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Abstract: The key goal of this study was to characterize polytetrafluoroethylene (PTFE) based
composites with the addition of bronze particles and mineral fibers/particles. The addition of
individual fillers was as follows: bronze—30–60 wt.%, glass fibers—15–25 wt.%, coke flakes—25
wt.% and graphite particles—5 wt.%. Both static and dynamic tests were performed and the obtained
results were compared with the microscopic structure of the obtained fractures. The research showed
that the addition of 60 wt.% bronze and other mineral fillers improved the values obtained in the
static compression test and in the case of composites with 25 wt.% glass fibers the increase was about
60%. Fatigue tests have been performed for the compression-compression load up to 100,000 cycles.
All tested composites show a significant increase in the modulus as compared to the values obtained
in the static compression test. The highest increase in the modulus in the dynamic test was obtained
for composites with 25 wt.% of glass fibers (increase by 85%) and 25 wt.% of coke flakes (increase by
77%), while the lowest result was obtained for the lowest content of bronze particles (decrease by
8%). Dynamic tests have shown that composites with “semi-spherical” particles are characterized
by the longest service life and a slower fatigue crack propagation rate than in the case of the long
glass fibers. In addition, studies have shown that particles with smaller sizes and more spherical
shape have a higher ability to dissipate mechanical energy, which allows their use in friction nodes.
On the other hand, composites with glass fiber and graphite particles can be successfully used in
applications requiring high stiffness with low amplitude vibrations.

Keywords: glass fiber; bronze particles; coke particles; graphite particles; hysteresis loops; compres-
sion test

1. Introduction

Today, it can be observed that the interest in advanced composite materials has
grown rapidly. The main reason for the growing popularity of polymer composites is
their good mechanical properties, such as high specific strength and stiffness, low density,
high fatigue strength, high damping and low thermal coefficient. Due to its excellent
properties polymeric materials are widely used in the automotive and aerospace industries
as functional materials. A polymer material with unique properties that is often used
in engineering applications is polytetrafluoroethylene (PTFE), more commonly known
under the trade name Teflon [1]. It is a hydrofluoric compound with a very stable main
chain structure due to strong C–F chemical bonds. Due to the high molecular cohesion
of PTFE chains, it is characterized by high chemical/corrosion resistance, low friction
coefficient (below 0.1) and has a wide operating temperature range from −260 ◦C to
260 ◦C [2]. Whereas, due to low wear resistance, poor dimensional stability, high creep
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deformation, unmodified PTFE is used as a material for lubricants and seals (low friction
and chemical inertness) [3]. However, modified PTFE is widely used in the automotive,
electrical and electronics industries, aerospace, communications, construction, medical
devices and implants, blood vessel prostheses, special packaging and protective clothing.

To extend the application of PTFE, it is more and more frequently modified. Mainly
modifications of PTFE are intended to increasing the tribological properties of composites [4,5].
The most commonly used fillers for tribological applications are: carbon, bronze, glass
fibers, graphite and molybdenum disulfide in varying percentages, and sometimes in
combination, in order to improve wear resistance and coefficient of friction [6]. Glass fiber-
filled composites reduce flow under load, reduce wear and improve sliding properties.
Graphite-modified composites are compositions for sliding applications. The addition
of bronze affects the electrical conductivity and thermal volume. While the composites
with coke content are produced to reduce flow under load, increase hardness and thermal
conductivity [7,8]. In the work of Conte et. al. the tribological properties of composites
based on PTFE reinforced with 25 wt.% carbon fiber (25CF), 60 wt.% bronze (60B), 15 wt.%
graphite (15G) and 25 wt.% glass fiber (25GF) were tested [6]. Research has shown that
the content of hard fibers significantly improves the wear resistance of composites. The
best results were achieved by CF composites because their specific resistance (friction
energy/mass loss) was the highest, i.e., 15 times higher than that of unmodified PTFE.
The authors attribute this dependence on the presence of hard carbon fibers (increased
hardness). On the other hand, composites with 60 wt.% bronze were characterized by the
lowest wear resistance (1.1 MJ/g).

