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OBJECTIVE—Vascular progenitors of bone marrow origin par-
ticipate to neovascularization at sites of wound healing and
transplantation. We hypothesized that the biological purpose of
this bone marrow–derived vascular component is to contribute
angiogenic and survival functions distinct from those provided
by the local tissue-derived vasculature.

RESEARCH DESIGN AND METHODS AND RESULTS—To
address this hypothesis, we investigated the functional impact of
bone marrow–derived vascular cells on pancreatic islets engraft-
ment using bone marrow–reconstituted Id1�/�Id3�/� mice, a
model of bone marrow–derived vasculogenesis. We show that, in
this model, bone marrow–derived vasculogenic cells primarily
contribute to the formation of new blood vessels within islet
transplants. In contrast, graft revascularization in a wild-type
background occurs by tissue-derived blood vessels only. Using
these distinct transplant models in which bone marrow– and
tissue-derived vasculature are virtually mutually exclusive, we
demonstrate that bone marrow–derived vasculogenic cells ex-
hibit enhanced angiogenic functions and support prompt activa-
tion of islets survival pathways, which significantly impact on
islets engraftment and function. Moreover, gene profiling of
vascular and inflammatory cells of the grafts demonstrate that
neovascularization by bone marrow–derived cells is accompa-
nied by the activation of a genetic program uniquely tuned to
downregulate harmful inflammatory responses and to promote
tissue repair.

CONCLUSIONS—These studies uncover the biological signifi-
cance of bone marrow–derived vasculogenic cells in the re-
sponse to injury during transplantation. Enhancing the
contribution of bone marrow–derived vasculogenic cells to
transplantation sites may help to overcome both limited angio-
genic responses of the adult tissue-derived vasculature and
untoward effects of inflammation on transplant engraftment.
Diabetes 57:2402–2412, 2008

T
issue repair after wounding and/or cell trans-
plantation requires the concerted regulation of
angiogenic and self-limited local inflammatory
responses (1). Several studies have shown that

angiogenic responses involve both tissue-derived vascular
cells and circulating bone marrow–derived vascular pre-
cursors (2–9). The potential of these progenitors to de-
velop into endothelial and/or perivascular cells supporting
tumorigenesis and tumor growth has been extensively
documented (2–6,9–15). In the context of primary tissues,
a much more limited incorporation of these cells into
injured blood vessels has been observed, suggesting a role
in vascular repair (2,7,8). Whether in this instance the
angiogenic response of such bone marrow–derived vascu-
lar component is distinct from that supported by preexist-
ing tissue-derived blood vessels and/or contributes a
biological advantage is presently unknown. Furthermore,
the potential of bone marrow–derived vascular cells to
influence local inflammatory responses normally associ-
ated with angiogenesis has not been addressed.

Pancreatic islet transplants are highly sensitive to the
efficiency of revascularization, because defects of this
process result in rapid cell loss and/or altered response of
the grafts to glucose (16–19). Thus, islet transplants
provide an ideal model to assess the impact of bone
marrow–derived vascular cells on both survival and func-
tion of a primary tissue. Hence, we hypothesized that bone
marrow–derived vasculogenic cells, recruited at sites of
pancreatic islet transplantation, contribute engrafting and
survival functions distinct from those provided by the
endothelium sprouting from the preexisting vasculature.
To address this hypothesis, we used the bone marrow–
reconstituted Id1�/�Id3�/� mouse, a model of bone
marrow– derived vasculogenesis (9,20). Id1 and Id3
transcription factors regulate vascular and neuronal cell
differentiation and proliferation (21). Accordingly, Id1�/�

Id3�/� knockout mice exhibit severe vascular malforma-
tions, including absence of sprouting and branching of
blood vessels (20). In contrast, Id1�/�Id3�/� mice, main-
taining one functional Id1 allele, display no overt vascular
defects. However, preexisting blood vessels in these mice
fail to mount an efficient angiogenic response to support
tumor transplant engraftment (9). Interestingly, reconsti-
tution of the hemopoietic compartment of Id1�/�Id3�/�

mice with wild-type bone marrow rescues tumor revascu-
larization (9). Moreover, in these bone marrow chimeras,
�90% of the endothelium forming new blood vessels in the
tumor implants is derived from wild-type bone marrow,
indicating that neovascularization is sustained almost en-
tirely by bone marrow–derived endothelial precursors.
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Here, we exploited this model for islet transplantation,
and we demonstrate that the majority of new blood vessels
formed at the site of islet transplantation in bone marrow–
reconstituted Id1/Id3-deficient mice are of bone marrow
origin. In contrast, revascularization of islet transplants in
bone marrow–reconstituted wild-type recipients occurs
predominantly by tissue-derived blood vessels. Using
these transplantation models, we provide evidence that
tissue- and bone marrow–derived vasculatures are not
functionally equivalent, in that development of bone mar-
row–derived blood vessels is associated with enhanced
angiogenesis and with the activation of survival and cellu-
lar pathways uniquely skewed toward protective inflam-
matory responses and tissue repair.

RESEARCH DESIGN AND METHODS

Animals and bone marrow reconstitution. Id1�/�Id3�/� and wild-type
mice were bred at The Scripps Research Institute (TSRI) pathogen-free
facility, and Id1�/�Id3�/� mice were screened as described previously (20).
C56BL/6-TgN(ACTBEGFP)1Osb, ROSA26 (The Jackson Laboratories), or
wild-type mice were used as bone marrow donors. Bone marrow cells were
flushed from femurs with RPMI-10% FCS, depleted of CD3� T-cell using
magnetic beads (Miltenyi Biotech), and injected intravenously (5–10 � 106) in
6- to 8-week-old lethally irradiated wild-type and Id1�/�Id3�/� mice (1,200
rads). After 6 weeks, bone marrow reconstitution was assessed by flow
cytometry of peripheral blood to identify green fluorescent protein (GFP)�

