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Abstract
In the past decades, immunotherapies against cancers made impressive progress. Immunotherapy includes a broad range of 
interventions that can be separated into two major groups: cell-based immunotherapies, such as adoptive T cell therapies and 
stem cell therapies, and immunomodulatory molecular therapies such as checkpoint inhibitors and cytokine therapies. Genetic 
engineering techniques that transduce T cells with a cancer-antigen-specific T cell receptor or chimeric antigen receptor have 
expanded to other cell types, and further modulation of the cells to enhance cancer targeting properties has been explored. 
Because cell-based immunotherapies rely on cells migrating to target organs or tissues, there is a growing interest in imaging 
technologies that non-invasively monitor transferred cells in vivo. Here, we review whole-body imaging methods to assess 
cell-based immunotherapy using a variety of examples. Following a review of preclinically used cell tracking technologies, 
we consider the status of their clinical translation.
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Introduction
Immunotherapy aims to stimulate or suppress the immune system to help the body fight cancer, infection, and other diseases. 
The history of immunotherapy can be traced back to the late nineteenth century, but significant advances have been achieved in 
recent decades, stemming from a deeper understanding of immune regulation mechanisms. Several types of immunotherapies 
have been developed. Immunomodulatory molecular therapy, such as checkpoint inhibitors, cytokines, oncolytic viruses, or 
vaccines, aims to modulate endogenous natural immune systems. Cell-based immunotherapy, such as adoptive cell therapies 
using T cells or natural killer (NK) cells and stem cell therapies, infuses the recipient’s ex vivo expanded autologous cells 
to combat diseases. In certain cases, allogeneic cells may be used (i.e., hematopoietic stem cell transplants). Among these, 
immune checkpoint inhibitors [1] and cell-based therapies using tumor-antigen-specific T cell receptor (TCR)-transduced T 
cells [2, 3] and chimeric antigen receptor T (CAR-T) cells transduced with an antibody-derived single-chain variable region 
(scFv), which recognizes the cancer-associated antigen and activates an intracellular signaling domain [4, 5], have quickly 
become main therapeutic strategies, revolutionizing the field of oncology. Genetic engineering techniques have expanded to 
other cell types. These therapies have achieved durable clinical responses; however, their efficacies vary greatly, and sometimes 
life-threatening side effects have been observed [6, 7]. This variable response remains puzzling.

It is unsurprising that with the development of immunotherapies, interest in non-invasive imaging methods has increased. 
Immunomodulatory molecular therapies would benefit from visualization of the magnitude and extent of modulation induced in 
the immune microenvironment. In cell-based therapies, information on migration, activation, and expansion of the transferred 
cells could be important. Imaging such events would help address the failure in achieving the anticipated therapeutic effects 
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magnetic resonance imaging (MRI) have been used for both 
clinical and preclinical studies. Optical imaging such as bio-
luminescence imaging (BLI) and fluorescence imaging are 
widely used preclinically, but their application to humans is 
limited by the immunogenicity of non-human origin proteins 
that must be used and because of the very poor transmission 
of light through tissue, typically between a few millimeters 
to a few centimeters.

Radionuclide Imaging

SPECT and PET can be used to image cells either by inject-
ing a radiotracer specific for a biomarker expressed on the 
cell surface (in vivo labeling) or by labeling cells ex vivo 
and re-infusing into a recipient. Scintigraphy/SPECT agents 
indium-111 (111In)-oxine and technetium-99m (99mTc)-
hexamethylpropylene amine oxime (HMPAO) have been 
used nearly 50 years in imaging leukocytes and visualizing 
inflammation and infection or abscess in patients [8–10]. 
However, imaging tends to be slow, and relatively high radi-
olabeling doses are required for cell detection, which can 
cause radiotoxicity in the cells. Compared to SPECT, PET 
has higher sensitivity and provides better spatial and tempo-
ral resolution, and quantitation is more straightforward [11]. 
In immunoPET, positron emitters are conjugated to antibod-
ies, antibody fragments (e.g., F(ab’)2, scFv), or engineered 
antibodies (e.g., minibodies, diabodies, bispecific antibodies) 
and infused for cell targeting. ImmunoPET can be designed 
to target various biomarkers, including cancer-related anti-
gens, immune cell markers, and immune checkpoints [12, 
13]. ImmunoPET imaging before and after an immunomodu-
latory molecular therapy can demonstrate the induced micro-
environmental changes [13–15]. However, immunoPET can-
not distinguish transferred cells from endogenous ones that 
express the same target biomarker, and thus, generally, cannot 
track therapeutic cells in cell-based therapies. For immun-
oPET to detect infused cells, use of cells introduced with a 
specific marker and a tracer targeting the marker would be 
required. The long circulation time and tissue pooling of the 
tracer increase background signals [16]. Specific and non-
specific distribution of tracers and their clearance (e.g., liver, 
spleen, kidneys) could result in high background signals, hin-
dering detection of cells. Antibodies/antibody fragments with 
high specificity are required for accurate imaging.

