molar), (2) juvenile-prime adults (indi-

viduals showing the second permanent molar and deciduous p4) and (3) adults (those with all

permanent teeth). Age profiles were estimated from tooth crown wear and the emergence of

the teeth according to Stelle [73] for deer, Pérez Ripoll [74] for ibex and Levine [75] for Equus.
A systematic observation of bone surfaces to explore the presence of cut, percussion and

tooth marks was also carried out with 10X-20X hand lenses and different lighting [76]. Our

diagnostic criteria for cut, tooth and percussion marks are the ones defined respectively by

Bunn [77] and Potts and Shipman [78], Blumenschine [76], and Blumenschine and Selvaggio

[79]. For comparative purposes, observation of bone surfaces includes the observation of

epiphysis and shafts [76]. Modifications of bone surfaces were also quantified by types of frag-

ments and bone sections [80, 81] based on NISP values. The presence of tooth, percussion and

cut marks was recorded for the whole assemblages, and percentages of tooth, percussion and

cut marks included only bones with a good surface preservation. Weathering stages were also

observed following Behrensmeyer [82] to estimate the bone subaerial time exposure. Water

effects on bone surfaces were estimated according to the presence of abrasion, polishing,

rounded bones, and carbonates following Parson and Brett [83], Cáceres [84] and Yravedra

[85]. Signs of polishing, rounding or abrasion are to be expected in transported assemblages,

but also in non-transported assemblages exposed to circulating water and mobile sediments,

such as those encased in sand strata [86]. Biochemical alterations were estimated according to

Domı́nguez-Rodrigo & Barba [87]. To differentiate between green and dry fractures on long

bones we analyzed shafts larger than 30 mm following Villa & Mahieu’s [88] criteria.

Lithic technology

Besides one single flint flake collected in layer b, all lithic artefacts recovered at Los Casares-

Seno A come from level c. In consonance with those recorded by Barandiarán [14] in the same

level during the 1960’s excavations, they represent a scarce sample. In the circa 5 square meters

excavated, we collected just 7 lithic artefacts, including two debris recovered after wet-sieving.

Assemblages recovered at the Seno A during the 1960’, summing up to 38 lithic artefacts, were

studied at the Museo Arqueológico Nacional (Madrid), where they are currently curated. How-

ever, we considered only 37 items, since one blade, found in mostly disturbed square 2-Q’ as

reported by this scholar (Fig 6), must be conceived as a very likely intrusion from above [15].

Therefore, we analyzed a total of 44 lithic artefacts, 32 of them produced on flint (72.7%), and

12 on quartzite (27.3%). A spatial distribution of the whole assemblage was possible due to the

spatial recording of objects during the old excavations [14]. Plotting of artefacts, both horizon-

tal and vertical, is shown in Figs 6 and 9–15. Density of artefacts is very low, only reaching 1.76

artefacts per square meter.

Lithic artefacts were studied at the Prehistory Laboratory of the University of Alcalá under

the chaı̂ne opératoire or ‘operational sequence’ approach as described by Inizan et al. [89] and

discussed in Bar-Yosef and Van Peer [90]. We assigned each lithic artefact to one of the three

chaı̂ne opératoire stages commonly recognized in the literature [90]. Thus, cortical flakes,
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preparation products and tested cores were assigned to the initialization stage or phase I, raw

blanks, core maintenance by-products and rejuvenation flakes to the exploitation stage or

phase II, and retouched blanks and exhausted cores to the consumption and abandonment

stage or phase III. We also analyzed artefacts in terms of formal recycling and reuse processes

as discussed by Amick [91] and Baena et al. [30].

Results

Stratigraphic sequence and micromorphology

Stratigraphic sequence documented in the Seno A deposit during 2014–2015, preliminarily

published in [15], was first described after rejuvenation of profile 1-R’ South previously exca-

vated by Barandiarán in the 1960’s. Main stratigraphic layers and sub-layers recognized at the

deposit were first identified at this profile, corresponding to the northern sector of square 3-R’

(hereafter, just ‘profile 3-R’). Also, this is the only area where we excavated level d, while in

other test pits we only reached the top of level d0. As previously mentioned, profile 3-R’

showed a similar stratigraphy as documented in the 1960’s, but it was less affected by bioturba-

tion, and disturbance reflected in a pit infilling at the western side of the profile was less severe

than in the original profile 1-R’ [15] (Fig 9). The top 2 to 3 cm of 3R’, denominated as "r", con-

sisted of compacted, dark brown and black sandy loam, containing weathered rock debris,

pieces of charcoal and few artefacts. It represents a reworked surface layer probably compacted

by trampling in the recent past. Layer "a2", defined by Barandiarán as a thin discontinuous

black band with concentrations of charcoal, although partially visible in some areas, was

Fig 11. Stratigraphic sequence and vertical distribution of items recorded in profile 1-O’ South and 1-O’ West. Since some items

could not be plotted in both views due to stratigraphic dip, topographic numbering of items has been included.

https://doi.org/10.1371/journal.pone.0180823.g011

Los Casares cave revisited

PLOS ONE | https://doi.org/10.1371/journal.pone.0180823 July 19, 2017 17 / 54

https://doi.org/10.1371/journal.pone.0180823.g011
https://doi.org/10.1371/journal.pone.0180823


integrated by us in layer r. Layer "a3" (about 5cm) consists of a light grey to greenish-yellow,

densely packed silty clay loam, with inclusions of charcoal, weathered rock fragments and few

Chalcolithic ceramics. At the base of this layer, another thin black band (a4) is found, very rich

in charcoal and Chalcolithic pottery. Layers a3 and a4 are rich in fine silt and clay displaying a

textural contrast to the underlying reddish brown sandy loams of layers b0 and b. The latter

layer contains few gravel and shows some yellowish patches and several discontinuous black

laminae, the lowermost one forming the lower boundary of layer b (about 4 cm thick). In con-

trast to the stratigraphy of Barandiarán (Fig 7A), we identified three sublevels for the sandy

loams of layer c (up to 10 cm thick) as based on differences in colour and degree of compac-

tion. Sublevel c3 was characterized by an orange colour and was only locally preserved. Below

layer c, flowstone of level d0, up to 3 cm thick, was found. It covered heavily cemented reddish

loams of level d, the latter being very rich in animal bone, but lacking any artefacts. Excavation

at 3-R’ stopped after reaching another stalagmitic crust correlating with layer e as defined by

Barandiarán (Fig 7A).

Fig 12. Stratigraphic sequence and vertical distribution of items recorded in profile 6-Q’ North.

https://doi.org/10.1371/journal.pone.0180823.g012
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Although presenting some minor differences concerning sub-layering of stratigraphic lev-

els, sequence described in 3-R’ was also recognized in the other areas excavated in the Seno A

(Figs 9–15). An important difference was however registered in square 6-V’, where a prehis-

toric pit, most probably Neolithic or Chalcolithic, and recorded as layers a5 and a5.1, pene-

trated the clays of layer b (Fig 14).

Detailed micromorphological descriptions of three different profiles are provided in tables

A to C (S1 Appendix) and illustrations of the thin sections including microstratigraphic subdi-

vision of archeological levels are shown in Figs 16–18. In some cases, archeological levels

defined in the field included several sediment layers in thin section, which have been charac-

terised separately, where appropriate. Monoliths 1, 2 and 5 cover most of the sequence includ-

ing layers r to c, whereas monolith 4 covers the lower part of the sequence only, starting with

a4. The profiles show slight differences in stratigraphy as indicated below.

Archeological level r consists of sandy loams rich in charcoal and bone fragments. The sedi-

ment layers detected in thin section are densely compacted. In profile 8-W’, level r can be sub-

divided based on color and composition of coarse materials. At the top, an orange microlayer

is visible, which owes its color to phosphate accumulation probably from bat guano. Level a3 is

rich in silt and clay and contains many partly disintegrating limestone fragments in its upper

part, forming a light grey layer, which is found in all profiles sampled. This layer includes

admixtures of charcoal and siliceous fines, best visible in thin section 5.1, and, in profile 3-R’,

it can be subdivided into two sublayers, the lower of which containing considerably less rock

fragments.

Level a3 overlies the dark coloured level a4. In profile 3-R’, a4 represents a black microlayer,

few mm in thickness, while in the other two profiles sampled it is about 1 cm thick. Level a4 is

mainly composed of fine pieces of charcoal and amorphous burned organic materials,

Fig 13. Stratigraphic sequence and vertical distribution of items recorded in profile 8-W’ North.

https://doi.org/10.1371/journal.pone.0180823.g013
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concentrated in two different microlayers in profile 1-O’. In profile 8-W’, a4 is particularly

rich in small phosphatic coprolites of bat guano.