cells or �-gal� cells stained with fluorescein-�-D-galactopyranosyde (Molecu-
lar Probes).
Islet isolation and transplantation. Islets were isolated by intraductal
injection of 0.5 mg/ml liberase and purified on a Ficoll gradient. Islets were
cultured overnight in RPMI-10% FCS, handpicked, and transplanted under the
kidney capsule. Diabetic mice were generated by intraperitoneal injection of
a single dose of 200 mg/kg streptozotocin (22) and transplanted with islets 1
week later. Upon ensuing of frank hyperglycemia (i.e., 200 mg/dl), mice were
injected subcutaneously with insulin (Humulin L; Lilly) up to 3 days after
transplant. In normoglycemic mice, the function of the graft was verified by
the return to hyperglycemia on removal of the graft.
Histology. To identify functional blood vessels, mice were injected intrave-
nously with 200 �g fluorescein isothiocyanate–labeled isolectin-B4 (FITC-
ISB4) (Molecular Probes) before euthanasia. Tissues were immunostained as
described previously (8) using the antibodies listed in the online appendix
available at http://dx.doi.org/10.2337/db08-0244. Apoptotic cells were detected
by transferase-mediated dUTP nick-end labeling (TUNEL) using a digoxyge-
nin-labeling kit (Chemicon). Sections were visualized at a Zeiss Axiovert
microscope equipped with a scanning laser confocal attachment (Radiance-
2000; Bio-Rad) or at a NIKON Eclipse-800 microscope, equipped with a Spot
II CCD camera. Morphometric analysis were performed on �20–30 sections
per graft collected at 100-�m intervals until exhaustion of the grafts using the
Spot Advanced and ImageProPlus software.
Cell separation and flow cytometry. After in vivo injection of FITC-ISB4,
grafts were microdissected and dissociated at 37°C in Hanks’ balanced salt
solution, 0.5 mg/ml liberase, and 50 �g/ml DNase I followed by nonenzymatic
dissociation medium (Sigma). Cells were then incubated with primary and
secondary antibodies as detailed in the online appendix. For cell isolation,
single cells dissociated from biotin-ISB4–perfused grafts (n � 5) were labeled
with primary antibodies followed by R-phycoeritrin–-conjugated secondary
reagents and anti-phycoeritrin microbeads (Miltenyi Biotech) as detailed in
the online appendix. Cells were positively selected on magnetic columns and
analyzed at a FACScan (Becton Dickinson). CD31� and F480� cells were
�90% pure, whereas purity of ISB4� fractions was �75%.
Western blotting and pAkt[S473] enzyme-linked immunosorbent assay.

Cells were lysed in 10 mmol/l Tris, 100 mmol/l NaCl, 1 mmol/l EDTA, 1 mmol/l
EGTA, 1 mmol/l NaF, 20 mmol/l Na4P2O7, 2 mmol/l Na3VO4, 1% Triton X-100,
0.1% SDS, 0.5% deoxycolate, 1 mmol/l phenylmethylsulfonyl fluoride, and
Complete (Roche). Equal amounts of proteins were loaded on 4–12% SDS-
PAGE gels, transferred to polyvinylidine fluoride membranes, and probed with
mouse anti–promyelocitic leukemia antigen (anti-PML) (clone MAB3738;
Chemicon), goat anti-adipsin (Santa Cruz Biotechnology), or anti-S100A8
(R&D Systems) antibodies. Antibody binding was revealed using an ECL-
based detection system (Kirkegaard and Perry Labs). Phosphorylated
pAkt[S473] and total Akt were measured by ELISA (Biosource) using 5 �g
proteins.
RNA extraction and DNA microarrays. RNA was extracted using RNeasy
kit (Qiagen). Biotinylated cRNA was prepared using the Illumina RNA

Amplification kit (Ambion), and microarray experiments were performed as
detailed in the online appendix.
Statistical analysis. Statistical analysis of the data between naı̈ve and bone
marrow–reconstituted Id1�/�Id3�/� mice or between bone marrow–reconsti-
tuted Id1�/�Id3�/� and wild-type mice was performed using the Student’s t

test, and data comparing more than two groups were validated by ANOVA
followed by Bonferroni’s post hoc test. Data with P values 	0.05 were
considered statistically significant.

RESULTS

Failure of pancreatic islet engraftment in the Id1/
Id3-deficient mice and rescue by bone marrow re-
constitution. To evaluate whether bone marrow
reconstitution of Id1�/�Id3�/� mice supports engraftment
of pancreatic islets as seen for tumor grafts (9), Id1�/�

Id3�/� and wild-type mice were reconstituted with wild-
type bone marrow. To track bone marrow–derived cells,
GFP transgene or ROSA26 mice were used as bone mar-
row donors. Untreated Id1�/�Id3�/� mice were used as
controls. Fluorescence-activated cell sorter (FACS) anal-
ysis at 6 weeks after bone marrow transplantation dem-
onstrated that �80% of the leukocytes in bone marrow–
reconstituted Id1�/�Id3�/� and wild-type mice were GFP
or �-gal�, i.e., of bone marrow–donor origin. Furthermore,
colony-forming unit assays and FACS analysis demon-
strated that all hemopoietic lineages were reconstituted to
a normal range in both wild-type and Id1�/�Id3�/� hosts
(not shown).

Six weeks after bone marrow engraftment, the mice
were transplanted under the kidney capsule with 500
wild-type pancreatic islets. Immunostaining for insulin at 1
week after transplantation demonstrated that untreated
Id1�/�Id3�/� mice harbored significantly smaller grafts
than bone marrow–reconstituted wild-type mice (Fig. 1A).
However, reconstitution with wild-type bone marrow res-
cued engraftment in Id1�/�Id3�/� mice (Fig. 1B). Further-
more, the insulin� area of the grafts from bone marrow–
reconstituted Id1�/�Id3�/� mice was �2.5-fold larger than
that of grafts from bone marrow–reconstituted wild-type
mice (Fig. 1B), suggesting differential islet cell survival.
Morphometric analysis demonstrated approximately a
twofold increase in the number of TUNEL� apoptotic cells
in islet grafts of untreated Id1�/�Id3�/� mice compared
with bone marrow–reconstituted wild-type or Id1�/�Id3�/�

mice (Fig. 1C). In contrast, the number of apoptotic cells
in the grafts of bone marrow–reconstituted wild-type and
Id1�/�Id3�/� mice was not significantly different. Even at
earlier time points (i.e., 2 days), TUNEL� islet cells were
very rare in these two groups of mice (i.e., 	0.1%),
possibly because of efficient clearance of apoptotic cells.