Visualizing the migration of infused cells can be 
achieved by labeling the cells with a radiotracer ex vivo 
before re-infusion. Ex vivo cell labeling methods achieve 
high signal-to-background ratios even with low cell labe-
ling doses because only the cells infused have a radiotracer. 
Background signals can increase over time for reasons such 
as release of the tracer from the labeled cells. When cells 
undergo division, the label is passed over to daughter cells, 
halving the amount of tracer per cell [17], which also results 
in decreased signal-to-background ratios. Using SPECT, 
111In-oxine-labeled tumor-infiltrating T cells (TILs) have 

and aid in developing new therapeutic strategies to obtain 
better outcomes. Various imaging methods and techniques 
have been investigated preclinically. Since each method has 
strengths and weaknesses, different imaging methods may 
be used depending on the immunotherapy strategy, cell type 
used, and treatment condition.

This review first provides a brief overview of various 
imaging methods for monitoring immunotherapies and then 
discusses more in detail clinically translatable imaging tech-
nologies with a focus on imaging cell-based immunothera-
pies. The review will conclude with an assessment of the 
current state of clinical translation.

The Role of Imaging 
in Immunotherapy
Immunotherapies modulate the immune system to treat can-
cers or inflammatory diseases. It is critical that, in immu-
nomodulatory molecular therapies, the aimed changes are 
induced in the target microenvironment, while in cell-based 
therapies, the transferred cells demonstrate migration to the 
target organ. For instance, CAR-T cells have enhanced can-
cer-antigen recognition capabilities that mediate cell killing, 
but to be effective, they must first infiltrate the tumor bed 
[4, 5]. Therapy failures can be ascribed to insufficient modi-
fication of the tumor microenvironment or under-delivery 
of therapeutic cells to the target. In the clinic, evaluation of 
immunotherapies relies on biopsies and blood sampling that 
are limited by their invasiveness and sampling errors. While 
in preclinical studies, harvesting tissue to analyze the induced 
changes is possible, longitudinal analysis is precluded.

Imaging can non-invasively visualize a magnitude of ther-
apeutic effects, changes in cell distribution or metabolism, 
and migration, activation, expansion, and survival of thera-
peutic cells, all potential indicators of therapeutic outcome. 
For instance, the fraction of infused cells that trafficked to 
the target organ or tissues can help investigators estimate the 
number of cells needed to achieve the expected results. Phar-
macokinetic information can be provided from dynamic or 
longitudinal imaging. Detection of off-target effects by imag-
ing could predict potential side effects at early time points, 
increasing the opportunity for proper treatment. Overall, 
non-invasive imaging methods are powerful tools, allowing 
investigators to address reasons for treatment failure, opti-
mize various parameters, and develop new immunotherapies.

Overview of Imaging Methods 
for Immunotherapy
Various imaging technologies have been investigated for 
whole-body imaging of immunotherapies. Radionuclide 
imaging, such as single photon emission tomography 
(SPECT) and positron emission tomography (PET), and 
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been tracked over a week [18, 19]. 99mTc-HMPAO-labeled 
autologous hematopoietic stem and progenitor cells 
(HSPCs) have been tracked in idiopathic dilated cardio-
myopathy patients [20], but the short half-life of 99mTc (6 h) 
severely limits the scanning time frame. Both 111In-oxine 
and 99mTc-HMPAO are hydrophobic and passively enter the 
cells [21, 22]. Retention of 111In is thought to be mediated 
by transchelation of 111In to intracellular proteins. Similar 
intracellular protein binding of 99mTc-HMPAO may occur. 
Conversion of HMPAO to a hydrophilic complex by reduc-
ing agents, such as glutathione, is thought to prevent release 
of the label. However, as this conversion is reversible, some 
99mTc-HMPAO, as well as free 99mTc, will be released from 
the cells, causing background signal accumulation in the 
gastrointestinal and urinary tracts [10].