The underlying sediments have a more reddish or orange brown groundmass. Level b0 is

about 1 cm to 1.5 cm thick, shows a high degree of compaction and is moderately to strongly

enriched in phosphate. In profiles 1-O’ and 8-W’, level b0 has a well-developed subhorizon-

tally-laminated fabric (Fig 19E and 19F). Underlying layers of level b (or b1 in profile 8-W’)

are much less compacted and less enriched in phosphate (e.g. Fig 19A and 19B). In profile

8-W’, this level was subdivided into two layers: b1 consists of sandy loam with bones and cop-

rolites, while b2 represents an intercalation of several clayey or sandy to gravelly microlayers

Fig 14. Stratigraphic sequence and vertical distribution of items recorded in profile 6-V’. Stratigraphic position of two dated charcoals

is shown.

https://doi.org/10.1371/journal.pone.0180823.g014
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in subhorizontal orientation (Fig 19G and 19H). Layer b2 appears to be a locally preserved

water-laid deposit almost free of coprolites, bones or charcoal.

Levels b1 and b2 both contrast in composition and fabric with the underlying sediments,

belonging to level c. Sublevel c1 has been defined in the 3-R’ profile based on field evidence. It

shows a high degree of compaction and can be further subdivided into two layers (c1s1/c1s2),

where the lower part is rich in fines. Level c2 is similar to c1, but rich in coprolites and showing

various pedofeatures as described below. Besides c1 in profile 3-R’ all other sediments of level c

are quite similar in composition, while changes in gravel content and bone may occur, leading

to distinction of separate layers.

The micromass of most sediments has a brown or reddish-brown color and dotted limpid-

ity with black stains in particular in layers of levels a4 and r. Layers rich in carbonate showed

crystallitic b-fabric, whereas stipple-speckled to mosaic-speckled and more rarely undifferenti-

ated b-fabrics were present in other layers.

The pore space consists of many different types of voids, including vughs, complex packing

voids, planes and burrows. Layers with high packing density show few vughs and a massive

microstructure, while in those exhibiting lower packing density complex packing voids

between granules and burrows or chambers can be found besides vughs, which, in combina-

tion, yield a granular or vughy microstructure.

The different amount of micromass is reflected by the presence of diverse coarse/fine

related distribution patterns including close, single-spaced, double-spaced and open porphyric

types.

Corrosion and mechanical disintegration of limestone fragments is relatively strong in lay-

ers of level c and in level a3. Carbonate leaching is indicated by local presence of

Fig 15. Additional views of stratigraphic sequence and vertical distribution of items recorded in profile 6-V’.

https://doi.org/10.1371/journal.pone.0180823.g015
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undifferentiated b-fabrics, as well. Locally, heavily corroded carbonate grains are found in

sand-size pores. Calcite pedofeatures including infillings and coatings indicate precipitation of

secondary carbonates in several layers. Besides calcitic pedofeatures, few other types were

detected. Locally, iron hydroxide or manganese oxide nodules, such as in level b0 of profile

8-W’ were found or animal burrows detected. In addition, phosphate infillings and phosphatic

rims of limestone fragments (Fig 19C and 19D) were found.

A prominent feature in the studied thin sections is the presence of sharp boundaries

between levels or layers delineated by enrichment with small charcoal fragments (e.g., level b

to c1 in profile 3-R’) or manganese precipitates or by remnants of small sedimentary crusts of

fine materials (e.g., between b1s1 and b1s2 of profile 8-W’) (Figs 18, 19E and 19F). In several

cases, the degree of compaction is high directly underneath these sediment interfaces, and

packing density decreases with depth before another boundary is reached (Fig 19A and 19B).

For instance, this is visible across the boundary between levels b0 and b in profile 3-R’. The

various degrees of compaction within one layer and the generally high degree of compaction

in levels r, a3 and b0 most probably relate to trampling. This kind of compacted surfaces with

sharp upper boundaries is found down to level c1 (Figs 16–18).

Fig 16. Thin section scans from profile 3R including microstratigraphic subdivision of archeological levels and presumed former

surfaces of the cave floor, compacted by trampling. Thin sections on the left side were scanned using two polarization foils at 90˚ angle

similar to crossed polarizers (XPL), while the other six were scanned without polarization foil (PPL).

https://doi.org/10.1371/journal.pone.0180823.g016
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Uranium /Thorium dates

U/Th dates obtained for Los Casares-Seno A flowstone samples are shown in Table 1. Since all

samples were collected all along the same speleothem formation in different areas of the Seno

A deposit (Figs 9 and 11), internal layering of samples must be considered for chronological

control. The most recent dates were obtained for the upper layers of S1 (sample S1b) and S3,

Fig 17. The profile of 1-O’ with location of sampling for micromorphology and scans of three thin

sections including stratigraphy and compacted surfaces.

https://doi.org/10.1371/journal.pone.0180823.g017
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corresponding to Marine Isotopic Stage (MIS) 3. This time frame (c. 53–48 ka BP) can be

taken as the period of last speleothem formation in the cave. The older date was obtained in

S1a, thus proposing a minimum age for the beginning of speleothem growth at early MIS 5.

Between these dates (c. 124–48 ka BP), accumulation of the oncolites layer present in S1 was

produced, most probably after c. 72 ka BP if we consider the date obtained in S2. In sum, these

data suggest that speleothem formation at Los Casares-Seno A occurred mainly during the wet

and warm interglacial periods of MIS 5 and MIS 3. A hiatus in this process occurred during

Fig 18. The profile of 8-W’ with location of sampling for micromorphology and scans of three thin

sections including stratigraphy and compacted surfaces.

https://doi.org/10.1371/journal.pone.0180823.g018
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most of MIS 4, when accumulation of oncolites is registered at some parts of the deposit. Simi-

lar processes of long and discontinuous speleothem growth have been recently recorded at

other caves in the Iberian Peninsula [92].

Since obtained ages are in stratigraphic agreement within the speleothem deposit (layer d0),

the most recent date, corresponding to sample S3, can be taken as a terminus post quem for the

Mousterian assemblages of layer c.

Fig 19. Selected areas of thin sections scanned under PPL and XPL conditions for illustration of some

stratigraphic details on a larger scale. The scale bar represents 10 mm. A and B show the prominent dark colored

interface between levels b and c1 in profile 3R. Note the low degree of compaction above the interface and the high

packings density below it. In the upper part, linear accumulation of charcoal and manganese indicate former surfaces. C

and D include a local accumulation of bone fragments with abundant phosphate infillings. Phosphate also precipitated in

the outer part of the limestone gravel on the left. E and F include the sequence from level a3 at the top over a4, b0 to b at

the bottom with sublayers of thin section 5/1. Note the strong compaction and linear lamination of the central layer (b0) and

the remnants of textural surface crusts near the bottom. G and H is a close up of the boundary between b2 (top 3 cm) and c

(bottom cm) in profile 8W. Under crossed polarization foils, the intercalation between clay rich and sandy layers with small

gravel is visible.

https://doi.org/10.1371/journal.pone.0180823.g019

Table 1. Uranium/Thorium dates obtained on speleothem samples collected at Los Casares cave—Seno A.

Sample 238U 232Th 230Th/232Th δ234U 230Th/238U 230Th age 230Th age corrected

ng g-1 ng g-1 Atomic ratio (x10-6) Activity Ratio years BP years BP

S1a 53 728 ± 537 150.82 ± 3.02 4291 ± 300 92.5 ± 2.7 0.756 ± 0.004 125 151 ± 500 124 667 ± 498

S2 4 214 ± 42 10.698 ± 0.214 3502 ± 280 133.5 ± 2.8 0.558 ± 0.003 72 509 ± 254 72 381 ± 254

S3 4 127 ± 41 2.957 ± 0.059 8830 ± 1766 102.6 ± 2.8 0.397 ± 0.002 48 083 ± 187 48 052 ± 187

S1b 6 131 ± 61 10.596 ± 0.208 3921 ± 196 74.2 ± 2.2 0.422 ± 0.008 53 768 ± 785 53 511 ± 780

https://doi.org/10.1371/journal.pone.0180823.t001
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Radiocarbon dates

Table 2 compiles radiocarbon ages for Los Casares-Seno A sequence. Since all attempted

bones failed, only charcoal dates are available. The two samples collected in layer b yielded

Holocene ages, while that collected in layer c falls within MIS 3. Although no other chronologi-

cal markers are available for layer b, where few bones were recorded and just one lithic flake

was found, both dated charcoal for this level are best explained as the result of intrusions com-

ing from the upper part of the sequence. COL3699.1.1 (537–334 cal BP or 1,413–1,617 AD)

was collected in square 2-O, where layer b was found immediately underneath the surface

layer (r) and part of the sequence was cemented and probably disturbed. Exact position of

dated sample was in fact just 3 cm below the surface layer (Fig 11). Although no micromorpho-

logical sample was taken at this square, it seems quite evident that the dated charcoal reflects a

modern incursion into the cave. This hypothesis is consistent with the presence of both arche-

ological materials on the surface, and graffiti on the walls, ranging from the Middle Ages to the

20th century [14–16].