Currently, there is a trend in modifying PTFE, in in order to increase its mechanical
properties. There are not so many publications in the world literature (as in the case of
tribological studies) concerning the description of the results of mechanical tests of PTFE
composites reinforced with fibers/particles, which is also indicated by other authors [9].
One of the authors describing the influence of fillers on the mechanical properties of PTFE
composites is Zhang, who investigated the influence of carbon (0.5 to 2 wt.%) and aramid (1
to 9 wt.%) fibers on abrasive wear and mechanical properties [10]. The addition of carbon
fibers significantly lowered the tensile strength and the ability to deformation. However,
depending on the fiber diameter, an increase in Young’s modulus by 70% (7 µm) and 137%
(200 µm) was observed. A similar dependence was shown by the addition of aramid fibers,
however, with the increase in the fiber content, the authors did not observe a deepening
decrease in tensile strength, as was the case with elongation. The highest increase in the
modulus of elasticity was observed in composites with the addition of 5 wt.% aramid
fibers, which was 1.8 times higher than in the case of unmodified PTFE. In another work,
Vasiliev et al. described the influence of the low content of carbon fibers (1–5 wt.%) on
the tribological and mechanical properties of composites [11]. Additionally, 1 wt.% kaolin
was added to each composition. As in the previously described works, the addition of
hard carbon fibers increased the wear resistance of PTFE composites. As the fiber content
increases, the wear resistance increases more than 1000 times. On the other hand, even a
small addition of fibers lowered the deformation capacity of composites, thus, causing an
increase in compression stress at 10% strain from 16 MPa to 24 MPa.

In recent years, the use of polymer composites has significantly expanded, mainly in
engineering applications where cyclical loads often occur (e.g., structural or load-bearing
elements). In the case of polymeric materials, failure of the material occurs with less
stress than in the case of normal static mechanical load [12]. On the other hand, for
polymer composites reinforced with fibers/particles, fatigue occurs through fiber tearing,
matrix fracture, matrix-fiber detachment, delamination, etc. Therefore, determining fatigue
mechanisms is an important issue when determining the durability of polymeric materials.
In general, fatigue testing of polymer composites is not as often a subject of research as
static testing, mainly due to the complicated methodology and long-term testing. As for
composites based on PTFE, there is a low number of researches determining the fatigue
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life [13]. Considering the growing interest in PTFE composites in engineering applications,
it is justified to test these composites in terms of fatigue testing.

In the case of composites reinforced with particles/fibers, their initial mechanical,
thermal or physical properties are important, as well as their morphology, which is often
crucial for the initial properties of polymer composites [14]. One of the methods of assess-
ing the influence of particle geometry is the finite element method. This method was used
by Qing to investigate the effects of particle size, locations and orientations on mechani-
cal properties of metal-matrix composites [15]. SiC particles of various shapes (circular,
octagonal, hexagonal and square) were used as the filler. As shown by the tensile failure
stresses results, they are dependent on the structure of the filler, and the best results were
obtained in composites with circular particles, and the lowest with square ones. Another
work shows the influence of particle geometry on the properties of composites was Lebar
et al. [16]. In their work, they investigated the influence of the particle shape on the spall
strength of polyurethane composites reinforced with aluminum oxide. As the research
showed, not the shape of the particles but the particle/matrix adhesion had a decisive
influence on the properties. Kumar et al. investigated the influence of the shape of carbon
nanofillers (s(CB, CNT and GR)) on the mechanical and electro-mechanical properties of
resin-based composites (RTV silicone) [17]. The particles were characterized by different
morphology: CBs had an oval shape and formed agglomerations, CNTs were character-
ized by an elongated shape with a large specific surface area, while GR was similar to
platelets, but agglomerated to a lesser extent than CB. The research showed that the highest
properties were characterized by composites reinforced with elongated fillers (CNT) and
the increase in Young’s modulus was 350%, while the lowest values were obtained for
composites with CB (increase by 130%). This was most likely due to particle agglomeration
and the inability to transfer the load from the die to the filler.

In the presented work, PTFE-based composites were produced by pressing. Bronze
powder and mineral fibers/particles were used as a reinforcement element. The produced
materials were subjected to mechanical and fatigue tests. To analyze the results more pre-
cisely, the images of breakthroughs after static and dynamic tests were analyzed. Moreover,
a quantitative analysis of the microstructure of composites (before the tests, after static tests
and after dynamic tests) was performed with the use of computer software. To the best of
the authors’ knowledge, such a comprehensive characterization of PTFE-based materials
has not been performed previously. The proposed a research methodology, which took into
account the static and dynamic tests, with the simultaneous comparison with scanning
electron microscopy (SEM) images, will not only allow to determine the parameters of
materials, but also allow to understand the mechanisms occurring during the tests, taking
into account various loads. This approach will help to expand the use of PTFE composites.