To track cells by PET, 2-deoxy-2-[18F]fluoro-D-glucose 
(18F-FDG) has been used to label cells [23], but the half-
life of 18F (110 min) limits the imaging window to a few 
hours. Because 18F-FDG incorporation depends on glucose 
uptake mechanism, 18F-FDG does not label metabolically 
inactive cells and is subject to efflux [23–25]. Copper-64 
(64Cu, 12.7-h half-life)-pyruvaldehyde-bis(N4-methylthio-
semicarbazone) (PTSM) has been used to track glioma cells 
and lymphocytes but rapidly releases 64Cu (22% remain-
ing in 1 day), which leads to accumulation of free 64Cu in 
the liver [26], causing problematic high background in the 
abdominal area. Zircconium-89 (89Zr, 3.3-day half-life) has 
relatively low positron energy required for high-resolution 
imaging and lacks Auger electron emission [27]. 89Zr-oxine 
has been recently developed as an agent to label cells ex 
vivo [17, 28] and has successfully tracked various immune 
cell types for 1–2 weeks [17, 28–32] (Fig. 1a). Direct con-
jugation of 89Zr-deferoxamine-NCS to cell membrane has 
been applied to human mesenchymal stem cells (MSCs) 
[33].

Transfection/transduction of cells with a reporter gene 
that enables incorporation of a tracer allows for visualiza-
tion of the cells after transfer [34, 35]. Because the reporter 
protein needs to be expressed in the cells via transcrip-
tion/translation, only live cells incorporate the tracer. The 
reporter gene permanently integrated into the genome will 
be inherited by all subsequent daughter cells, allowing for 
long-term and repetitive imaging, without cell division-
induced signal dilution [36]. In preclinical studies, reporter 
genes are often tailored to depict specific events. For exam-
ple, a reporter gene might be placed under the control of 
a specific promoter so that expression of the reporter indi-
cates activation of the promotor. Various reporter gene sys-
tems have been developed for SPECT/PET [36–38], MRI 
[39], and optical imaging (e.g., bioluminescent imaging, 
BLI) [34, 35]. Use of foreign reporter systems (e.g., herpes 
simplex virus type 1-thymidine kinase, HSV1-tk, and its 
variants) provides high signal-to-background ratios; how-
ever, clearance of tracers can still result in background sig-
nals [35]. SPECT/PET reporter imaging systems based on 

Fig. 1.  PET and MRI detection of ex  vivo labeled and indirectly 
labeled adoptively transferred T cells targeting cancers. a PET/CT 
images of 89Zr-oxine-labeled OT-1 CD8 T cells accumulating in 
the B16-OVA melanoma tumor, which induced tumor regression. 
Adapted from [17]. b 18F-DCFPyL PET of CD19-tPSMA CAR-T cells 
infiltrating into local and metastatic Nalm6-eGFP-fLuc tumors. 
Tumor regression was shown by alternated BLIs, and changes 
in CAR-T cell accumulation were observed. Adapted from [51] 
with permissions from publisher. c MRI of SPIO-labeled CD8 T 
cells recruited to the C3 cervical cancer shown as hypo-intensity 
areas. The cells infiltrated deeper into the tumor in mice pre-
vaccinated with cancer-specific peptide compared to untreated 
mice. Adapted from [42] with permissions from publisher.
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human endogenous molecules include sodium-iodide sym-
porter (NIS, solute carrier family 5 member 5: SLC5A5), 
somatostatin receptor 2 (SSTR2), and prostate-specific 
membrane antigen (PSMA, Fig. 1b) [36–38, 40]. Most of 
them are compatible with multiple SPECT and PET radi-
otracers, including many clinically used tracers, adding 
flexibility to the choice of tracer depending on availability.