Signaling by Akt positively regulates cell survival and
proliferation (23,24). Therefore, we investigated whether
this pathway was differentially activated in grafts of bone
marrow–reconstituted wild-type versus Id1�/�Id3�/�

mice. Measurement of Akt activation by detection of
pAkt[S473] in islet cell lysates revealed significantly higher
levels of pAkt[S473] in bone marrow–reconstituted Id1�/�

Id3�/� versus wild-type mice (Fig. 1D). Furthermore, graft
immunostaining demonstrated a strikingly different pat-
tern of pAkt[S473] expression in situ. Thus, whereas in
bone marrow–reconstituted Id1�/�Id3�/� mice, a strong
immunoreactivity for pAkt was observed throughout the
graft, in wild-type controls, only cells at the periphery of
islets were strongly positive for pAkt (Fig. 1E and F,
arrows). In both grafts, pAkt[S473] highlighted primarily
cell nuclei and, to a lesser extent, the cytoplasm, two
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known localizations of activated Akt (25). The preferential
nuclear localization of pAkt in the transplants of bone
marrow–reconstituted Id1�/�Id3�/� resembled that of tu-

mors lacking the PML, a tumor suppressor gene regulating
cell proliferation and apoptosis (26). Consistent with the
function of PML as negative regulator of Akt activation
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FIG. 1. Rescue of transplant engraftment in Id1�/�Id3�/� mice by reconstitution with wild-type bone marrow is associated with the activation of islet
cell survival signals. A: Graft tissue sections at 1 week after transplantation stained by immunoperoxidase for insulin (brown). Scar tissue occupies the
transplantation site in untreated Id1�/�Id3�/� mice (middle panel, area bordered by dotted line), indicating failure of islet engraftment. In contrast,
grafts containing insulin� cells are present in bone marrow–reconstituted wild-type and Id1�/�Id3�/� mice (top and bottom panels). B: Morphometric
analysis of whole grafts (top graph) and insulin� areas (bottom graph) measured in multiple sections collected at 100-�m intervals throughout the
grafts as described in RESEARCH DESIGN AND METHODS. Each bar represents the mean � SE of measurements from 80–120 tissue sections per group with
n � 4 mice/group. C: Quantitative analysis of apoptotic cells detected by TUNEL at 1 week after transplantation. Values are means � SE of
measurements from n � 3 mice per group. Statistical significance by t test is indicated. Significance was also validated by ANOVA and Bonferroni post
hoc test (online appendix). D: Quantitative determination of pAkt[S473] (left) and total Akt (right) detected by ELISA in lysates of islet clusters
microdissected from the grafts. Values are means � SE of triplicate samples from a pool of n � 2 grafts per group. E: Tissue sections stained for
pAkt[S473] by immunoperoxidase. In bone marrow–reconstituted Id1�/�Id3�/� (top panel), virtually all cells within islet cell clusters (dotted areas)
express high levels of pAkt[S473], whereas in wild-type mice (bottom panel), only cells at the periphery of the clusters (arrows) are strongly positive
for pAkt[S473]. F: Confocal microscopy of tissues sections stained by two-color immunofluorescence for pAkt[S473] (red) and insulin (green). Most
insulin� cells are pAkt� in bone marrow–reconstituted Id1�/�Id3�/� mice (top panel), whereas fewer insulin� cells express pAkt in wild-type controls
(bottom panel). Inset represents background staining by control IgGs. Immunostainings are representative of n � 3 grafts. G: Tissue sections stained
for PML by immunoperoxidase. Weak expression of PML in nuclei and cytoplasm of islet cells from the grafts of bone marrow–reconstituted
Id1�/�Id3�/� (top panel) mirrors pAkt[S473] expression pattern. H: Western blotting of PML and �-actin in protein lysates of islet cell clusters
microdissected from the grafts demonstrates differential expression of PML in wild-type and Id1/Id3-deficient mice. (Please see http://dx.doi.org/
10.2337/db08-0244 for a high-quality digital representation of this image.)
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and nuclear localization (26), immunostaining for PML in
islet grafts demonstrated a pattern of expression that
mirrored pAkt[S473], i.e., weak labeling of islet cells in
bone marrow–reconstituted Id1�/�Id3�/� mice and strong
labeling of islets in wild-type recipients (Fig. 1G). Immu-
noblotting of islet protein extracts confirmed downregula-
tion of PML in bone marrow–reconstituted Id1�/�Id3�/�

versus wild-type mice (Fig. 1H). In both grafts, no cycling
endocrine cells were detected (not shown), indicating that
pAkt expression and its preferential nuclear localization
were linked to cell survival rather than proliferation. Thus,
rescue of transplant engraftment by bone marrow recon-
stitution in Id1�/�Id3�/� mice is associated with de-
creased islet cell death and activation of survival signals.
Characterization of vasculature of the grafts. Whole
grafts of bone marrow–reconstituted Id1�/�Id3�/� mice at
1 week after transplant displayed approximately a twofold
higher density of platelet/endothelial cell adhesion mole-
cule-1 (PECAM-1)� blood vessels than those of either
untreated Id1�/�Id3�/� or bone marrow–reconstituted
wild-type mice (Fig. 2A and B). PECAM-1� blood vessels
in the grafts of bone marrow–reconstituted Id1�/�Id3�/�

mice also appeared more branched than those of wild-type
controls (Fig. 2A, insets). Compared with the endocrine
component, the nonendocrine (i.e., connective and inflam-
matory) tissue was more abundant in wild-type recipients
(Fig. 1A) and less vascularized. Morphometric analysis of
blood vessels within the grafts endocrine component only
showed an �25% increase of vascular density in bone
marrow–reconstituted Id1�/�Id3�/� (n � 3) versus wild-
type mice (n � 4) (Fig. 2C).

The lower vascular density in the grafts of wild-type
recipients could not be attributed to irradiation, because
the density of PECAM-1� blood vessels was not signifi-
cantly different in irradiated and nonirradiated recipients
(i.e., � 13.3 
 0.25 vs. 14.1 
 1.3%, mean 
 SE, n � 4).
Furthermore, staining with the Meca-32 antibody, prefer-
entially labeling arterioles and venules over capillary en-
dothelia (27), demonstrated that the density of Meca-32�

blood vessels was only slightly increased in bone marrow–
reconstituted Id1�/�Id3�/� versus wild-type mice (i.e.,
12.9 
 0.2 vs. 11.1 
 0.4%, mean 
 SE, n � 3). Thus, at 1
week after transplantation, the increased vascular density
of islet grafts in bone marrow–reconstituted Id1�/�Id3�/�

appears to be mainly accounted for by the development of
a PECAM-1� capillary network.