2. Materials and Methods
2.1. Materials

In this study PTFE in powder form produced by Zakłady Azotowe in Tarnów (Poland)
under the trade name of Tarflen was used as matrix. Four types of fillers were used as
reinforcement: bronze powder—Cu90Sn9Zn1-2 (Bimex, Gdańsk, Poland), glass fibers (Kros-
glass S.A., Krosno, Poland), coke flakes and graphite particles (ZEW, Raciborz, Poland). In
Table 1 abbreviations and compositions of produced composites were presented.

Rectangular samples with dimensions: 50 × 12.5 × 12.5 were prepared for the tests by
pressing in hydraulic presses. The mixed matrix and fillers were dried at 60 ◦C for 24 h,
followed by pressed at 10–70 MPa at ambient temperature. The specimens were removed
from the mold and were relaxed at ambient pressure and temperature for approximately
12 h prior sintering. The products formed in the pressing process, removed from the molds
or in the molds, were sintered in furnaces with internal air circulation, at a temperature
of 360–380 ◦C with a rate of 40 ◦C/h. The sintering process, depending on the weight
of the product, takes up to 40 h. Thereafter, the sintered products were cooled to room
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temperature in the oven at 40 ◦C/h. In Figure 1, a schematic diagram of the manufacturing
process was shown.

Table 1. Abbreviations and compositions of produced composites.

Abbreviation Composition

PTFE 100 wt.% polytetrafluoroethylene
PTFE/30B 70 wt.% polytetrafluoroethylene + 30 wt.% (11 vol.%) bronze particles
PTFE/40B 60 wt.% polytetrafluoroethylene + 40 wt.% (16 vol.%) bronze particles
PTFE/60B 40 wt.% polytetrafluoroethylene + 60 wt.% (29 vol.%) bronze particles

PTFE/15GF 85 wt.% polytetrafluoroethylene + 15 wt.% (14 vol.%) glass fibers
PTFE/25GF 75 wt.% polytetrafluoroethylene + 25 wt.% (23 vol.%) glass fibers
PTFE/25C 75 wt.% polytetrafluoroethylene + 25 wt.% (29 vol.%) coke flakes
PTFE/15G 85 wt.% polytetrafluoroethylene + 15 wt.% (15 vol.%) graphite particles

Figure 1. A schematic diagram of the manufacturing.

2.2. Methods of Testing

The samples were tested in cyclic compression condition on universal testing ma-
chine INSTRON 8511.20 (Instron, Norwood, MA, USA) at the speed of increasing the
force −1 kN/min at ambient temperature. During cycling compression test, mechanical
hysteresis loops were recorded in the force-shortening system, and the computer program
calculated the mechanical energy dissipated in each cycle, the secant modulus of elasticity
and the value of the average deformation (by assessing the change in position, the mean
hysteresis loop) as a function of time. The tests were performed at a frequency of 10 Hz, for
100,000 full load cycles. The dissipation energy was calculated on the basis of the surface
area of the hysteresis loops obtained in one complete strain cycle. The Mathcad Prime
6.0.0.0 (PTC, Boston, MA, USA) program was used for the calculation.

In addition, static tensile and compression tests was performed by using universal
MTS Criterion Model 43 (MTS Systems Corporation, Eden Prairie, MN, USA) testing
machine according to ISO 527 at ambient temperature. The crosshead speed for tensile
tests was 2.5 mm/min.

To exclude errors and create statistical analysis, at least three samples were tested for
each test and for each produced material.

In order to observe and characterize the morphologies of PTFE composites scanning
electron microscope (SEM) (JSM–5510LV, JEOL, Tokyo, Japan) in low-vacuum at 20 vK
was utilized. Images of breakthroughs after static tensile, static compression and dynamic
compression tests were taken.

The quantitative assessment of the microstructure of the tested composites was carried
out with the Aphelion v. 3.2 software (ADCIS, Saint-Contest, France). The algorithm
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described by Wojnar et al. was used [18]. The analysis was made on images at a magnifi-
cation of 500, both longitudinally and transversely, and involved at least 30 particles. An
analysis of the fillers was performed, which determined the following parameters: volume
fraction of particles in the matrix, particle surface area and Feret diameters F(0) and F(90)
based on which the shape coefficient was calculated. The shape coefficient (aspect ratio) is
defined by the ratio of the F(90) to the F(0). Due to the lack of differences in the method
of measurement, the shape coefficient calculated on the basis of transverse measurements
was provided for the analysis.