MRI and MPI

MRI provides excellent anatomical resolution without ioniz-
ing radiation. MRI-based cell tracking most commonly uses 
superparamagnetic iron oxide nanoparticles (SPIOs), which 
are phagocytosed by the cells, and have been performed in 
several preclinical models, including CD8 T cell targeting 
cancer [41, 42] (Fig. 1c). However, SPIOs cause a distortion 
in the magnetic field, which leads to signal loss often greater 
in size than the actual accumulation, making cell distribu-
tion unquantifiable [43]. Detection of SPIO-labeled cells of 
unknown distribution can be difficult due to background sig-
nals, and it is challenging to acquire whole-body imaging in 
a reasonable time period. MRI reporter gene strategies have 
also been explored, such as the transferrin receptor and fer-
ritin system, but the sensitivity is too low for clinical applica-
tions [39].

A method of using 19F-perfluorocarbon (PFC)-based cell 
labeling agents to track cells with MRI has been developed 
recently. 19F-PFCs can be used for both ex vivo and in vivo 
cell labeling. The MRI unit is tuned to the resonance fre-
quency of 19F, but additional 1H-MRI is acquired for anatomi-
cal localization. 19F-MRI shows high specificity for labeled 
cells due to the lack of natural 19F in the body, which is quan-
tifiable. Cells such as dendritic cells (DCs) [44], T cells [45], 
and NK cells [46] have been tracked preclinically and clini-
cally. However, specialized 19F detection coils are required 
for imaging, and the sensitivity is low. 19F-PFCs also rely 
on phagocytosis for labeling, and thus non-phagocytic small 
cells (e.g., lymphocytes) are difficult to label.

Magnetic particle imaging (MPI) is a new imaging 
technology that also utilizes SPIOs. Unlike regular MRI, 
signals from SPIOs have fewer artifacts with MPI and 
can be quantitated. Combination with CT or MRI is per-
formed for anatomical imaging. Tracking SPIO-labeled 
human MSCs [47] and T cells [48] administered to mice 
has been performed. The process, however, is slow and 
cumbersome and requires raster-like acquisitions through 
the body.

Optical Imaging

BLI and fluorescence imaging are widely used in preclinical 
studies due to their relative simplicity and convenience. In 
BLI, luciferin is injected and is converted into light by the 
enzyme luciferase in cells that have been transfected/trans-
duced with a luciferase gene. BLI allows for monitoring 
proliferation, migration, and death of the cells for relatively 

long term in preclinical models [49]. Luciferase-expressing 
tumors are often used to monitor therapeutic effects (Fig. 1b), 
and NK-T and T cells have been tracked in adoptive immuno-
therapy models [49–51]. A membrane-anchored form of the 
Gaussia luciferase shows higher signal compared to D-lucif-
erin-based firefly luciferase and coelenterazine-based Renilla 
and the original Gaussia luciferases in detecting T cells and 
visualized CAR-T cells targeting tumor [52]. While signals 
from coelenterazine-based luciferases, including membrane-
anchored Gaussia luciferase, start to “fade” within a few min-
utes, firefly luciferase and a recently developed vargulin-based 
membrane-anchored Cypridina luciferase show stability over 
15 min [53]. Multiplex BLI is possible by using different 
luciferase/substrate combinations. Detection of less than 10 
cells has been reported [54, 55]. However, because luciferin 
and luciferase are foreign proteins to humans, and therefore 
immunogenic, BLI is not applicable for humans. Fluorescent 
imaging with near infra-red probes has been used for tracking 
ex vivo labeled cells such as T cells and neutrophils [56, 57]. 
Optical imaging is subject to tissue absorption of light, and 
whole-body quantification is not possible [58]. Confocal and 
intravital microscopies can be used to track cells on a small 
scale. These microscopic analyses, although limited to the 
small observation area, allow for direct visualization and char-
acterization of in vivo cell behaviors and cellular processes 
with spatiotemporal dynamics at a single-cell level [59].

Emerging Clinically Translatable 
Methods for Tracking Cell‑Based 
Therapy
Cell-based immunotherapies are amenable to direct cell 
labeling procedures at the end of ex vivo cell expansion 
before infusion of the cells to patients. Reporter gene 
transduction can be performed during the cell expansion. 
In general, PET is becoming the most well-known method 
of imaging these therapeutic cells. In the following sec-
tion, we discuss details of emerging clinically translatable 
imaging methods for cell-based therapies: direct ex vivo 
cell labeling and indirect cell labeling via reporter genes 
for PET and MRI.