As for COL3698.1.1 (5.6–5.3 ka cal BP), its location in square 6-V is more complex. This

square was affected by a prehistoric pit, probably produced during Chalcolithic or Neolithic

times, penetrating the northern area of the sequence up to layer b0 (Fig 14). Charcoal was not

collected in the disturbed area as identified during fieldwork, but at the base of level b, 26 cm

southward of the pit’s edge. However, considering its proximity to the disturbed area, the most

parsimonious interpretation of the age obtained is that it reflects a Neolithic intrusion of char-

coal into the clays of layer b, thus suggesting that this layer was also disturbed at the southern

area of the square. A counterhypothesis is that layer b is in fact Neolithic, but this is very

unlikely given its sedimentological and geochemical composition, very similar to that of layer

c. Further evidence based on micromammal assemblages found in this layer also points to a

Late Pleistocene age, as it will be discussed below.

COL4208.1.1 (44.9–42.2 ka cal BP) is the only sample collected in layer c and therefore the

only potentially related to the Mousterian occupation of Los Casares-Seno A. Besides this sam-

ple was also taken at square 6-V and no micromorphological analysis was conducted here, the

stratigraphic position and archeological context of this sample ensure its reliability as a chro-

nological marker of the Mousterian occupation for three main reasons. First, it was found

more than 5 cm below the pit, whose lower limits were accurately identified. Second, com-

pacted surfaces, as defined by micromorphological evidence in other profiles, were found

above the dated sample separating layers b0, b and c2, thus suggesting that this part of the

sequence was preserved in situ. And third, the charcoal fragment was not only collected in an

area with a high density of items including a flake (i.e. associated to human activity), but also it

was completely covered by a deer scapula found in horizontal position, thus making very diffi-

cult its putative contamination or intrusion from above. In Fig 20 we illustrate the exact loca-

tion of this charcoal sample. Unfortunately, dating of the scapula covering the charcoal was

unsuccessful due to no collagen yield.

Table 2. Radiocarbon dates obtained on charcoal samples collected at of Los Casares cave-Seno A deposit.

Layer Sample Lab-ID F14C C14 BP δ13C (‰) C (μg) Age cal BC/AD (95,4%) Age cal BP (95,4%)

b Charcoal (Pinus nigra) COL3698.1.1 0.560 ± 0.003 4,653 ± 44 -25.5 999 3,626–3,353 BC 5,575–5,302

b Charcoal (Pinus nigra) COL3699.1.1 0.947 ± 0.004 439 ± 36 -24.4 997 1,413–1,617 AD 537–334

c Charcoal (Coniferae) COL4208.1.1 0.007 ± 0.001 39,494 ± 850 -27.7 899 42,950–40,226 BC 44,899–42,175

https://doi.org/10.1371/journal.pone.0180823.t002
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Pollen

For Los Casares-Seno A sequence, 5 pollen spectra were analyzed and 22 taxa were identified.

To facilitate description and interpretation of the pollen diagram with respect to vegetational

changes, two Local Pollen Assemblage Zones (LPAZs) were established (Fig 21). These zones

denote significant changes in the pollen composition and represent major changes in vegeta-

tion. LPAZ CS1 is dominated by deciduous Quercus (24.8–26.2%), Pinus nigra (10.3–12.6%),

Alnus (8.9–14.3%) and Cichorioideae (10.2–12.3%), as well as by other mesophilous trees

(Tilia, Fraxinus, Acer). As for LPAZ CS2, it is dominated by Pinus nigra (34.1–34.6%), Juni-
perus (9.8–11.5%), Poaceae (11.3–12%), Artemisia (5.1–6.9%), Chenopodiaceae (5.7–6.7%)

and evergreen Quercus (5.7–5.9%). A PCA biplot of the sample scores of individual spectra

and loading (eigenvectors) for the pollen types of Los Casares-Seno A record is shown in

Fig 22. The PCA biplot shows a clear separation between samples of both LPAZs. The first two

axes explain 96% of the variance in the dataset. Evergreen Quercus, Helianthemum, Chenopo-

diaceae, Juniperus, Pinus nigra, Cytisus/Genista, Poaceae and Artemisia have high positive val-

ues on PCA axis 1, which explains 93% of the variance in the dataset, while deciduous Quercus,
Acer, Tilia, Salix, Prunus spinosa, Alnus, Pistacia terebinthus and Fraxinus are found on the

negative side of PCA-1. These data suggest that the first component discriminates between

mesophilous forests (negative values; LPAZ CS1) and pollen spectra representing black pine

woodlands and shrublands (Juniperus, Cytisus/Genista) (positive values; LPAZ CS2). The sec-

ond axis (PCA-2: 0.3%) does not show a clear discrimination between pollen taxa.

Fig 20. Location of charcoal sample COL4208.1.1. in square 6-V’. A: General view of the excavation of level c2 in square 6V’. B:

Detailed view of a deer scapula and associated faunal and lithic remains. C: Charcoal remains collected for radiocarbon dating below the

deer scapula.

https://doi.org/10.1371/journal.pone.0180823.g020
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Fig 21. Percentage pollen diagram from Los Casares cave-Seno A site.

https://doi.org/10.1371/journal.pone.0180823.g021

Fig 22. PCA biplot from Los Casares cave-Seno A site showing ordination of samples and pollen taxa.

https://doi.org/10.1371/journal.pone.0180823.g022
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Microvertebrates

After analysis of the 102 samples containing microfaunal remains, assemblages identified at

Los Casares-Seno A are mainly composed of small mammals, although some bone fragments

of fish, amphibian, reptile, and bird are present, albeit scarce and bad preserved. The small

mammals are species of the orders Chiroptera (bats), Eulipotyphla (insectivores), Lagomorpha

(rabbits) and Rodentia (mice), although the three first Orders are very poorly represented.

Note that some medium-sized rodents are described in the large mammal section (see 4.8.).

Table 3 and Fig 23 show the stratigraphic distribution of remains and MNI corresponding to

these species in Los Casares-Seno A. Specimens are grouped in 25 taxa (S), the majority of

which were determined to the species level.

The species of bats is Myotis Myotis gr. myotis/blythii and it is represented by only one

molar (Fig 24) and one canine in the layer b. Insectivores are also represented by a single spe-

cies, the hedgehog Erinaceus uropaeus, a molar of which was found in layer c. Rodents are the

most represent taxa, both in species and in MNI. There are 12 species, three of which are

extinct: Pliomys lenki, Allocricetus bursae, and Hystrix sp. The rest, including Eliomys quercinus,

Table 3. Microfaunal remains identified in Los Casares cave-Seno A.

Level r a5 b c

Fishes 0 0 0 2

Reptiles and amphibians 0 0 1 9

Birds 0 4 4 10

Chiroptera indet. 0 1 1 6

Rhinolophus sp. 0 0 0 1

Myotis sp. 0 0 1 1

Erinaceus europaeus 0 0 0 6

Carnivora indet. 0 1 0 6

Mustela sp. 0 0 0 3

Rodentia indet. 0 2 1 9

Sciurus vulgaris 0 0 0 2

Hystrix sp. 0 0 0 1

Eliomys quercinus 0 0 0 2

Allocricetus bursae 0 0 0 2

Apodemus sylvaticus-flavicollis 0 0 1 3

Arvicolinae indet. 0 0 0 9

Arvicola sapidus 0 1 2 12

Microtus agrestis 0 1 3 7

Microtus arvalis 0 1 3 9

Terricola duodecimcostatus 0 1 1 5

Terricola sp. 0 0 0 2

Iberomys cabrerae 0 1 2 8

Clethrionomys glareolus 0 0 0 1

Pliomys aff. lenki 0 0 1 3

Lagomorpha 1 4 5 63

#samples 2 6 7 87

#Taxa (S) 1 10 13 25

MNI 1 14 22 162

“#samples” refers to the number of plastic bags collected for the small vertebrate study.

https://doi.org/10.1371/journal.pone.0180823.t003
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Apodemus sp., Arvicola sapidus, Microtus agrestis, M. arvalis, Terricola duodecimcostatus, Terri-
cola sp. and Iberomys cabrerae, are living today in the Iberian Peninsula (Figs 23 and 24).

The upper molar (M1d) of Allocricetus bursae has the same size (length = 2,14 mm,

width = 1,48 mm) as recorded in other Iberian Middle and Late Pleistocene sites [93]. Note

Fig 23. Distribution of small vertebrates identified in Los Casares cave-Seno A. A: Percentage of

identified taxa per stratigraphic layer. B: Distribution (#) of analyzed samples, identified taxa (S) and Minimum

Number of individuals (MNI).

https://doi.org/10.1371/journal.pone.0180823.g023
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that some authors classify A. bursae as Cricetulus. We consider that the species C. migratorius,
the extant Asiatic hamster, is smaller and exhibits more simple traits on the occlusal surface of

the molars [77]. The same applies to m1 specimens of Pliomys lenki (length = 3,3 mm,

width = 1,3 mm), which are similar in morphology and size to those recovered in the Late

Pleistocene sequence of El Mirón cave (Cantabria) [94].