The obtained results were related to the results obtained from the static and dynamic
compression tests.

3. Results and Discussion
3.1. Characteristics of Fillers

Figure 2 presents images showing the morphology of particles used as fillers in the
produced composites. As can be seen, the particles have different structures. Bronze
particles have a globular structure with dimension in the range of 20–30 µm, and their
surface is not as developed as in the case of coke and graphite particles. The coke and
graphite particles have a developed lamellar structure of quite irregular shape. The graphite
particles are much larger and much more elongated than the coke particles. In contrast,
glass fibers have the typical elongated structure characteristic of fibers. The diameter of the
glass fibers is 11 µm and the length is max. 200 µm.

Figure 2. Typical shapes of fillers used in polytetrafluoroethylene (PTFE) composites: (a) bronze, (b)
glass fibers, (c) coke and (d) graphite.

3.2. Static Tests

The impact of different types and various contents of fillers on the mechanical proper-
ties (tensile and compressive tests) of PTFE composites is shown in Table 2. The highest
level of deformation was characterized by unmodified PTFE—416%. This indicates the flex-
ible nature of the material, where the molecular chain retains higher integrity under load.
Moreover, as the amount of filler increases, the deformability decreases—more inclusions
resulted in more matrix discontinuities.
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Table 2. Results from tensile and compression tests for PTFE and its composites.

Type

Static Compression Test Static Tensile Test

Young’s
Modulus, MPa

Force at 2%
Deformation,

kN

Force at 15%
Deformation,

kN

Breaking
Stress, MPa

Strain at Break,
%

Breaking
Stress, MPa

PTFE 766 ± 29 2.22 ± 0.10 3.38 ± 0.14 30.0 ± 1.2 416 ± 20 766 ± 29
PTFE/30B 534 ± 23 2.28 ± 0.09 3.25 ± 0.13 39.9 ± 1.7 383 ± 17 534 ± 23
PTFE/40B 634 ± 28 2.55 ± 0.11 3.75 ± 0.16 32.4 ± 1.4 367 ± 15 634 ± 28
PTFE/60B 963 ± 45 3.15 ± 0.13 4.80 ± 0.20 22.0 ± 0.9 181 ± 8 963 ± 45

PTFE/15GF 781 ± 37 2.68 ± 0.11 4.11 ± 0.19 17.0 ± 0.7 250 ± 11 781 ± 37
PTFE/25GF 1291 ± 61 2.46 ± 0.11 3.65 ± 0.17 15.0 ± 0.7 200 ± 8 1291 ± 61
PTFE/25C 952 ± 42 3.22 ± 0.14 5.6 ± 0.25 12.0 ± 0.5 100 ± 4 952 ± 42
PTFE/15G 802 ± 38 3.17 ± 0.13 5.25 ± 0.23 13.0 ± 0.5 200 ± 9 802 ± 38

For composites with the addition of bronze powder (30–40 wt.%), no significant differ-
ences were noticed in the static tensile test, especially for the breaking stress value. Only the
addition of a high amount of filler (60 wt.%) caused a decrease in breaking stress by about
30% and elongation by 57%. This phenomenon is most likely related to the cracking mech-
anism (microcracks may appear at the interface between bronze powder and PTFE, which
leads to their slow propagation) and the exhaustion of the possibility of transferring elastic
strains through the PTFE matrix, for high levels of filling with much stiffer fillers. While the
addition of bronze powder up to 40 wt.% did not adversely spill over into breaking strength
and deformation, the addition of mineral fillers (glass fiber, coke and graphite) decreased
this result by at least 40% (PTFE/15GF). The highest decrease was observed for composites
with coke flakes—60% and 76% for breaking stress and elongation, respectively. These
decreases are due to disturbances caused by the addition of fillers, which mechanically
impeded the movement of the PTFE chains and reduced the continuity/integrity of the
matrix [19]. The higher the filler content, the lower the deformability. This relationship
indicates the formation of discontinuities in the matrix, which reduce the plastic deforma-
tion capacity of the tested composites. The addition of particles resulted in the creation of
more places where breaking stress could occur. The higher the volume of a given filler, the
higher the number of particles and thus the more destructive places. These studies also
confirm this relationship: PTFE/25C (29 vol.%—100%) < PTFE/60B (29 vol.%—181%) <
PTFE/25GF (23 vol.%—200%) < PTFE/25C (15 vol.%—200%) < PTFE/15GF (14 vol.%—
250%) < PTFE/40B (16 vol.%—367%) < PTFE/40B (11 vol.%—383%). In the case of tensile
strength, the obtained relations are caused, due to the very stable F bonds with the C–C
bond, PTFE hardly reacts with other compounds so there are only simple physical bonds
between the fiber and the matrix. This leads to poor filler/matrix adhesion, which makes it
impossible to transfer loads from the matrix to the fiber [20]. Similar values of deformation
decrease were observed in the work of Zhang et al. where the addition of 15 wt.% glass
fiber led to a decrease in the deformation value to the level of 221, 15% [10].