Ex Vivo Cell Labeling Methods for Tracking Cells 
with PET

Two groups have independently developed 89Zr-oxine for 
tracking cells using different methods [17, 28]. Slight modi-
fications to the methods [30] and more detailed optimization 
of synthesis conditions for generating a good manufacturing 
practice (GMP)-compatible kit have been performed [60]. An 
on-cartridge synthesis of 89Zr-oxine, as well as 64Cu-oxine 
and 64Cu-tropolone, has been explored [61].

89Zr-oxine is lipophilic and permeates the cell mem-
brane, enabling cell labeling even at 4  °C when active 
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cellular uptake is absent [17]. Because of this labeling 
mechanism, any cell types can be labeled independent of 
its surface biomarkers or cellular condition. It is likely that 
89Zr-oxine labeling follows a similar mechanism as that of 
111In-oxine. After entering a cell, exchange of 89Zr from 
oxine to intracellular proteins likely takes place, oxine 
being exported from the cell while 89Zr is retained [62]. 
The differences in the 89Zr-activity incorporation rate by 
cell type reported [17] may result from differences in the 
amounts of intracellular proteins available for 89Zr binding. 
To label cells at optimal doses, pre-evaluation of incor-
poration rate is required. 89Zr-oxine-labeled cells, espe-
cially non-dividing cells (e.g., matured DCs), retain 89Zr 
well over multiple days (Fig. 2a). As with other ex vivo 
cell labeling agents, intracellular 89Zr dilutes as the cells 
divide [17] (Fig. 2b). After cell death, 89Zr is released from 
the cells (Fig. 2b) [17], presumably due to the release of 
89Zr-bound intracellular proteins through the compromised 

membrane. Evaluation of 89Zr retention in proliferating 
cells is complicated by the combination of cell division and 
death (Fig. 3a, b). For instance, if a portion of the labeled 
cells is divided (dilution of label) but a portion of them died 
(loss of label), a condition could occur in which calculated 
activity per cell would decrease, despite the retention of 
89Zr in viable non-divided and divided cells. Difference 
between release of label from live cells (label instabil-
ity) and that from dead cells (compromised cell integrity) 
should be noted, especially when discussing the efflux. The 
direct conjugation of 89Zr-deferoxamine-NCS to cellular 
membrane eliminates release of 89Zr [33]. However, this 
could be a double-edged sword, causing transfer of all 89Zr 
to phagocytes after cell death and persistent 89Zr signal in 
the absence of transferred cells. The conjugation process 
could affect viability in sensitive cells, and alteration of 
cellular function by the membrane protein modification and 

Fig. 2.  Retention of 89Zr 
affected by the condition of 
89Zr-oxine-labeled cells: non-
deviding, dividing, and death. 
a Mature DCs do not divide. 
89Zr-oxine-labeled mature DCs 
survived similar to non-labeled 
DCs and maintained the 
specific activity. b 89Zr-oxine-
labeled CTLs underwent TCR-
induced proliferation followed 
by cell death during the con-
traction phase, similar to non-
labeled CTLs. 89Zr activity per 
cell decreased during the cell 
division, and 89Zr was released 
by the cell death. All figures 
were adopted from [17].

Molecular Imaging and Biology 239



possible induction of downstream signaling events remain 
as concerns.

Radiotoxicity in Ex Vivo Cell Labeling

When tracking cells by imaging, it is critical that the labeled 
cells behave in the same manner as non-labeled cells. One 
of the easiest but sensitive tests of evaluating cellular toxic-
ity is documenting live cell number changes under condi-
tions of heightened cell proliferation. Since cytotoxicity may 
not be immediate, sufficient time must be allowed to elapse 

for detection. Documenting live cell percentage potentially 
underestimates the cell death occurring over multiple days, 
as fragmented dead cells are not counted. Dividing cells 
are more sensitive to radiation than non-dividing cells and 
thus could exhibit cytotoxicity at the low labeling doses that 
are non-toxic in non-dividing cells (Fig. 3a). A 89Zr-oxine 
dose escalation study using activated CD8 T cells suggested 
requirement of a specific activity of less than 37 kBq/106 
cells for minimizing the toxicity [17] (Fig. 3b). Another 
study using �� -T cells indicated that 6–20 kBq/106 cells was 
not toxic, whereas 50–90 kBq/106 cells abrogated prolifera-
tion and showed DNA double-strand breaks [31] (Fig. 3c). 