At 4 weeks after transplantation, a time when revascu-
larization of islet grafts is completed (16,17), vascular
density of whole grafts was similar in bone marrow–
reconstituted Id1�/�Id3�/� and wild-type recipients (Fig.
2B); however, in the endocrine component of the grafts, it
was still �25% higher in bone marrow–reconstituted Id1�/

�Id3�/� (n � 3) compared with wild-type mice (n � 4)
(Fig. 2C). When compared with islets endogenous to the
pancreas, the vascular density of the grafts in bone mar-
row–reconstituted Id1�/�Id3�/� mice was remarkably
similar at 1 week after transplantation, whereas in wild-
type mice, it was always less than that of endogenous
islets (Fig. 2C).

Bone marrow–reconstituted Id1�/�Id3�/� mice also ef-
ficiently revascularized islets isolated from Id1�/�Id3�/�

donors (Fig. 2C). We hypothesized that because of the
growth defects of Id1/Id3-deficient endothelial cells
(9,20,21,28), these transplants would unlikely be sup-
ported by islet donor–derived endothelial cells that might
survive islet isolation (29,30). Under these conditions, two

of three grafts failed to engraft in wild-type recipients. In
contrast, all transplants in bone marrow–reconstituted
Id1�/�Id3�/� mice engrafted and, at 4 weeks after trans-
plant, displayed approximately a twofold higher vascular
density than the single transplant engrafted in wild-type
mice (Fig. 2C).

In vivo injection of FITC-ISB4 demonstrated that blood
vessels developing in bone marrow–reconstituted wild-
type and Id1�/�Id3�/� mice, but not those in untreated
Id1�/�Id3�/� mice, were patent (Fig. 2D). ISB4� blood
vessels coexpressed the endothelial marker PECAM-1 but
not the pan-leukocyte antigen CD45 (not shown). FACS
analysis of cells dissociated from the grafts showed that in
wild-type mice, 78 and 89% of PECAM-1�CD45� cells
displayed bound ISB4 at 1 and 4 weeks after transplanta-
tion, respectively (Supplementary Fig. S1C [online appen-
dix]); whereas in bone marrow–reconstituted Id1�/

�Id3�/� mice, a higher proportion of PECAM-1�CD45�

endothelial cells were ISB4� at either time point (i.e., 91
and 98% respectively; Supplementary Fig. S1D). These
results indicate that although the majority of PECAM-1�

cells detected in situ outline functional vessels, some do
not. This latter fraction, possibly part of developing vas-
cular structures yet not blood-perfused, is higher at 1 than
at 4 weeks after transplantation in either graft and in the
grafts of wild-type recipients at either time point.

Immunostaining for �-gal in islet grafts from Id1�/�

Id3�/� mice reconstituted with ROSA26 bone marrow
demonstrated that the majority of ISB4� blood vessels
were �-gal�, indicating their bone marrow origin (Fig. 2E).
In contrast, bone marrow–derived �-gal� endothelial cells
were virtually undetectable in wild-type recipients recon-
stituted with ROSA26 bone marrow. Ultrastructurally,
bone marrow–derived blood vessels appear as small cap-
illaries lined by a fenestrated endothelium and perivascu-
lar cells (Supplementary Fig. S2A) reminiscent of the
capillaries of islets in the endogenous pancreas (31). In
contrast, blood vessels in the grafts of bone marrow–
reconstituted wild-type mice appeared larger and lined by
a fenestrated endothelium loosely attached to the basal
membrane (Supplementary Fig. S2B, asterisks).

These results demonstrate that enhanced survival and
engraftment of islet transplants in bone marrow–reconsti-
tuted Id1�/�Id3�/� mice correlates with a predominant
bone marrow–derived vasculogenic component and rapid
development of a functional, dense capillary network. In
contrast, new blood vessels in wild-type mice are formed
primarily from the preexisting tissue-derived vasculature
and expand less efficiently into blood-perfused capillaries.
Graft revascularization by bone marrow–derived en-
dothelium is associated with enhanced recruitment
of GR1highF480� inflammatory cells and with the
activation of repair response genes. At 1 week after
transplantation, many CD45��-gal� inflammatory leuko-
cytes were observed in the grafts of mice reconstituted
with �-gal� bone marrow (Supplementary Fig. S3). Peri-
islet inflammatory cells were present in both Id1/Id3-
deficient and wild-type recipients and comprised myeloid
F480� cells (Fig. 3A). FACS analysis demonstrated an
�2.5-fold increase in F480� and GR1highF480� cells in the
grafts, but not bone marrow compartment, of bone mar-
row–reconstituted Id1�/�Id3�/� mice versus wild-type
controls (Fig. 3B and C; n � 4, P 	 0.002). Numbers of T-
and B-cells were similar in the two grafts at 1 week after
transplantation, whereas grafts from Id1/Id3-deficient
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mice is shown for comparison (brown bar at right). Islet tissue was identified by hematoxylin counterstaining and calculated areas verified by
immunostaining for synaptophysin in consecutive sections. Values marked by * were derived from one surviving graft in a group of three where the two
other grafts failed and were therefore unavailable for morphometric determination. Values are means � SE of measurements from 80–120 tissue
sections per group. Statistical significance by t test is indicated. Significance was also validated by ANOVA and Bonferroni post hoc test (online
appendix). D: Confocal microscopy of grafts tissue sections from mice at 4 weeks after transplantation injected intravenously with FITC-ISB4 (green)
to identify functional blood vessels and stained by immunofluorescence for insulin (red). E: To track the bone marrow origin of vascular endothelial
cells, Id1�/�Id3�/� and wild-type mice were reconstituted with ROSA26 bone marrow, expressing �-gal in all nucleated cells. Labeling of blood vessels
by ISB4 (green) and immunostaining of �-gal� cells (red) demonstrates that grafts blood vessels in bone marrow–reconstituted Id1�/�Id3�/� mice are
of bone marrow origin (arrows). In contrast, bone marrow–derived �-gal� endothelial cells are undetectable in the grafts of wild-type recipients.
Images are representative of n � 4 grafts. (Please see http://dx.doi.org/10.2337/db08-0244 for a high-quality digital representation of this image.)
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mice had fewer T-cells at 4 weeks after transplantation
(Fig. 3D, n � 2).