Comparing the results obtained in the tensile and compression tests (Table 2), it can be
seen that the values obtained during the compression test are higher than in the tensile test.
This may indicate a certain anisotropy and higher compressive strength of PFTE composites
due to the significant flowability of the polymer matrix. As the bronze powder content
increases, Young’s modulus increases (PTFE/30B—decrease by 30%; PTFE/60B—increase
by 26%). This indicates that, in the case of bronze powder, a minimum of approximately
40 wt.% is needed to increase the stiffness of the material. It is worth noting that in other
studies, where the addition of bronze was about 40 wt.% (38.5 wt.%), the modulus of
elasticity under static compression was much lower –369.7 MPa [1]. With the increase in the
volume of the filler, the Young’s modulus increases under compression, the highest increase
was recorded for PTFE/25GF (23 vol.%)—69%, and the lowest for PTFE/30B (11 vol.%)—a
decrease by 30%. Due to the high stiffness and larger dimensions of glass fiber to bronze
and coke particles, despite the higher content (29 vol.%), glass fiber composites have
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a higher Young’s modulus due to the above-mentioned aspects. In addition, from the
research it can be concluded that larger particles with elongated shape caused a higher
increase of Young’s modulus: PTFE/15G—802 MPa; PTFE/25GF—1291 MPa, where for
the content of 25 wt.% of smaller less elongated coke flakes Young’s modulus was 952 MPa.

As the bronze powder content increases, both the force at 2% and 15% permanent
deformation increases, which indicates an increased ability to transfer compressive loads.
On the other hand, the addition of carbon fillers improved all the values obtained during
the static compression test. The optimal values were found for composites with 25 wt.%
coke flakes content, where the improvement was 24%, 45% and 66% for Young’s modulus,
force at 2% and 15% permanent deformation, respectively.

3.3. Dynamic Tests

Knowledge of the dynamic properties of reinforced polymer composites is important
when considering energy dissipation processes in applications with cyclic loading. Vis-
coelasticity is a typical behavior of polymeric materials and also plays an important role in
polymer composites. Figure 3 shows the results obtained during the cyclic compression
test of PTFE composites. Based on the recorded hysteresis loops, the energy dissipated
in each cycle, the secant modulus of elasticity and the values of the average strain as a
function of time were calculated. All tested composites show a significant increase in the
modulus as compared to the values obtained in the static compression test. This value
stabilizes after about 2000 cycles and shows only a slight downward trend with the passage
of time and the development of fatigue processes. The addition of bronze in the amount of
30–40 wt.% did not significantly change the modulus compared to the unmodified polymer.
The highest increase was observed for PTFE/25GF composites, obtained value—4.8 GPa.
The addition of both 15 wt.% glass fibers and graphite particles resulted in similar values
of the elasticity modulus of approx. 4 GPa. We observed a similar tendency in our previous
research, where Poly(oxymethylene) (POM) with the addition of glass and carbon fibers
(content from 0 to 40 wt.%) was tested [21]. As the content of glass fibers increases, the
Young’s modulus obtained during cyclic loading increases (for content of 20 wt.% of fibers
the Young’s modulus was about 3 times higher than for neat POM).

Figure 3. Modules of elasticity (a,b) and deformation (c,d) for PTFE and its composites measured
during fatigue tests.
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A similar change is shown by the average strains presented in Figure 3c,d. Initially,
there is an abrupt increase in strains, which stabilizes and remains constant as the number
of cycles increases. The higher the mass fraction of the filler, the higher the dimensional
stability during long-term loads changing with time. Composites with the addition of glass
fiber and 60 wt.% bronze powder were characterized by the highest dimensional stability,
while composites with 30 wt.% bronze powder were the lowest.