Fig. 3.  Optimization of 89Zr-oxine labeling dose to minimize radiotoxicity. a 89Zr-oxine-labeled bone marrow (BM) cells followed com-
parable decline of viability to non-labeled control in culture without cytokines. In culture with GM-CSF to induce differentiation, BM 
cells showed delayed proliferation and were mixture of proliferating  (Ki67+) and apoptotic/necrotic cells. As a result, calculated spe-
cific activity declined in cells labeled at a lower labeling dose and was maintained at earlier time points at a higher labeling dose. 
Adapted from [64]. b 89Zr-oxine-labeled activated CTLs cultured in IL-2 showed dose-dependent suppression of proliferation. Adapted 
from [17]. c �� -T cells labeled with 89Zr-oxine showed dose-dependent increase of DNA double-strand breaks indicated by �-H2AX foci 
(green) in the nuclei (blue). Adapted from [31] with permission from the publisher.
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Comparison of DNA damage occurrence between 111In-oxine 
and 89Zr-oxine, performed on accumulated data using dif-
ferent activity doses and numbers of white blood cells for 
each agent and sample, demonstrated that 89Zr-oxine caused 
slightly more DNA damage than 111In-oxine when compared 
to non-labeled control [60]. Previous reports have shown that 
111In-oxine labeled HSPCs lose proliferative function [63], 
while 89Zr-oxine-labeled bone marrow cells show delayed 
proliferation but maintain differentiation capability [64] 
(Fig. 3a). As of yet, no side-by-side comparison of radio-
toxicity between 111In-oxine and 89Zr-oxine at comparable 
doses exists. However, considering extremely low doses of 
89Zr-oxine required for imaging, labeling immune cells with 
89Zr-oxine can be performed without significantly affecting 
cellular function. For instance, 89Zr-oxine labeling of CD8 
T, CAR-T, and NK cells does not affect cellular viability, 
proliferation, cytokine production, or cytotoxicity [17, 29, 
30]. Accumulation of labeled CD8 T cells in the tumor and 
resulting tumor shrinkage have been observed [17] (Fig. 1a). 
Labeled DCs can be activated and present antigen to T cells 
[17]. Chemotaxis is maintained in labeled bone marrow 
cells [64, 65] and in eosinophils [32]. These studies suggest 

that the optimal labeling doses that provide sufficient PET 
detection while minimizing radiotoxicity are approximately 
11–44 kBq/106 cells, depending on type and condition of 
the cells.

Limits of Radiolabeled Cell Detection by PET

Ex vivo labeling methods provide excellent sensitivity and 
signal-to-background ratios, requiring only extremely low 
labeling doses, which contribute to minimize radiotoxicity. 
It allows detection of relatively small changes of cell distribu-
tion induced after cell infusion [32, 65], but the signals dilute 
by cell divisions. In 89Zr-oxine PET, although 89Zr is stably 
retained in viable cells, free 89Zr released from the dead cells 
may be taken up in bone matrix hydroxyapatite [17, 64, 66, 
67] (Fig. 4a). Infusion of deferoxamine to chelate and excrete 
the free 89Zr from the kidneys has been proven effective in 
preventing bone uptake of 89Zr [29, 64] (Fig. 4b). Deferox-
amine could also minimize transfer of 89Zr to phagocytes by 
quickly chelating the 89Zr before phagocytosis takes place. 
Based on NK cells and HSPCs tracking studies performed 
in rhesus macaque using a clinical PET/CT scanner, as low 

Fig. 4.  In 89Zr-oxine-labeled cell tracking by PET, deferoxamine (DFO) infusion prevents bone uptake of free 89Zr released from dead 
cells. a 89Zr-oxine-labeled allogeneic MSCs expressing TRAIL (MSCTRAIL) were intravenously administered. Cells distributed in the 
lungs. 89Zr-signals distributed in the liver, spleen, and bones after 1 day, but no indication of live cells was found in these organs. Injec-
tion of heat-inactivated dead MSCTRAIL showed 89Zr activity in the liver and spleen, where dead cell can be taken up, and bones, 
where free 89Zr is known to bind. Adapted from [67] with permission from the publisher. b 89Zr-oxine-labeled autologous NK cells dis-
tributed in the lungs initially and then in the liver and spleen. DFO infusion enhanced renal clearance of free 89Zr released from dead 
cells. DFO effectively prevented bone uptake of 89Zr after apoptotic NK cell administration. Adapted from [29].
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as approximately 55 kBq/kg dose of 89Zr-oxine-labeled cells 
(approximately 3 ×  106 cells/kg dose with cells labeled at 
18.5 kBq/106 cells) could be imaged with high quality and 
have their migration quantitated [29]. Also using clinical 
PET/CT and PET/MRI scanners, 3.3 ×  104/cm3 Jurkat cells 
labeled with 89Zr-oxine at 15.4 kBq/106 cells were detected 
[68].