Wood charcoal

Charcoal preserved at the site is scarce and remains were scattered throughout the excavated

area in levels b and c. Only a relevant concentration of charcoal fragments, collected both by

Fig 24. Selected specimens from level c of Los Casares cave-Seno A. A: m1d of Iberomys cabrerae. B:

m1s of Pliomys lenki. C: m1d of Microtus arvalis juvenile (cement not drawn). D: m1d of Microtus agrestis (the

lingual points of the salient angles are digested) E: M1s of Myotis sp. F: M3s of Arvicola sapidus. G: lower

incisor of Sciurus vulgaris. H: M1d of Allocricetus bursae. The scale bar in each figure represents 1mm,

except for figure G, where it is 2mm.

https://doi.org/10.1371/journal.pone.0180823.g024
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hand and flotation, was recorded at square 6-V’. However, most of these charcoals come from

layer a5, defined as a Holocene intrusion, and hence they have no relevance for studying Mid-

dle Paleolithic environments (Fig 14). In general terms, since amount of charcoal remains

recovered at this site is very low, results, compiled in Table 4, should be considered carefully.

Samples of levels c and b show a very low taxonomic diversity, since Scots pine type (Pinus
t. sylvestris-nigra) was the only identified species. In level c some remains could only be

assigned to Coniferae due to the small size of the remains. Concerning level a5, in addition to

pine, several angiosperms have been identified: ash (Fraxinus sp.), oak (Quercus sp. Decid-

uous), holm-kermes oak (Quercus sp. Evergreen), Leguminosae and an unidentifiable

angiosperm.

Phytoliths

A total of 384 phytoliths corresponding to 20 different morphotypes were identified in the

samples, of which 167 phytoliths corresponded to c1, 210 to c2 and only 7 to c3. Due to the

low amounts of phytoliths found in the latter, this sample was not included in the study.

Weathering of phytoliths represented around 20% of the total phytolith assemblage (Table 5).

Samples c1 and c2 showed an abundant presence of phytoliths from the Poaceae (grass)

family with 53.3% in c1 and 43% in c2. Within this family, short cells of the rondel type repre-

sented 19,8% in c1 and 11.9% in c2 of the total phytolith counting (Fig 25A) and (Table 6).

Short cell rondels are common in the C3 photosynthetic Pooideae grass subfamily, which is

common in the Mediterranean area and characteristic of a temperate and humid climate

(Twiss et al., 1992, Piperno 2006). Short cell saddles (Fig 25B) characteristic of the C4 Chlori-

doid grass subfamily and common in drier and warmer environments were also noticed but in

lower amounts (around 2.4%). Other grass morphotypes representing different plants parts

such as leaves (bulliforms, crenates, etc.) (Fig 25C) as well as the inflorescence (elongates echi-

nate, dendritic, papillae, etc.) (Fig 25D) were also recognized in the samples. Characteristic

Table 4. Wood charcoal identified in Los Casares cave-Seno A.

Layer c b a5

Unidentifiable angiosperm 1

Coniferae 6 3

Fraxinus sp. 1

Leguminosae 1

Pinus t. sylvestris-nigra 7 7 14

Quercus sp. deciduous 3

Quercus sp. evergreen 1

TOTAL 13 7 24

https://doi.org/10.1371/journal.pone.0180823.t004

Table 5. Main phytolith results.

Sample ID AIF % # of Phytolith morphologically identified Dissolution %

c1 82.35 167 21.56

c2 73.72 210 18.57

c3 80.80 7

% of Acid Insoluble Fraction (AIF), number of phytoliths morphologically identified and percentage dissolution of phytoliths.

https://doi.org/10.1371/journal.pone.0180823.t005
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sedge (Cyperaceae) phytoliths were noted and represented between 1.2 and 2.4% of the total

phytolith counting [59, 60, 95].

Phytoliths from arboreal woody taxa, most probably dicotyledonous plants, were identified

in both samples (16.2% in c1 and 20.5% in c2). Nevertheless we cannot disregard the presence

of conifers, since some morphotypes such as blocky and tracheids may be found in both

groups [56] (Table 6).

In general terms, both phytolith assemblages are very similar and show a predominance of

grasses, especially of the Pooideae grass subfamily (C3) and to a lesser extent of the Chloridoi-

deae grass subfamily (C4). Morphological identification also shows the presence of plants

belonging to the Cyperaceae family, as well as woody plants (Dicotyledonous and possibly

Coniferae). This arboreal presence is even more significant considering that phytolith produc-

tion in grasses is substantially higher than in woody taxa (up to twenty times higher), especially

in Mediterranean-Alpine environments [61, 96, 97].

Macrovertebrates

A detailed taxonomic and taphonomic analysis of macrofaunal remains has only been possible

for level c. Level b has yielded just 52 remains, of which only 8 could be identified as Oryctola-
gus cuniculus. Remains from level d, only excavated in square 3-R’, have been also included in

this study, although they represent a very uninformative sample composed of few remains of

Fig 25. Microphotographs of phytoliths identified at level c Los Casares cave-Seno A. Pictures were

taken at 400x. A) Rondel short cell; characteristic of Pooideae grass subfamily; B) Saddle short cell

characteristic of the Chlorodoideae grass subfamily; C) Crenate; phytolith characteristic of Pooideae grass

subfamily (Gramineae); D) Elongate echinate from inflorescence of Poaceae (Gramineae).

https://doi.org/10.1371/journal.pone.0180823.g025
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herbivores and carnivores (Tables 7 and 8), where bear is the most represented species both in

NISP and MNI.

At level c, the study of bone assemblages excavated in the 2014 and 2015 seasons has con-

firmed previous suggestions [19] pointing out a bias in the recording of bone fragments during

the 1960’s excavations. The low presence of undetermined material in the latter compared to

the new assemblages (Table 7) suggest that an artificial selection was made during the excava-

tion process, most probably due to an absence of sediment wet-screening. However, the higher

diversity of herbivores in the 1960’s assemblage (Table 7) is best explained by the larger size of

the excavated area. Concerning carnivores, both assemblages show an equivalent abundant

sample (Table 7). Together with a higher presence of cranial remains in the old assemblage

(see below), this evidence suggests that data from the two assemblages should be presented

separately (Table 7 and Table F in S1 Appendix). However, since it is clear that both assem-

blages come from the same stratigraphic context and they both present similar taxonomic and

taphonomic profiles, these limited recording biases did not prevent us of considering results

together.

Considering both assemblages from the 1960’s and recent excavations, level c has yielded

more than 1,300 faunal remains and a minimum number of 48 individuals. It shows a high tax-

onomic diversity, with Iberian ibex as the most represented herbivore species, but also includ-

ing large bovids, horses, wild asses, deers, roe deers, chamois and wild boars. Among

carnivores, the most abundant groups are hyenids and ursids, but canids and felids are also

well represented (Table 7). Considering MNI, animals typical of rocky environments, such as

Iberian ibex and chamois, are the most relevant, followed by deer. As for carnivores, bear is

the most represented with 4 individuals (Table 8). Mortality patterns show that adult

Table 6. Phytolith morphotypes identified in level c of Los Casares cave—Seno A.

Phytolith Morphotypes c1% c2% Plant attribution

Blocky 3.0 10.0 Dicotyledon / Pinophyta

Tracheid 0.0 1.4

Spheroid 1.8 1.0 Dicotyledon

Hair 11.4 8.1

Elongate Psilate 21.6 25.2 Monocotyledon

Silica Skeleton (ElongatePsilate) 1.2 0.5

Cone 1.2 1.9 Cyperaceae (Sedge)

Hat Shaped 0.0 0.5

Polylobate 9.6 4.8 Poaceae

Trapeziform 9.0 4.3

Elongate Echinate 4.2 4.3 Poaceae (Inflorescence)

Elongate Dendritic 0.6 1.9

Papillae 0.0 2.9

Elongate Sinuate 3.6 1.9 Poaceae (Leaf/Culm)

Bulliform 4.2 5.7

Bilobate Trapeziform 0.6 1.0 Poaceae (Panicoideae/Pooideae)

Rondel short cell 19.2 11.9 Poaceae (Pooideae C3 subfamily)

Crenate 0.0 1.9

Saddle short cell 2.4 2.4 Poaceae (Chloridoideae C4 subfamily)

Phytolith Unidentified 6.6 8.6 Indeterminate

Attribution of phytolith morphotypes to plant taxa, plant parts and types of vegetation is shown.

https://doi.org/10.1371/journal.pone.0180823.t006
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individuals dominate the faunal assemblage, both for carnivores and herbivores. Infant or

juvenile-prime adults individuals have only been identified for Iberian ibex, chamois, deer and

large bovid (Table 8).

Skeletal profiles for level c are biased by the low number of remains recorded for most ani-

mal species, with only lagomorphs being above 100 remains. Cranial elements are the most

represented, ant teeth sum up to more than 50% of the sample for all taxa (Tables D and E in

S1 Appendix). This preeminence of cranial elements, including teeth, is more striking when

considering only the 1960’s assemblage (Table F in S1 Appendix), and hence could be related

to a recording bias during the old excavations, as described above.