To gain insights into the genetic program activated
within the distinct vascular and inflammatory transplant
microenvironments in Id1/Id3-deficient and wild-type
mice, we performed gene-screening experiments using
RNA from whole grafts and from myeloid and endothelial
(i.e., CD31� and ISB4�) cells isolated from the grafts at 1
week after transplantation. Analysis of transcripts exhib-
iting more than twofold changes in bone marrow–recon-
stituted Id1�/�Id3�/� versus wild-type mice demonstrated
differential expression of inflammation and angiogenesis-
related genes (Table 1; Fig. 4). First, a significant de-

creased expression of complement components and
adipokines, including adipsin, adiponectin, and leptin, was
observed in whole grafts from bone marrow–reconstituted
Id1�/�Id3�/� mice. Conversely, genes regulating the influx
and function of neutrophils, monocytes, and eosinophils
(e.g., CCL1, CCL2, CCL7, and Calgranulin A and B) were
upregulated in CD31� and ISB4� samples of bone mar-
row–reconstituted Id1�/�Id3�/� mice. Most remarkably, in
these samples, we observed an increased expression of
genes marking macrophages polarized toward type II
immune responses (e.g., resistitin-like molecule-�, inter-
leukin [IL]-10, Chitinase 3-like molecules, CCL24, signaling
lymphocytic activation molecule, and Arginase I) (32) and
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FIG. 3. Detection of inflammatory leukocytes in the islet grafts. A: Tissue sections from islet grafts of bone marrow–reconstituted wild-type and
Id1�/�Id3�/� mice, at 1 and 4 weeks after transplantation, stained by two-color immunohistochemistry for the pan-leukocyte marker CD45 (blue) and
the myeloid marker F480 (brown) or control IgGs (inset). A leukocytic inflammatory infiltrate, comprising myeloid cells is apparent in the grafts from
both experimental groups. The dotted lines mark the border of the grafts with the kidney. The intense blue staining in the kidney is background due
to color development by the alkaline phosphatase endogenous to the kidney epithelium. Images are representative of n � 3 grafts per experimental
group. B: Flow cytometric analysis of leukocytes isolated from the grafts at 1 and 4 weeks after transplantation stained by two-color immunofluores-
cence for the myeloid markers GR1 and F480. An increased percentage of GR1highF480� cells in the graft of bone marrow–reconstituted Id1�/�Id3�/�

mice is evident compared with wild-type controls. Theses cells are not present in the bone marrow of either mouse. The dot plots are representative
of n � 4 experiments. C and D: Quantitative analysis of GR1highF480� and CD3� cell subsets detected by flow cytometry in the graft bone
marrow–reconstituted Id1�/�Id3�/� and wild-type mice at 1 and 4 weeks after transplantation. Bars are means � SE of n � 4 independent
determinations. (Please see http://dx.doi.org/10.2337/db08-0244 for a high-quality digital representation of this image.)
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TABLE 1
Inflammation and angiogenesis-related genes differentially expressed in the grafts of bone marrow–reconstituted Id1/Id3-deficient
versus wild-type mice

Inflammatory response genes
Accession

no.
Whole
graft

CD31�

cells
ISB4�

cells Function

Adiponectin NM_009605.3 �26 �1.2 1.12 Anti-inflammatory, antiangiogenic
Leptin NM_008493.3 �5.9 1 1.1 Proinflammatory/Th1 immune

responses
Resistin-like molecule � NM_020509.2 24 �3.1 2.2 Proinflammatory/M2 polarized

immune responses
Interleukin 10 NM_010548.1 1 3.4 1 Anti-inflammatory, Th2 immune

responses
TNF-� NM_013693 1.4 2.7 1 Th1 immune responses,

proangiogenic
Interleukin 1� NM_008361 �7.1 1.6 1.6 Th1 immune responses,

proangiogenic
Interleukin 4 induced 1 NM_010215.1 2.4 �1.1 1.2 Downregulation of T-cell

responses
CCL1 NM_008510.1 �2.0 1.9 2.2 Eosinophil recruitment/Th2/Tc2/

Treg responses
CCL2 (MCP-1) NM_011333.1 �1.3 2.6 1.6 Monocyte recruitment/

proangiogenic
CCL5 (RANTES) NM_013653.1 �1.9 2.0 1.7 Monocyte/T-cell/eosinophil

recruitment
CCL7 NM_013654 �1.1 2.1 �1.5 Monocyte recruitment
CXCL9 NM_008599 �2.6 2.6 �1.4 Monocyte/T-cell recruitment

Acute response/repair response genes
Complement factor D (adipsin) NM_013459.1 �100 1.0 1.0 Complement activation
Chitinase 3-Like 4 NM_145126.1 24 �1.5 2.9 Th2/M2 polarized immune

responses
Small proline-rich protein 2A NM_011468.2 7.6 1.0 1.1 Protection from ischemic injury
Microsomal glutathione S-transferase 1 NM_019946.3 5.7 1.0 �1.3 Protection from oxidant stress
Glutathione peroxidase 2 NM_030677.1 5.2 �1.1 2.9 Protection from oxidant stress
Interleukin 1 receptor, type II NM_010555.2 1.2 1.4 2.7 Decoy receptor, downregulation

of IL-1 signaling
Trefoil factor 1 NM_009362.1 1.2 �1.2 3.2 Anti-inflammatory, antiapoptotic,

proangiogenic
Trefoil factor 2 NM_009363.2 �2.4 4.7 1.2 Anti-inflammatory, induction of

cell proliferation/migration
CCL24 NM_019577.2 8.6 �2.6 1.8 Eosinophil recruitment/Th2/Tc2

responses
SLAM member 7 AK089525 �1.2 2.5 1.1 Immune regulation, Th2

responses, healing
Scavenger receptor class A, member 3 NM_172604.1 �1.2 1.2 4.4 Pathogen recognition, apoptotic

cell clearance
C-reactive protein (pentraxin-related) NM_007768.2 1.2 1.1 3.1 Pathogen recognition, apoptotic

cell clearance
Chitinase 3-like 1 NM_007695.1 1 3.0 1.5 Downregulation of IL-1/TNF

signaling
Serine peptidase inhibitor (clade G) NM_009776 �0.1.8 2.0 2.1 Complement component 1

inhibition, suppression of
leukocyte transmigration

Serine peptidase inhibitor (clade F) NM_011340.2 �1.3 1.5 2.4 Anti-inflammatory, antiapoptotic,
antiangiogenic