Figure 4 shows the change in energy dissipated for composites based on PTFE. The
addition of bronze powder to the PTFE matrix improves the ability of such composites
to dissipate mechanical energy, possibly by increasing their thermal conductivity with
increasing amounts of filler, which confirms the desirability of their application in friction
junctions. Unmodified PTFE has the ability to increase its ability to dissipate mechanical
energy, as the number of cycles increases, the amount of energy dissipated in each of them
increases to the tested level of 100,000 cycles. This is probably due to the high adaptability
of this material under loads not exceeding the compressive strength associated with the
technology of its production, consisting in pressing and sintering the PTFE suspension,
resulting in a microporous structure capable of dissipating mechanical energy. In the
case of a significant 60% mass fraction of the filler, the ability to dissipate mechanical
energy, although initially much higher, begins to decrease with the development of fatigue
processes in the composite caused by the progressive decohesion of the composition
components. Interestingly, for the various tested levels, the amount of energy dissipated
after 100,000 cycles begins to oscillate towards a constant level, which may indicate the
viscoelastic heating of the matrix and the dominance of this type of failure mechanism in
the fatigue process of such composites.

Figure 4. Change of the dispersion energy of composites based on PTFE.

The addition of chopped glass fiber causes a decrease in the ability to dissipate me-
chanical energy, while reducing, more than graphite or coke, the natural creep tendency
of PTFE, especially under long-term loads, and increasing the values of modulus of elas-
ticity, especially at a higher degree of filling. Moreover, in the case of fibrous fillers, the
higher the fiber content, the lower the resistance to fatigue crack propagation, which is also
confirmed by these tests [22]. Due to the high stiffness of the glass fiber, it is difficult to
expect a significant improvement in the ability to dissipate energy by PTFE composites
with glass fiber (lower viscoelastic deformation ability). In addition, the adhesion between
the fiber and the matrix was not sufficient and the fibers became drawn under cyclic
loads. A similar relationship was observed by Aglan et al. They investigated the effect of
cyclic loads (tension-tensions) on PTFE composites with 15 and 25 wt.% GF and 15 wt.%
G [22]. They showed that the longest fatigue life was characterized by unmodified PTFE
(1.5 million cycles), and the lowest for composites with 25 wt.% GF (85,000 cycles). In
addition, the authors of the study summed up, that the particulate filler tends to reduce the
fatigue cracking resistance of PTFE, more than the short fibrous filler at the same content.
Additives in the form of fibers tend to build ‘bridges’, which makes the propagation of
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cracks easier and faster compared to spherical particles. This situation has not been signifi-
cantly observed in the presented work. Most likely, due to the type of load applied, being
compression-compression and in the case of a literature source it was tensile-tensile.

3.4. Morphological Analysis of Composites

For a more complete analysis of phenomena occurring in composites during the tests,
the compression and fatigue sections of the sample were observed by SEM. Unmodified
PTFE is characterized by a laminar structure with a terraced (layered—marked with red
arrows in Figure 5) arrangement. The average length of the lamellas was about 1 µm, and
the thickness of the single crystals was about 0.01 µm. The lamellar structure of PTFE
composites has already been described in the literature [23]. Cyclic loading changes the
crystallographic structure of composites compared to static compression. The fracture
surfaces subjected to cyclic loads have a less developed fracture surface compared to the
fracture in static compression, which proves the degradation of the typical fine-crystalline
structure of the spherulite.

Figure 5. Scanning electron microscope (SEM) images of neat PTFE after static compression test (top)
cyclic compression test (bottom) at different magnifications: ×2000, ×5000 and ×10,000.

As can be seen in Figures 6–8, the addition of bronze powder only slightly changed
the crystallographic structure of PTFE, while the type of the applied load (static or cyclic)
changed this structure. In Figure 6, we can observe bronze particles with black rings around,
what proves that the adhesion of the particles to the matrix is not sufficient. Additionally,
voids can be seen which show that the bronze particles detached easily from the matrix.
While at low filler contents we do not see microfibers, at higher contents they start to
appear especially during cyclic loads. The higher the filler content, the more space for fibril
nucleation. Due to the previously described chemical structure of PTFE, which practically
prevents the formation of chemical bonds with other compounds, it can be said that the
resulting microfibrils counteract PTFE against tearing [23]. This essence is confirmed by
mechanical tests which show that with the increase of the filler, the ability of composites to
plastic deformation decreases. It should be emphasized that in the case of compression
tests, no significant formation of microfibrils is observed, but according to the literature
sources, such a structure is visible primarily in tensile tests [24].
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Figure 6. SEM images of PTFE/30B after static compression test (top) cyclic compression test (bottom)
at different magnifications: ×2000, ×5000 and ×10,000.