Among lagomorphs, all anatomical portions are found, but metapodials and phalanges

account for 50% of remains (Table D in S1 Appendix). Concerning level d, skeletal profiles,

dominated by teeth, are not considered representative due to the low amount of available fau-

nal remains (Table G in S1 Appendix).

Table 7. Taxonomical representation of Los Casares cave-Seno A faunal assemblages.

Level C D

1960’s 2014–2015 All

NISP NISP NISP % % partial NISP %

Rhinocerontidae 17 17 1,3 6,7

Bos / Bison 9 9 0,7 3,5 2 2,4

Equus ferus 42 1 43 3,3 16,9 1 1,2

Equus hydruntinus 3 3 0,2 1,2

Cervus elaphus 36 4 40 3 15,7

Dama sp 1 1 0,1 0,4

Capreolus capreolus 1 1 0,1 0,4

Capra pyrenaica 85 14 99 7,5 38,8 3 3,5

Rupicapra rupicapra 32 32 2,4 12,5

Sus scrofa 10 10 0,8 3,9

Ursus spelaeus 20 2 22 1,7 19,3 32 37,6

Crocuta sp 24 8 32 2,4 28,1

Canis lupus 12 4 16 1,2 14 1 1,2

Panthera pardus 4 4 0,3 3,5 6 7,1

Lynx pardinus 5 2 7 0,5 6,1

Felix silvestris 10 1 11 0,8 9,6

Cuon alpinus 3 1 4 0,3 3,5

Meles meles 0 1 1 0,1 0,9

Vulpes Vulpes 13 4 17 1,3 14,9

Carnivore indet. 5 3 8 0,6

Castor fiber 4 4 0,3

Oryctolagus cuniculus 105 151 256 19,4 5 5,9

Birds indet. 6 6 0,5

Indet. large size 15 32 47 3,6 8 9,4

Indet. medium size 1 3 4 0,3

Indet. small Size 6 56 62 4,7 2 2,4

Indetermined 46 516 562 42,6 25 29,4

Total 515 803 1318 85

Faunal assemblages from level c include remains from both old (1960’s) and recent (2014–2015) excavations. “% partial” refers to total of carnivores or

herbivores.

https://doi.org/10.1371/journal.pone.0180823.t007
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Taphonomic analysis of level c depicts a well-preserved assemblage, but showing an impor-

tant skeletal bias towards the denser bones, especially cranial remains (Tables D and E in

S1 Appendix), probably related to the bias recording of the 1960’s fieldworks (Table F in

S1 Appendix). Weathering is only slightly recorded in bone surfaces, and the incidence of bio-

chemical alteration is documented in less than 15% of the bones. Trampling affects to 2.5% of

the bones, while hydric modification as showed by polishing, abrasion or carbonates, has been

documented in less than 5%. Regarding types of breakage, only 10% of bones larger than 30

mm shows dry pattern, while green fractures have been recorded in 20%. The remaining 70%

of bones show indeterminate breakage patterns. Therefore, impact of these processes on the

faunal representation is not relevant.

Carnivore action has been also recorded in level c, but not in a prominent way considering

that bones recording tooth marks are scarce in most taxa (Table 9). However, it is very likely

that carnivores were responsible for the disappearance of several osseous portions as showed

by (1) the mentioned teeth marks, (2) the presence of corrosion marks caused by digestive

Table 8. Taxonomical representation of Los Casares cave-Seno A according to MNI.

Level c d

MNI MNI % % Partial MNI %

A/J/I A/J/I

Rhinocerontidae 1 1 2.1 4.3

Bos / Bison 1/1/0 2 4.2 8.7 1 12.5

Equus ferus 2 2 4.2 8.7 1 12.5

Equus hydruntinus 1 1 2.1 4.3

Cervus elaphus 3/1/0 4 8.3 17.4

Dama sp 1 1 2.1 4.3

Capreolus capreolus 1 1 2.1 4.3

Capra pyrenaica 6/1/0 7 14.6 30.4 1 12.5

Rupicapra rupicapra 2/1/0 3 6.3 13

Sus scrofa 1 1 2.1 4.3

Ursus spelaeus 3/1/0 4 8.3 33.3 1/1/0 25.0

Crocuta sp 1 1 2.1 8.3

Canis lupus 1 1 2.1 8.3 1 12.5

Panthera pardus 1 1 2.1 8.3 1 12.5

Lynx pardinus 1 1 2.1 8.3

Felix silvestris 1 1 2.1 8.3

Cuon alpinus 1 1 2.1 8.3

Meles meles 1 1 2.1 8.3

Vulpes vulpes 1 1 2.1 8.3

Castor fiber 1 1 2.1

Oryctolagus cuniculus 10 10 20.8 1 12.5

Aves indet. 2 2 4.2

Indet. large size

Indet. medium size

Indet. small Size

Indet

Total 48 8

Faunal assemblages from level c include remains from both 1960’s and recent excavations. “% partial” refers to total of carnivores or herbivores. A: Adult, J:

Juvenile and prime adult; I: Infant.

https://doi.org/10.1371/journal.pone.0180823.t008
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processes in some lagomorph bones, (3) the relative high amount of carnivores in the assem-

blage and (4) the absence of axial bones, such as ribs and vertebrae, coupled with the predomi-

nance of dense bones, such as teeth or lower appendicular limb bones. In the bone assemblage

of layer d no carnivore alterations have been observed.

Concerning human activity, although no percussion marks have been observed in layer c, a

limited number of cut marks has been recorded on remains corresponding to Iberian ibex,

rabbit and wild ass (Table 9). While these marks denote some kind of human action on some

animal species, they are not abundant enough to propose any conclusion in terms of economic

behavior or subsistence strategies. No evidence of human action has been recorded on the fau-

nal assemblage of layer d.

In sum, faunal assemblages of Los Casares-Seno A can be considered as produced basically

by carnivore action, and only sporadically by humans in layer c.

Lithic assemblage

In Table 10 we show all technological categories described for the lithic assemblage of Los

Casares-Seno A level c, and in Fig 26 we present the chaîne opératoire stages identified. Despite

the low quantity of artefacts found at the site, it is noteworthy the high proportion of products

corresponding to the consumption and abandonment stage (68.2%), being the rest assigned to

the exploitation phase (31.8%). No elements have been related to the initialization phase. This

predominance of consumption products is even higher when considering only artefacts made

on flint (71.8%), while in the case of quartzite is significantly lower but still high (58.3%). Fur-

thermore, most of these products are not simply retouched flakes, but formal tools, especially

sidescrapers. All blanks are flakes except for one sidescraper on blade and one raw blade, both

produced on flint.

Retouched products, highly dominated by sidescrapers (Table 10), are mostly configured

on blanks produced by recurrent centripetal Levallois methods as shown by centripetal scars

on dorsal surfaces and facetted platforms (Fig 27). Some of these tools present evidences of

recycling processes, such as exploitation of ventral surfaces, thus generating ‘core on tools’

pieces (Fig 27.7). A low number of small rejuvenation flakes produced during the resharpening

of sidescrapers’ edges has been also found.

Table 9. Main bone alterations documented in level c.

Level c %CM %TM

Equus hydruntinus 50

Cervus elaphus 8

Capra pyrenaica 3.2 13

Rupicapra rupicapra 20

Sus scropha 50

Ursus spelaeus 10

Canis lupus 40

Felix silvestris 1.1

Carnivore indet 50

Oryctolagus cuniculus 0.4 5.2

Indet.large size 4.3 2.1

Indet. medium size 10

Total bone remains 3.2

CM: Cut marks, TM: tooth Marks.

https://doi.org/10.1371/journal.pone.0180823.t009
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All these features suggest that the lithic assemblage preserved in level c of Los Casares-Seno

A, undoubtedly reflecting a typical Middle Paleolithic technology, is mostly related to con-

sumption activities. No knapping processes, besides some recycling or maintenance tasks,

were developed at this part of the cave, which was perhaps focused on specialized activities as

shown by the high presence of sidescrapers and other domestic tools.

Table 10. Technological categories with respect to lithic raw materials identified at level c of Los Casares cave-Seno A.

Technological categories Flint Quartzite Total

Raw flake 4 4 (9.1%)

Raw blade 1 1 (2.3%)

Débris 1 1 2 (4.5%)

Core-maintenance by-product 1 4 5 (11.4%)

Rejuvenaton flake 2 2 (4.5%)

Retouched flake 2 2 (4.5%)

Sidescraper on flake 15 3 18 (40.9%)

Sidescraper on blade 1 1 (2.3%)

Retouched point 3 3 (6.8%)

Denticulate on flake 2 2 (4.5%)

Truncation on flake 1 1 (2.3%)

Exhausted Levallois core 1 1 (2.3%)

Core on flake 2 2 (4.5%)

Total 32 (72.7%) 12 (27.3%) 44 (100%)

https://doi.org/10.1371/journal.pone.0180823.t010

Fig 26. Mousterian lithic artefacts recorded in level c of Los Casares cave-Seno A according to the

chaı̂ne opératoire stages. Note that stage I (Initialization) is totally absent.

https://doi.org/10.1371/journal.pone.0180823.g026
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Concerning level b, only one flint flake was recovered during fieldworks. Although this

finding suggests that previous contentions that this layer was sterile [14] were probably wrong,

it does not suffice to make any chrono-cultural assignment for it.