Secretory leukocyte peptidase inhibitor NM_011414.1 �1.2 1.4 5.7 Antiproteases, anti-inflammatory
Cathelicidin NM_009921.1 1 1 13 Antimicrobial,

immunomodulatory
Formyl peptide receptor like 1 NM_008039.1 �3.7 2.4 1.39 Neutrophil/monocyte/T-cell

recruitment, regulation of
neutrophil lifespan,
proangiogenic

Angiogenesis-related genes
Calgranulin A NM_013650.1 �4.4 1.8 6.5 Myeloid cell recruitment/

proangiogenic
Calgranulin B NM_009114.1 �5.4 1.5 7.1 Myeloid cell recruitment/

proangiogenic

Continued on facing page
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anti-inflammatory genes involved in the response to patho-
gens, oxidative stress, and wound healing (e.g., trefoil
factors, serine peptidase inhibitors, cathelicidin, and glu-
tathione peroxidase 2) (33,34). Angiogenesis-related genes
were also upregulated in Id1/Id3-deficient versus wild-type
mice and included adhesion receptors to extracellular
matrix (ECM) proteins (Thy-1, Spondin 2, and SPARC
[secreted protein, acidic, and rich in cysteine]), proangio-
genic ECMs and remodeling enzymes (procollagen type VI,
MMP7 [matrix metalloproteinase-7], and TIMP1 [tissue
inhibitor of metalloproteinase]), and molecules regulating
endothelial cell proliferation (CXCR3 and IL-6) (Fig. 4).
Differential protein expression of select genes was con-
firmed by immunohistochemistry, immunoblotting, and/or
ELISA (Supplementary Fig. S4). These findings demon-
strate that compared with the tissue-derived vasculature,
bone marrow–derived vascular cells are associated with
an inflammatory component enriched for myeloid cells
and functionally skewed toward protective immune re-
sponses and tissue repair.
Islet transplants revascularized by bone marrow–
derived vasculogenic cells readily reverse diabetes in
vivo. To evaluate the translational implications of the
enhanced angiogenic and repairing functions associated

with bone marrow–derived vasculogenic cells at sites of
islet transplantation, we induced diabetes in the Id1/Id3-
deficient strain by streptozotocin and then assessed the
ability of islet transplants to reverse hyperglycemia. Strep-
tozotocin-injected Id1�/�Id3�/� and wild-type mice be-
came hyperglycemic by 72 h after injection and remained
diabetic up to a 4-week follow-up period (Fig. 5A). After
this time point, the experiment was ended because dia-
betic mice would not survive without treatment. Next,
wild-type and Id1�/�Id3�/� mice were reconstituted with
wild-type bone marrow, rendered diabetic by streptozoto-
cin, and transplanted with either 500, 200, or 75 islets 1
week later. Daily monitoring of blood glucose demon-
strated that transplants of 500 islets effectively restored
normoglycemia in all mice within 1 week after transplan-
tation (Fig. 5B). Interestingly, transplants of 200 and as
few as 75 islets were also sufficient to rapidly restore
normoglycemia in bone marrow–reconstituted Id1�/�

Id3�/� mice but not in wild-type mice (Fig. 5C and D).
Control mice (i.e., not transplanted) remained diabetic
over the study period (blood glucose �400 mg/dl, n � 2;
data not shown). Furthermore, removal of the grafts at 3
weeks after transplantation in cured mice led to recur-
rence of diabetes (blood glucose 283 
 47 mg/dl, mean 


TABLE 1
Continued

Inflammatory response genes
Accession

no.
Whole
graft

CD31�

cells
ISB4�

cells Function

Coagulation factor X NM_007972.2 1.2 1.0 4.0 Coagulation factor/proangiogenic
Thy0.1.2 NM_009382.2 1.4 �1.2 4.2 Matrix interaction/proangiogenic
Procollagen type VI NM_009933.1 2.8 1.8 2.2 Expressed in tumor endothelium,

ligand of TEM8
Serum amyloid 3 NM_011315 �1.1 3.4 3.3 Induction of MMPs/proangiogenic
Kruppel like factor 5 NM_009769.2 �1.1 1.3 3.2 Vascular remodeling
Interleukin-6 NM_031168.1 1 1.2 3.2 VEGF induction/proangiogenic
Spondin 2 NM_133903.2 1.3 1.2 3.2 Cell spreading
TIMP1 NM_011593 1.3 1.5 3.0 Regulation of MMP/ECM

remodeling
MMP7 NM_010810 �2.2 �1.6 2.7 Endothelium proliferation/

migration
SPARC-related protein NM_022316.1 �1.2 1.1 2.6 Negative regulation of cell

adhesion, ECM degradation
Procollagen type IV �3 NM_007734.1 1 �1.3 �2.0 Blood vessels regression,

antiangiogenic
Haptoglobin NM_017370.1 �6.5 �1.5 2.7 Antioxidant, proangiogenic
Fas ligand NM_010177.2 �1.1 1 3.1 Proangiogenic, proapoptotic
Interleukin 18 receptor NM_008365.1 1.2 1 2.8 Proinflammatory/proangiogenic
CXCR3 NM_009910.1 0.8 1.9 2.4 Endothelium proliferation/

monocyte homing
Myeloperoxidase NM_010824 1.6 �1.1 22 Neutrophil phagocytic functions
Cathepsin G NM_007800.1 0 �1.2 5 MMP/receptor activation,

proangiogenic
Elastase 2 NM_015779 0 1 4.4 MMP/receptor activation,

proangiogenic
Arginase I NM_007482 �1.1 �1.4 6.4 Polyamine synthesis, cell

proliferation
Delta like 1 homolog NM_010052 �1.5 �4.3 �1.5 Notch 1/4 ligand
Secreted frizzled-related protein 2 NM_009144.1 �2.7 �3.5 �2.3 Notch pathway component
F-Box/Wd40 ubiquitin component NM_013908.1 15 �1.2 2.8 Negative regulation of Notch

pathway

Data are fold change. Genes exhibiting at least a twofold change between Id1/Id3-deficient and wild-type mice in the cell fractions of the
indicated grafts are displayed. Values equal to 1 indicate no change of gene expression in Id1/Id3-deficient versus wild-type mice, whereas
positive and negative values indicate upregulation and downregulation of specific genes, respectively. MMP, matrix metalloproteinase-7;
SLAM, signaling lymphocytic activation molecule; SPARC, secreted protein, acidic, and rich in cysteine; TIMP, tissue inhibitor of
metalloproteinase-1; TNF-�, tumor necrosis factor-�.
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SE, n � 8), confirming the functionality of the grafts and
the lack of functional recovery of the endogenous islets
from streptozotocin-mediated destruction. In addition, in-
sulin immunostaining of pancreata revealed that remnant
insulin� areas were not significantly different in strepto-
zotocin-treated wild-type and Id1/Id3-deficient mice (not
shown), indicating that there was no differential �-cell
recovery within the 4 weeks after transplant period. Fur-
ther experiments showed that serum insulin and adiponec-
tin and response to insulin challenge were similar in
wild-type and Id1�/�Id3�/� mice (Supplementary Fig. S5),
indicating that differential peripheral insulin sensitivity did
not account for the observed diabetes reversal by small
islet transplants in bone marrow–reconstituted Id1�/�

Id3�/� mice.