Figure 7. SEM images of PTFE/40B after static compression test (top) cyclic compression test (bottom)
at different magnifications: ×2000, ×5000 and ×10,000.

Figure 8. SEM images of PTFE/60B after static compression test (top) cyclic compression test (bottom)
at different magnifications: ×2000, ×5000 and ×10,000.

Figures 9–12 show cross-sections of PTFE composites with mineral fillers (glass fiber,
coke and graphite particles). The introduction of 15 and 25 wt.% filler into PTFE in the
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form of a short glass fiber stabilizes the growth of spherulites (Figures 9 and 10). Moreover,
uniform distribution of the reinforcement and poor adhesion with the matrix are observed.
It should be presumed that the high dispersibility of the internal structure of spherulites is
not affected by glass fiber. Due to the low cohesion of the fiberglass-matrix interface, these
regions will be favored for nucleation of cracks during their deformation. The formation of
dendritic structures (bridges) has also been observed in the literature for fibrous fillers such
as glass fiber or carbon fiber [11]. The authors emphasize that the interactions between the
polymer and the fiber took place locally, which confirms the very difficult interaction of
PTFE with other materials.

Figure 9. SEM images of PTFE/15GF after static compression test (top) cyclic compression test
(bottom) at different magnifications: ×500, ×2000 and ×5000.

Figure 10. SEM images of PTFE/25GF after static compression test (top) cyclic compression test
(bottom) at different magnifications: ×500, ×2000 and ×5000.

Nevertheless, at high magnification, the observation of individual glass fibers indicates
that during deformation PTFE bridges are formed between fibers and the matrix, which
make it difficult to “pull out” individual fibers. Due to the large difference between the
size of the spherulite and the filler, glass fiber in the used amounts does not significantly
affect the size of the spherulites and does not affect the fine dispersion of the matrix of
the composite. For the above-mentioned reasons, composites with glass fibers show the
highest compressive strength (high hardness and strength of the filler contribute to this
phenomenon).
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In the case of small particles such as coke particles, their random distribution in the
matrix was observed (Figure 11). Due to their lamellar structure, which is shown in more
detail in Figure 2, and similar dimensions to matrix spherulites, coke plates favor the
growth of matrix spherulites. As with other composites, microfibrils appear. As with glass
fiber composites, there is a dendritic bond which indicates that there is a bond between
the fiber and matrix. A confirmation of the relatively good adhesion of coke to PTFE is its
relatively high compressive strength described before.

Figure 11. SEM images of PTFE/25C after static compression test (top) cyclic compression test
(bottom) at different magnifications: ×500, ×2000 and ×5000.

Figure 12. SEM images of PTFE/15G after static compression test (top) cyclic compression test
(bottom) at different magnifications: ×500, ×2000 and ×5000.

Figure 12 presents SEM photos of PTFE composites with the addition of 15 wt.%
graphite. The addition of a plate-like filler (Figure 2) resulted in a significant reduction of
the matrix spherulites. The flake arrangement of graphite (sometimes arranged parallel
to each other) favors the spread of cracks on their surfaces. As in the case of the above-
mentioned fillers, they do not affect the internal structure of spherulites. Spherulites are
slightly smaller than the base material, and in the micro scale they have the same disc
and plate structure (with a parallel arrangement of single crystals). This dense packing
of the composite matrix hinders the development of the final crack. As a result of this
phenomenon, composites filled with graphite show high resistance to compression (thus
eliminating the unfavorable effect of the filler).
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For a more detailed analysis of the influence of the type/size of particles on the
properties of composites on the PTFE matrix, computer image analysis was performed
on the basis of SEM images. The analysis was performed for three states: before the tests,
after the static compression test and after the dynamic compression test. Figure 13a–c
show the geometrical parameters of the particles, i.e., the Feret diameter (F0) for transverse
and longitudinal measurements and the shape coefficient based on Feret minimum and
maximum diameter [25]. In the analysis of the results, three groups of particle structure
should be distinguished: a globular shape (bronze particles), a fibrous shape (glass fibers)
and a plate-shape (coke and graphite particles). More precisely, the shape of the individual
fillers is shown in Figure 2.