Discussion

Site formation processes

Micromorphological analyses have shown compelling evidence for site formation processes of

the Seno A deposit. Level d0 represents differentially crystallised stalagmitic crusts and flow-

stones several cm thick and accumulated by chemical precipitation over a long period of time.

Although the lateral continuity of the well-crystallised crust in profile 3-R’ is limited, level d0

represents a good stratigraphic marker for the unconsolidated overlying deposits.

Sediment composition and fabric of levels c and b suggest that they originate from an inter-

play of different transport and deposition processes within Seno A. Subsurface flow in the

vadose zone of the cave system and possibly infiltration of fines through cracks has accumu-

lated diverse carbonate and siliclastic mineral grains including well-rounded limestone boul-

ders, siliceous gravel or phyllosilicate clay. In-situ remnants of water-laid deposits are

Fig 27. Mousterian lithic artefacts from level c of Los Casares cave-Seno A. Sidescrapers (1,3,4 6–7), denticulate (2) and point (5). All

artefacts come from the 1960’s excavations (curated in the Museo Arqueológico Nacional, Madrid) except 3, which was recovered in our

recent excavations. Item 7 is a sidescraper recycled into a core.

https://doi.org/10.1371/journal.pone.0180823.g027
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preserved as intercalation of sand/fine gravel with silt/clay in level b2 of profile 8-W’. Although

local concentration of well-rounded gravel, such as in layers b and cs4 of profile 1-O’, also

reflect changes in flow velocity, these gravel do not appear in extended pockets or beds. Hence,

in all layers except of b2, subaqueous deposition is not clearly indicated.

The contribution of roof-fall during accumulation of levels c to r was probably limited,

because few angular to subangular limestone fragments were found. In the grey layers of level

a3 limited roof-fall is included. The small rock fragments disintegrate leaving a clayey loam

with reprecipitated calcite grains behind. This weathering product probably formed in water-

filled basins of the cave floor.

During sediment accumulation of levels c, b0 and r, considerable zoogenic inputs of bat

guano and carnivore coprolites occurred. In addition, bone constitutes a major component of

most levels, but its origin may be related to both animals and humans. Charcoal is related to

anthropogenic input, while the low numbers of charcoal in sediments from sediments below

level a4 may at least partly be related to microbial degradation.

Postdepositional processes include corrosion and mechanical disintegration of limestone

fragments and calcite grains. Carbonate leaching is indicated by local presence of undifferenti-

ated b-fabrics, as well. Locally, heavily corroded carbonate grains are found in sand-size

pores. Calcite pedofeatures including infillings and coatings indicate precipitation of second-

ary carbonates in several layers. This shows, that both partial leaching of carbonates and pre-

cipitation of secondary carbonates occurred, with stronger intensities in the lower part of the

sequence, probably related to a longer period of time encompassed with sediments of level c.

Besides calcitic pedofeatures, few other types of pedofeatures were detected. Locally, iron

hydroxide or manganese oxide nodules, such as in level b0 of profile 8-W’ were found. Overall,

few indicators of post-depositional mixing by sediment dwelling animals were detected in thin

section.

A prominent feature in the studied thin section is the preservation of sediment boundaries

showing accumulation of small charcoal fragments or manganese precipitates at the former

surface or remnants of small sedimentary crusts of fine materials. The often high degree of

compaction directly underneath these sediment interfaces or in whole layers clearly point to

trampling effects during or after the accumulation of the layers. This is very obvious in sedi-

ments from the current cave floor down to level c1. The sequence thus clearly shows good

preservation of layering, except of in its lower part (archeological level c) which neither shows

clear evidence of mixing such as burrows nor of preservation of former surfaces, compacted

parts or primary deposition by running water.

In sum, micromorphological features support the field distinction between dark or light

grey sediments of levels r to a4, and the reddish-brown deposits of levels b0 to c. The sediment

sequence in Seno A is well-stratified, particularly in the upper part down to above level c

where remnants of several former trampled cave floors are preserved as indicated by character-

istic sediment features. Mixing across boundaries between archeological levels was therefore

very limited and hence the deposit can be considered as mostly in situ, at least in analyzed sam-

ples. The intensity of post-depositional changes including carbonate leaching and precipitation

as well as precipitation of phosphate is higher in level c and b0 than in the upper levels, proba-

bly related to a longer time of exposure to this kind of diagenetic changes.

Chronological and paleoenvironmental framework

Despite problems experienced with collagen-depleted bones, two independent chronometric

methods place the Neandertal occupation of the Seno A within the middle-advanced stages of

MIS 3. As the U-series ages obtained for layer d0 flowstone provide a terminus post quem of c.
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48 ka BP (sample S3) for layer c, radiocarbon date of 44.9–42.2 ka cal BP obtained in this layer

can be taken as a reliable approach to its age. This chronology, which is also consistent with

biostratigraphic data provided by micromammal analysis, places the Middle Paleolithic occu-

pation of Los Casares cave-Seno A within the final stages of the Neandertal presence in interior

Iberia as currently documented. Although no reliable chronometric evidence is available for

layer b, and its archeological content is uncertain and non-diagnostic, paleoenvironmental

data gathered at this layer provide useful insights into its potential age and implications, as it

will be discussed below.

Paleobotanical and microfaunal evidence presented in this study has substantially improved

previous knowledge of the environmental and climatic framework where Los Casares’ Nean-

dertals lived. Taken together, pollen, microvertebrates, charcoal and phyotlith data firmly

point to a relatively temperate and humid interval within MIS 3 for level c. The presence of

taxa such as Acer, Tilia, Salix, Alnus, Pistacia terebinthus, Fraxinus and deciduous Quercus in

pollen samples collected in this level indicates a relatively forested Pyrenean oak landscape

enriched in mesophilous trees and shrubs with some black pines [98]. The contention that cen-

tral Iberia contained deciduous oak populations during glacial stages [99] is supported by our

results, at least for MIS 3. In this sense, the study area can be considered as a glacial refuge for

deciduous oaks and other Late Pleistocene temperate taxa, probably associated with higher

water availability along river valleys, as has been reported for other nearby sites during MIS 2

[100].

Concerning the microvertebrates, the presence of forest-dwelling taxa, such as Sciurus vul-
garis and Apodemus, Mediterranean species such as Eliomys quercinus and Hystrix sp., as well

as species adapted to humid habitats such as Castor Fiber, Arvicola sapidus and Iberomys cab-
rerae, also suggest a warm and humid environment for level c [54, 101–102]. The absence of

cold-indicator taxa in this level, such as the snow and tundra voles, is also of relevance here.

Evidence shown by proxies reflecting a more anthropogenic input into the site is in agree-

ment with the pollen and microvertebrate results. Phytolith data gathered at level c also point

to humid and warm environments, as shown by the high presence of Pooideae and Chloridoi-

deae grass subfamilies and woody plants such as dicotyledonous, which are indicative of wood-

land landscapes and grassland or shrubs areas [59–60, 65, 96]. Although charcoal data have

been limited to the presence of Pinus t. sylvestris-nigra, this is best described as evidence

reflecting the trees supplying the fuel collected by Neandertals around the cave, as documented

in many sites in Iberia during MIS 3 [103, 104].

Despite the scarcity of archeological or paleontological sites yielding paleoenvironmental

data assigned to MIS 3 in interior Iberia, a good parallel for the paleoecological framework

reconstructed at Los Casares can be found at Zarzamora Cave (Segovia). This site, very close to

the northern foothills of the Central System range, is also dominated by Quercus and presents

a micromammal assemblage reflecting temperate and humid conditions [105]. In the southern

part of the Central System range, the MIS 5 site of Camino, in Pinilla del Valle [52, 106] also

shows similar micromammal assemblages, albeit including some cold-indicators taxa which

are absent in Los Casares-Seno A level c. Beyond the Meseta, but still in an interior region of

Andalucı́a, microfaunal evidence from Carihuela cave (Granada) correlates well with Los

Casares-Seno A assemblage, as reflected in the presence of Allocricetus bursae, the arvicolines

Iberomys cabrerae, Pliomys lenki and the water vole Arvicola sapidus [107].