These results demonstrate that the enhanced contribu-
tion of bone marrow–derived cells to islet revasculariza-
tion has a significant impact on transplant engraftment and
function, allowing even a limited number of islets to
reverse diabetes in transplant recipients.

DISCUSSION

Bone marrow–derived vascular cells have been proposed
as targetable cell types for drug or gene delivery and for
vascular repair (2). However, conditions permissive to the
substantial recruitment of these cells in nontumoral tis-
sues remain to be defined. Furthermore, it is uncertain
whether such vasculature would support normal tissue
functions. Here, we show that functional bone marrow–
derived blood vessels can develop within pancreatic islet
grafts and that Id1/Id3 defective expression at transplan-
tation sites is required for this phenomenon. Neovascular-
ization by bone marrow–derived vasculogenic cells is
associated with enhanced islets’ vascular density and
improved graft survival and function, demonstrating a
biological advantage over the tissue-derived vasculature.
Moreover, the downregulation of genes involved in tissue
damage and the activation of protective repairing re-
sponses observed in these grafts provide evidence for a
role of bone marrow–derived cells in antagonizing patho-
genic inflammation and promoting tissue healing.

The vascular contribution of bone marrow–derived vas-
culogenic cells varies greatly in tumors of different origin
and grades and in transplanted versus spontaneous tumors
(9,20,22,35). These observations predict that recruitment
and development of these progenitors may also differ
among quiescent tissues. We demonstrate herein that islet
transplants supports vascular development of bone mar-

NM_020509.2  resistin like alpha (Retnla)
NM_010215.1  interleukin 4 induced 1 (Il4i1)
NM_010548.1  interleukin 10 (Il10)
NM_013654     chemokine (C-C motif) ligand 7 (Ccl7)
NM_011333.1  chemokine (C-C motif) ligand 2 (Ccl2)
NM_013693     tumor necrosis factor (Tnf)
NM_013653.1  chemokine (C-C motif) ligand 5 (Ccl5)
NM_008510.1  chemokine (C-C motif) ligand 1 (Xcl1)
NM_008599.1  chemokine (C-X-C motif) ligand 9 (Cxcl9)
NM_008361     interleukin 1 beta (Il1b)
NM_008493.3  leptin (Lep)
NM_009605.3  adipocyte, ClQ and collagen domain containing (Acdc)
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NM_019577.2  chemokine (C-C motif) ligand 24 (Ccl24)
NM_145126.1  chitinase 3-like 4 (Chi3l4)
NM_019946.3  microsomal glutathione S-trasferase 1 (Mgst1)
NM_011468.2  small proline-rich protein 2A (Sprr2a)
NM_030677.1  glutathione peroxidase 2 (Gpx2)
NM_009921.1  cathelicidin antimicrobial peptide (Camp)
NM_011414.1  secretory leukocyte protease inhibitor (Slpi)
NM_172604.1  scavenger receptor class A, member 3 (Scara3)
NM_009776     serine (or cysteine) proteinase inhibitor, clade G, member 1 (Serpingl)
NM_011340.2  serine (or cysteine) proteinase inhibitor, clade F, member 1 (Serpingl)
NM_009362.1  trefoil factor 1 (Tff1)
NM_007768.2  C-reactive protein, petaxin related (Crp)
NM_018767.2  CD160 antigen (CD160)
NM_010555.2  interleukin 1 receptor, type II (Il1r2)
NM_007695.1  chitinase 3-like 1 (Chi3l1)
NM_009363.2  trefoil factor 2 (spasmolytic protein 1) (Tff2)
NM_008039.1  formyl peptide receptor, related sequence 2 (Fpr-rs2)
NM_013459.1  adipsin (Adn)
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NM_013908.1  F-box and WD-40 domain protein 5 (Fbxw5)
NM_010824     myeloperoxidase (Mpo)
NM_008522.2  lactotransferrin (Ltf)
NM_009933.1  procollagen, type VI, alpha 1 (Col6a1)
NM_011593     tissue inhibitor of metalloproteinase 1 (Timp1)
NM_009769.2  Kruppel-like factor 5 (Klf5)
NM_031168.1  interleukin 6 (Il6)
NM_133903.2  spondin 2, extracellular matrix protein (Spon2)
NM_008365.1  interleukin 18 receptor 1 (Il18r1)
NM_007972.2  coagulation factor X (F10)
NM_009985.2  cathepsin W (Ctsw)
NM_015779     neutrophil elastase (NE)
NM_010177.2  tumor necrosis factor (ligand) superfamily, member 6 (Tnfsf6)
NM_009382.2  thymus cell antigen 1, theta (Thy1)
NM_007482     arginase 1, liver (Arg1)
NM_009910.1  chemokine (C-X-C motif) receptor 3 (Cxcr3)
NM_022315.1  SPARC related modular calcium binding 2 (Smoc2)
NM_010810.1  matrix metalloproteinase 7 (Mmp7)
NM_011315     serum amyloid A 3 (Aaa3)
NM_013650.1  S100 calcium binding protein A8 (calgranulin A) (S100a8)
NM_009114.1  S100 calcium binding protein A9 (calgranulin A) (S100a9)
NM_017370.1  haptoglobin (Hp)
NM_009144.1  secreted frizzled-related sequence protein 2 (Sfrp2)
NM_010052     delta-like 1 homolog (Drosophila) (Dlk1)
NM_007734.1  procollagen, type IV, alpha 2 (Col4a3)
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FIG. 4. Heatmaps of genes differentially expressed in whole grafts and
cellular fractions of bone marrow–reconstituted Id1�/�Id3�/� mice
over wild-type controls. Genes were grouped as inflammatory, repair,
and angiogenesis-related genes. Fold changes between gene expression
levels in samples obtained from bone marrow–reconstituted Id1�/�

Id3�/� mice over those of wild-type controls are presented in the form
of a heatmap (blue to red scale). Only genes displaying more than
twofold changes are shown.
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FIG. 5. Functionality of islet grafts in diabetic recipients. A: Blood
glucose levels in Id1�/�Id3�/� and wild-type Id1�/�Id3�/� mice after
streptozotocin injection. Shadowed area marks the limit of blood
glucose values above which mice were considered frankly diabetic.
B–D: Levels of blood glucose in mice rendered diabetic by streptozo-
tocin and 1 week later transplanted with 500 (B), 200 (C), or 75 (D)
wild-type islets per mouse. Values are means � SE of measurements
from the indicated number of mice.
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row–derived cells. Angiogenic factors of islets, such as
vascular endothelial growth factor (36), may contribute to
this effect. Yet, these factors may not be sufficient, because
the same tissue engrafted in wild-type mice harbored
virtually no bone marrow–derived blood vessels. Accord-
ingly, previous reports have shown a few bone marrow–
derived vascular cells in models of islet transplantation or
islet injury (37,38). In addition, overexpression of proan-
giogenic factors and/or use of progenitors mobilizing
agents, although enhancing local accumulation of various
bone marrow–derived cell lineages, do not necessarily
result in increased incorporation of bone marrow–derived
vascular cells into blood vessels (39,40). Thus, in a wild-
type environment, the development of bone marrow–
derived vascular progenitors at sites of healing appears to
be tightly regulated by unknown local homeostatic mech-
anisms. These tissue barriers are clearly overcome by
downregulation of Id1 and Id3 at transplantation sites,
providing a niche for bone marrow cells to home and/or
expand. In this regard, it is noteworthy that Id1 in endo-
thelial cells regulates expression of chondroitin sulfate
proteoglycan and HIF1�, factors previously involved in the
recruitment and/or development of bone marrow–derived
endothelial cells (41,42). Hence, downregulation of Id1
and Id3 at transplantation sites (e.g., by retrovirus-medi-
ated small interfering RNAs delivered to the local vascu-
lature) may be envisaged as a therapeutic strategy to
facilitate homing/development of bone marrow cells with
high vasculogenic potential, thereby improving engraft-
ment and function of cell transplants.

Although our studies uncover distinct engrafting and
angiogenic functions of bone marrow–derived versus tis-
sue-derived vasculogenic cells in islet transplants, they do
not address to what extent these properties are contrib-
uted by the vascular cells and/or by associated inflamma-
tory leukocytes. Vascular and inflammatory cells regulate
each other during tissue healing (1). Further studies are
warranted to determine how these complex cellular net-
works influence engraftment. Nevertheless, our gene-
screening experiments provide important clues on the cell
types and molecular pathways possibly involved. Thus, a
hallmark of the grafts supported by bone marrow–derived
blood vessels is the increased expression of genes regu-
lating the influx, activation, and angiogenic function of
neutrophils and monocytes. Consistent with an increased
frequency of these myeloid subsets, these grafts harbored
a higher number of GR1highF480� cells. In addition, fewer
T-cells were observed in those transplants. Interestingly,
there is evidence that GR1� leukocytes regulate the
angiogenic switch in tumors (43) and that T-cells con-
trol vascular pruning and remodeling (44). Hence,
GR1highF480� cells may contribute to the enhanced angio-
genic response of the bone marrow–derived vasculature,
whereas the low number of T-cells recruited and/or sur-
viving locally may be permissive to the expansion of that
vascular network in the islet grafts. The increased expres-
sion of genes marking the activation of M2 polarized
macrophages and antioxidative pathways point to other
biological responses that may also positively affect en-
graftment. Importantly, this M2-polarized gene profile was
not detected in peripheral macrophages (not shown),
indicating that it was not dictated by the Id1/Id3-deficient
environment per se. This pattern provides strong evidence
that bone marrow–derived vascular cells are associated
with and/or may support protective repairing rather than
harmful inflammatory responses at sites of tissue injury.

Finally, noteworthy for its direct implications on trans-
plant survival is the downregulation of Factor D (adipsin)
in the grafts from bone marrow–reconstituted Id1/Id3-
deficient mice. Adipsin is the limiting factor for the
activation of the alternative pathway of complement,
reportedly involved in ischemia/reperfusion injury (45).
The downregulation of this factor suggests that the micro-
environment contributed by bone marrow–derived vascu-
logenic cells modulates the susceptibility of islet tissue to
damage by complement.

Islet transplantation has the potential to replace pancre-
atic endocrine function in type 1 diabetics. However, the
large �-cell mass required to treat individual patients has
precluded the wide use of this approach. Our studies
provide in vivo evidence that neovascularization by bone
marrow–derived vasculogenic cells confers a significant
survival advantage to islet transplants, allowing fewer
islets to promptly reestablish normoglycemia in diabetic
recipients. It will be important to determine in future
studies whether bone marrow–derived endothelial pro-
genitors can similarly enhance islet engraftment at other
transplantation sites (e.g., the liver) and in models of
allotransplantation in autoimmune diabetic mice. Notwith-
standing, the syngeneic system presented here demon-
strates that in the absence of a substantial input from this
bone marrow vasculogenic component, the angiogenic
response of the tissue vasculature appears insufficient to
ensure survival throughout the graft, as inferred from the
heterogeneous pAkt expression observed in situ. Notably,
in the grafts of bone marrow–reconstituted Id1�/�Id3�/�

mice, strong expression of nuclear pAkt inversely corre-
lated with PML. This tumor suppressor gene opposes pAkt
nuclear functions and negatively regulates responses to
hypoxia and angiogenesis (26,46). Hence, PML downregu-
lation within islet grafts is consistent with a coordinated
activation of survival and proangiogenic signals.

In conclusion, these studies provide strong evidence
that enhancing the contribution of bone marrow–derived
vasculogenic cells is a promising therapeutic approach to
improve recovery of pancreatic islets after transplant.
Furthermore, the association of bone marrow–derived
vascular cells with protective inflammatory responses
shown here may have implications in transplant tolerance.
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