Figure 13. Comparison of Feret diameters for PTFE composites: (a) before tests, (b) after static
compression tests and (c) after dynamic compression tests.

For the regular shaped particles (bronze, coke and graphite), there were no significant
differences between the Ferret diameter measured both longitudinally and transversely.
Larger differences appeared in the composites filled with fibers, because, as shown in the
SEM photos (Figures 9 and 10), the filler was not oriented in one direction. Additionally,
the regular shape of bronze particles is confirmed by the results of the shape coefficient.
The value of shape coefficient for bronze composites was closer to 1 than for glass fiber
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composites. Such relations are described in the literature sources, which indicate that if
the shape coefficient based on Feret diameters is close to 1, its shape is similar to a sphere
(isotropic area), while when it is close to 0, there is a fibrous structure (elongated area) [26].

Table 3 presents the results of the stereological analysis: The number of particles and
the mean area of zones of influence. The data show that the cyclic loading affects the
fragmentation of the fillers, which causes an increase in the number of particles per unit
area. Moreover, as the amount of filler increases, the difference becomes more pronounced.
The exceptions are composites with 15 wt.% glass fiber, which is probably caused by a
calculation errors resulting from the parallel arrangement of the fibers to the cross-section
of the sample. Additionally, the research shows that it is possible to find a correlation
between the stereological indexes and the type and state of the composite stresses. Such a
relationship was observed for composites with the addition of bronze powder, where it can
be seen that for a low filler content, the number of particles is a more sensitive parameter
for the type of input, and for large areas of the influence zone (Figure 14).

Table 3. Stereological analysis results for PTFE and its composites: the number of particles and Influence zones.

Type

The Number of Particles (1/mm2) Influence Zones (µm2)

Before
Test

Static
Compression

Test

Dynamic
Compression

Test

Before
Test

Static
Compression

Test

Dynamic
Compression

Test

PTFE/30B 2167 1993 2192 315 385 289
PTFE/40B 3097 3297 3836 169 227 183
PTFE/60B 4368 5226 5552 102 86 90

PTFE/15GF 184 148 198 3328 4525 3401
PTFE/25GF 240 331 293 2762 1786 1992
PTFE/25C 1672 2064 1800 218 147 189
PTFE/15G 1326 2301 1600 269 125 227

Figure 14. Changes in the number of particles and the mean area of the influence zones for increasing
mass fractions of bronze powder in composites based on PTFE matrix.

4. Conclusions

Modifications of highly crystalline fluorine material (with unique properties resulting
from the shielding of the carbon chain by fluorine atoms) by pressing with bronze powder,
glass fiber and mineral particles are primarily aimed at increasing the thermal conductivity
in applications for sliding elements. Based on the obtained results the following conclusions
can be drawn:

• The addition of fillers had a positive effect on the obtained values during the static
compression test: force at 2% and 15% of deformation increased from 3% (PTFE/30B)
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to 66% (PTFE/25C) and Young’s modulus increased for composites with mineral
fillers max. by 69%;

• Larger particles with elongated shape caused a higher increase of Young’s modulus:
PTFE/15G—802 MPa; PTFE/25GF—1291 MPa, where for small bronze particles—
534 MPa;

• As the volume of the fillers content increased, the tendency for plastic deformation
decreased;

• Mechanical energy dissipation tests for high stress levels (100,000 cycles) have shown
that pure PTFE has the surprising ability to increase its ability to dissipate mechanical
energy with increasing number of cycles.

• The addition of bronze powder to PTFE further improves the ability of such composites
to dissipate energy with increasing mass fractions of the filler. This confirms the
possibility of their use in friction junctions.

• The addition of chopped glass fiber reduces the natural creep tendency of PTFE more
than graphite or coke, especially under long-term loads, while increasing the values
of their modulus of elasticity and compressive strength for such composites.

SEM microscopic images showed that insufficient fiber/matrix adhesion was observed,
which contributed to a reduction in the properties obtained during the tensile test. In order
to improve the results obtained in this work in the future, the surfaces of the particles
should be modified or their fragmentation increased. Additionally, a compatibilizer may
be considered to increase the miscibility of the apolar PTFE with the fillers.
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