Taking together paleoenvironmental and chronometric evidence, layer c of Los Casares

cave-Seno A is most probably correlated with Greenland Interstadial 11, starting at 43.3 ka BP

on the NGRIP δ18O timescale [108] (Fig 28). However, overlying layer b shows a very different

paleoenvironment composition, pointing to a later phase probably correlated with subsequent

stadial phases. LPAZ CS2, corresponding to level b, reflects a cold and arid climatic period
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dominated by Pinus nigra, evergreen Quercus, Helianthemum, Juniperus, Cytisus/Genista, Poa-

ceae and Artemisia. It thus demonstrates the climatic variability within the MIS 3 in inland

Iberia, and suggests the existence of relatively open black pine woodlands with some holm oak

stands, grasslands and an abundant shrub cover of broom communities and juniper [109,

110]. This is consistent with microfaunal evidence, as seen in the reduction in the number of

taxa identified in level b with respect to c. Also, the disappearance of forest-dwelling taxa that

were present in level c, such as Sciurus vulgaris and Apodemus species, and of Mediterranean

indicators such as the dormice, Eliomys quercinus, or the wood mouse, most probably record

an increasingly colder climate in layer b. In this context, survival of species such as Arvicola
sapidus and Iberomys cabrerae, both related to humid habitats [101], is best explained consid-

ering that they were probably less affected by climatic stress than the Woodland-Mediterra-

nean indicators [54, 102].

Despite four radiocarbon attempts, there is no reliable chronometric evidence for layer b,

which yielded only 52 macrofaunal remains and a single non-diagnostic flake. However, given

chronometric results for levels c and d0, coupled with the paleoenvironmental and geochemi-

cal evidence described above, it is very likely that level b corresponds to a stadial phase follow-

ing GI 11 as recorded in layer c. On this matter, the presence in layer b of the rodent species

Pliomys lenki, which went extinct during the Late Pleistocene, points to a MIS 3 chronology.

While the last appearance datum (LAD) of this species in northern Iberia is around 14 ka cal

BP [113], its presence in the central and southern regions of the peninsula, although not radio-

metrically dated at the sites of Cova Negra [114] and Carihuela [115], suggest a LAD within

MIS 3 [113]. Therefore, the most parsimonious interpretation is that layer b is of MIS 3 age,

and most probably not much more recent than layer c, as also supported by sedimentological

and geochemical data. Thus, GS 11, GS 10 or even Heinrich Stadial 4 (H4), spanning from c.

42 to 38 ka years ago [108, 116], are the most plausible correlations for layer b, and hence for a

tentative phase of occupation at Los Casares reflecting a very scarce presence in the cave, at

least for the interior area of Seno A. A subsequent hypothesis is that layer b indeed reflects the

final stages of Neandertal presence in Los Casares, occurring sometime between c. 42 and 38

ka cal BP, and perhaps also the very last occupation of this high area of the Iberian interior due

to climatic deterioration. However, given the scarce archeological content of layer b, some fur-

ther reflections on this hypothesis will be made below.

Fig 28. Correlation of radiocarbon calibrated date COL 4208.1.1 with Greenland Interstadials against

the NGRIP δ18O record [111–112]. U/Th sample 3 is shown as a terminus post quem for the Middle

Paleolithic layers.

https://doi.org/10.1371/journal.pone.0180823.g028
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The last Neandertals of interior Iberia

Since the late 1980’s, the center and south of the Iberian Peninsula has been considered a sort

of refuge where the last Neandertals persisted long after the first Modern Humans arrived to

the north of the Peninsula and the rest of Europe [2, 23, 107, 117–124]. More recently, some

authors have argued for a Neandertal survival south of the Ebro basin until at least c. 36.7–34.5

ka cal BP [5, 31], while others propose dates of c. 32–28 ka cal BP for the extreme southern

regions of Iberia [4, 7]. Considering that dates for the appearance of the Proto-Aurignacian in

the north of Iberia are well established around 42 ka cal BP [8, 125], a millennial coexistence

between Neandertals and Modern Humans at the peninsular scale was accepted by most

researchers until recently. However, in the very last years, new research focusing on the chro-

nometric evidence [9, 28], and especially on new radiocarbon-dating projects based on ultra-

filtration pretreatment of bone samples [6, 29], have questioned the late Neandertal survival

model, thus supporting previous criticisms already raised by some scholars [126–128]. After

refuting previously accepted late chronologies at the sites of Zarafarraya (Málaga) and Jarama

VI (Guadalajara), and questioning the dates obtained in Gorham’s cave (Gibraltar), Carihuela

(Granada), Gruta da Oliveira (Portugal) and Sima de las Palomas (Murcia), Wood et al. [6]

have proposed a new probable scenario whereby Neandertal and Modern Human populations

in Iberia did not co-exist and Middle Paleolithic sites do not occur after 42 ka cal BP. This is a

relevant proposal, since it contradicts decades of acceptance of the late Neandertal survival

hypothesis as the paradigmatic model.

However, the hypothesis of a not-so-late Neandertal population breakdown south of the

Ebro basin has already received some criticism [26–27]. Both in the Mediterranean and Atlan-

tic southern coasts of Iberia, some sites still suggest a post-42 ka cal BP chronology for the last

Neandertal presence at the peninsula. Gorham’s cave (Gibraltar) [4, 7], Oliveira (Portugal)

[25], Carihuela (Granada) [27, 129], Sima de las Palomas (Murcia) [130] and Cueva Antón

(Murcia) [31] provide both chronometric and paleoecological data suggesting a persistence of

Mousterian contexts after 42 ka cal BP. Despite the cases of Gorham and Carihuela have

received strong criticism [6, 23, 131], dates obtained for Oliveira, Cueva Antón and Sima de

las Palomas, although not without problems [6], remain unchallenged by means of new chro-

nometric results. If these late survival cases are accepted, it would imply that Neandertals were

present in the southern Iberian coasts at least until c. 37 ka cal BP, correlating with Greenland

Interstadial 8. Since this chronology contradicts current trend suggested by the last chrono-

metric investigations, research on this topic should be kept in the realm of hypothesis and the-

ory building for now.

Considering the Iberian interior territories, the strongest evidences supporting a late Nean-

dertal survival have been unquestionably refuted. At La Ermita cave (Burgos), dates obtained

by Aminoacid Racemization and Uranium/Thorium techniques have reassigned level 5a to

MIS 5 [132], previously radiocarbon dated in the range of c. 36.6–34.7 ka cal BP [133]. At Jar-

ama VI rockshelter (Guadalajara), the latest Mousterian occupation, previously radiocarbon

dated between c. 41 and 30 ka cal BP [124], have been re-dated by new chronometric analyses,

including radiocarbon measurements of bone samples pre-treated with ultrafiltration [6] and

luminescence dating (post-IR IRSL) of associated sediments [9], to between c. 60 and 50 ka cal

BP. Other interior Middle Paleolithic sites having yielded reliable chronometric dates within

MIS 3 are Abrigo del Molino [134, 135], Prado Vargas [136], Hotel California [137], Valde-

goba [138], Peña Cabra [139], La Mina [140] and Hundidero [141]. Since none of these sites

have provided any date younger than 42 ka cal BP (Fig 29), the hypothesis of a not-so-late

breakdown of Neandertal populations in Iberia remains unchallenged in the interior regions

of the peninsula.

Los Casares cave revisited

PLOS ONE | https://doi.org/10.1371/journal.pone.0180823 July 19, 2017 43 / 54

https://doi.org/10.1371/journal.pone.0180823


However, an important shortcoming faced by any study dealing with population dynamics

in the Late Pleistocene of interior Iberia is the poor quantity and quality of the geoarcheologi-

cal, paleoenvironmental and chronometric data available. This issue has been acknowledged in

recent chronometric research [6, 9], and is most probably due to (1) a lack of research projects

in interior Iberia compared to the coastal regions, and (2) the difficulties of locating open-air

sites, potentially much more common than cave archives in the Spanish Meseta [16, 142–144].

In fact, there are three sites that could still suggest a post-42 ka cal BP chronology for Middle

Paleolithic contexts in the Spanish plateau. In Cueva Millán (Burgos), two radiocarbon dates

on bone obtained in the 1980’s ranged from c. 41 to 43 ka cal BP [140, 145]. However, these

measurements were obtained by the conventional radiocarbon method, and hence a new chro-

nometric program is required before the proposed dates can be considered to be reliable. In

the Madrid basin, open-air sites of 12 de Octubre and Cañaveral-Área 3 have produced lumi-

nescence dates younger than 40 ka BP. In the 12 de Octubre deposit, a typical Mousterian

assemblage is associated to a series of OSL dates between 40 and 33 ka BP. However, the exca-

vators of this site cast doubt on these results suggesting that the proposed dates, which contra-

dict geomorphological data, are most probably underestimates [146]. As for Cañaveral-Área 3,

Fig 29. Middle Paleolithic sites in interior Iberia dated to MIS 3. Sites having yielded reliable chronometric dates are shown in black.

Sites with uncertain results are numbered in red. For complete dating results and methods see [6, 9, 30, 132, 134–141, 145, 146].

Radiocarbon dates were calibrated using OxCal 4.3 [40] and IntCal13 [41]. OSL: Optically Stimulated Luminiscence. AAR: Aminoacid

Racemization. AMS: Accelerator mass spectrometry.

https://doi.org/10.1371/journal.pone.0180823.g029
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a TL date of 33 + 4.0/-3.5 ka BP was obtained at the top of a layer containing Levallois indus-

tries [30]. However, in addition to the high standard deviation of this measurement, and

the fact that the date must be considered a terminus ante quem for human activity, a full discus-

sion of methods and results of chronometric research conducted at this site is still to be

published.

In short, although some uncertainties must be acknowledged when dealing with the Iberian

interior territories, no strong chronometric evidence supporting a post-42 ka cal BP survival

can be currently attested in them. In fact, Neandertals occupying the deep interior of Los

Casares cave at c. 44.9–42.2 ka cal BP, must be considered among the last of their kind living in

the interior lands of the Iberian Peninsula prior to their final disappearance (Fig 29). This evi-

dence does not support a late survival of Neandertals in the Iberian interior, but rather suggests

a not-so-late disappearance of this human group from these territories, roughly coincident

with the proposed chronology for this process in northern Iberia [6, 8, 125].

However, although limited to a single flake and 52 faunal remains with no signs of human

action, evidence gathered from layer b of Los Casares-Seno A must be also considered in this

discussion. Paleoenvironmental data recorded in this layer show a cold and arid environment

most probably correlating with GS 11, GS 10 or H4 (c. 42–38 ka years ago), thus suggesting a

possible late and scarce presence of Neandertals at the cave. Since this could be interpreted as

reflecting the near-abandonment of this high area (>1,000 m asl) of the Iberian interior due to

climatic deterioration, it could even be hypothesized that this layer also correlates with the

final disappearance of this human species from inland Iberia due to climatic stress. Yet, since

this is a hypothesis based on scarce empirical evidence, it cannot be used to support a late sur-

vival of Neandertals in interior Iberia. Given the still poor record gathered at this layer, and in

general the scarce data available for discussing human-environment interactions in the Iberian

interior during the Late Pleistocene, these reflections should be taken as working hypotheses

to be tested with future research.

In any case, independent of whether layer b represents a late Neandertal presence at Los

Casares or just an arid and cold episode devoid of human occupation (a question that remains

open given that only one flake was recorded at this layer), the current record in interior Iberia

shows a pattern in which little or no evidence for a Middle Paleolithic presence is registered

after 42 ka cal BP. If we accept the late persistence of Neandertals in at least some of the south-

ern coastal sites that are currently claimed to reflect Middle Paleolithic occupations until at

least c. 37 ka years ago, a parsimonious corollary is that populations living in the highlands of

the Spanish Meseta abandoned these potentially risky environments [147] and moved to the

coastal areas of southern Iberia during some of the cold stadials following GI 11. The exact

timing of this potential population movement is a question that needs further research. Not-

withstanding, since no Upper Paleolithic occupations have been attested in inland Iberia until

c. 25.5 ka cal BP [148], no action by Modern Humans could be invoked as triggering or even

affecting this process. The breakdown of Neandertal populations in the Iberian interior is best

explained as an abandonment of the area due to climatic deterioration or some other internal

factor. This suggest that climate change could have been an important factor contributing to

the final demise of the Neandertals [147, 149–152].

Final remarks

Los Casares cave is a classic site for the study of the Middle Paleolithic settlement of inland Ibe-

ria. Despite its relevance in the last quarter of the 20th century, data on this site was of little use

for current research due to a prolonged period of scientific inactivity. New stratigraphic,

micromorphological, chronometric, paleoenvironmental, archeozoological and technological
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data provided in this study have changed this situation. Los Casares cave has emerged as a rele-

vant multi-proxy archive for studying human-environment interactions and population

dynamics at the end of the Middle Paleolithic in the Iberian interior. Evidence discussed in

this paper supports a breakdown of the Neandertal settlement system in inland Iberia around

42 ka cal BP or slightly later, and suggests that this could be related to an abandonment of the

interior highlands of the Meseta due to climate deterioration. The last Neandertals of Iberia

are thus only found in the southern coastal areas of the peninsula, where a post-42 ka cal BP

survival of Middle Paleolithic contexts has not been falsified. Although evidence discussed in

this paper represents a significant advance on these topics, the geoarcheological, paleoecologi-

cal and chronometric record in the Iberian interior are still too weak to allow for theory build-

ing at the regional level, despite significant progress in the recent past. It is our contention that

further fieldwork on the under-investigated interior regions of the Iberian Peninsula will sub-

stantially change–again–models on population dynamics in Iberia and southwest Europe dur-

ing this critical period of human prehistory. Until then, unbiased data gathering and

hypothesis testing remain crucial.

On epistemic grounds, far from the classic Kuhnian scenario of rapid and definitive

paradigmatic shift–which is rarely verified–, it is our contention that the current scientific

situation on the problem of Neandertal disappearance in Iberia should be best considered as a

not-so-fast process of data accumulation and hypotheses proposal that should eventually lead

to a new big picture on the issue. Whether this picture will be totally different to previously

accepted one, slightly different, or even in consonance, is a question that remains open

despite great advances in the last years. Only more fieldwork (including excavation of new

sites), data gathering (not only chronometric, but also stratigraphic, paleoenvironmental and

archeological), and problem-oriented research, will eventually lead to still not definitive,

but increasingly better, scientific answers. Ongoing investigations in a handful of sites in

the interior regions of Iberia, albeit limited to the foothills of the Central System range, the

Madrid basin and the Atapuerca area, will hopefully contribute to that end [135, 139, 144,

153, 154].
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51. Sesé C, Rubio-Jara, Panera J, Pérez-González A. Micromamı́feros del Pleistoceno Superior del yaci-

miento de PRERESA en el valle del Manzanares y su contribución a la reconstrucción paleoambiental

de la cuenca de Madrid durante el Pleistoceno. Estudios Geológicos. 2011; 67 (2): 471–494. http://dx.

doi.org/10.3989/egeol.40516.203

52. Laplana C, Blain HA, Sevilla P, Arsuaga JL, Baquedano E, Pérez-González A. Un assemblage de
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54. López-Garcı́a JM, Blain HA, Bennàsar M, Fernández-Garcı́a M. Environmental and climatic context of

Neanderthal occupation in southwestern Europe during MIS3 inferred from the small-vertebrate

assemblages. Quat Int. 2014: 326–327: 319–328.

55. Schweingruber FH. European wood anatomy. 1st ed. Bern: Paul Haupt; 1990.

56. Madella M, Powers-Jones AH, Jones MK. A Simple Method of Extraction of Opal Phytoliths from Sedi-

ments Using a Non-Toxic Heavy Liquid. J Archaeol Sci. 1998; 25: 801–803.

57. Albert RM, Tsatskin A, Ronen A, Lavi O, Estroff L, Lev-Yadun S et al. Mode of occupation of Tabun

Cave, Mt. Carmel Israel, during the Mousterian period: A study of the sediments and the phytoliths. J

Archaeol Sci. 1999; 26: 1249–1260.

58. Madella M, Alexandre A, Ball T. International code for phytolith nomenclature 1.0. Ann Bot. 2005; 96:

253–260 https://doi.org/10.1093/aob/mci172 PMID: 15944178

59. Piperno DR. Phytoliths: a comprehensive guide for archaeologists and paleoecologists Lanham, MD:

AltaMira Press; 2006.

60. Barboni D, Bremond L. Phytoliths of East African grasses: An assessment of their environmental and

taxonomic significance based on floristic data. Rev Palaeobot Palynol. 2009; 158: 29–41.

61. Tsartsidou G, Lev-Yadun S, Albert RM, Miller-Rosen A, Efstratiou N, Weiner S. The Phytolith Archaeo-

logical Record: Strengths and Weaknesses Based on a Quantitative Modern Reference Collection

from Greece. J Archaeol Sci. 2007; 34 (8): 1262–1275.

62. Ball TA, Davis AL, Evett RR, Ladwig JL, Tromp M, Out WA, et al. Morphometric analysis of phytoliths:

recommendations towards standardization from the International Committee for Phytolith Morpho-

metrics. J Archaeol Sci. 2016; 68: 106–111.

63. Albert RM, Ruı́z JA, Sans A. PhytCore ODB: A new tool to improve efficiency in the management and

exchange of information on phytoliths. J Archaeol Sci. 2016; 68: 98–105.

64. Carnelli AL, Theurillat JP, Madella M. Phytoliths types and type-frequencies in subalpine-alpin plant

species of the European Alps. Rev Palaeobot Palynol. 2004; 129: 39–65.

65. Esteban I, Albert RM, Zilhão J, Villaverde V. Neanderthal use of plants and past vegetation reconstruc-

tion at the Middle Paleolithic site of Abrigo de la Quebrada (Chelva, Valencia, Spain). Archaeol Anthro-

pol Sci. 2015; 9: 265–278.

66. Albert RM, Bamford MK, Cabanes D. Taphonomy of phytoliths and macroplants in different soils from

Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples.

Quat Int. 2006; 148: 78–94.

67. Madella M, Lancelotti C.Taphonomy and phytoliths: A user manual. Quat Int. 2012; 275: 76–83.

68. Altuna J. Fauna de Mamı́feros del yacimiento prehistórico de Los Casares (Guadalajara). In: Baran-
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117. Vega Toscano LG. El tránsito del Paleolı́tico Medio al Paleolı́tico Superior en el Sur de la Penı́nsula
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