Reporter Gene Imaging for Cell Tracking with 
PET

An alternative to ex vivo cell labeling is reporter gene imag-
ing. Reporter gene technique can selectively visualize live 
cells at a time remote from the cell transfer. Because images 
are acquired after sufficient clearance of unbound tracers 
and the imaging interval is determined by decay of the radi-
otracer, radiotracers with rapid clearance and short radioac-
tive half-lives are favored. Still, detection of rapid cell dis-
tribution changes (e.g., within hours) induced by exogenous 
stimuli could be challenging. Unlike ex vivo cell labeling, it 
is difficult to evaluate radioactivity doses incorporated into 
the target cells in vivo, and thus controlling and assessing the 
radiotoxicity are very difficult. In vitro radiotoxicity assays 
do not mimic the in vivo condition where the radiotracer 
extravasate to reach the cells in tissues while constantly being 
cleared from the body. The need for reporter gene insertion 
in the cell genome has been a stumbling block for its clinical 
application. However, increased clinical use of genetically 
engineered cells (e.g., CAR-T cells) has lowered the bar-
rier for introducing a reporter gene. For the cells that do not 
require genetic engineering (e.g., TILs, stem cells), ex vivo 
cell labeling methods would still be the first choice.

HSV1-tk has been used in CAR-T cells targeting IL-13 
zetakine (receptor �2), whose expression within the central 
nervous system is restricted to glioma cells, infused to post-
operative cavity in recurrent glioma patients. 9-(4-18F-Fluoro-
3-[hydroxymethyl]butyl)guanine (18F-FHBG) PET showed 
some accumulation of the T cells to the tumors [69]. How-
ever, immunogenicity of the viral protein HSV1-tk prevents 
general use of this system in humans. Human mitochondrial 
thymidine kinase 2 (TK2), deoxycytidine kinase (dCK), and 
their double mutants (e.g., TK2DM, dCKDM) are detected by 
2′-fluoro-2′ deoxy-1-β-D-arabinofuranosyl-5-[124I]iodouracil 
(124I-FIAU), 2′-[18F]fluoro-5-ethyl-1-b-D-arabinofuranosy-
luracil (18F-FEAU), or 1-(2′-[18F]fluoro-5-methyl-β-L arab-
inofuranosyl)uracil (18F-L-FMAU), which are also used by 
HSV1-tk. dCK has been used to track hematopoietic stem cell  
transplants and anti-PSMA-CAR-T cells targeting lung tumor 
in mouse models using 18F-L-FMAU and 18F-FEAU (Fig. 5a), 
respectively [70, 71]. dCK detects around 3 ×  105 subcutane-
ously injected T cells using 18F-FEAU (Fig. 5b) [72].

Cell surface molecule-based human reporter gene sys-
tems include NIS that is compatible with multiple SPECT 
tracers (e.g., 99mTc-pertechnetate, 123I) and PET tracers 
(e.g., 124I, 18F-tetrafluoroborate), SSTR2 with 68Ga-DOTA-
D-Phe1-Tyr3-octreotate (68Ga-DOTATATE, DOTA: 

1,4,7,10-tetraazacyclododecane-N,N′,N″,N′-tetra-acetic acid) 
and 68Ga-DOTA-D-Phe1-Tyr3-octreotide (68Ga-DOTATOC) 
for PET, norepinephrine transporter (NET, SLC6A2) with 
124I-metaiodobenzylguanidine (124I-MIBG) for SPECT and 
18F-meta-fluorobenzylguanidine (18F-MFBG) for PET, and 
PSMA with 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-
3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid 
(18F-DCFpyI, Fig. 1b). These tracers have been used in the 
clinic, some for a long time, for detecting endogenous lesions 
(e.g., 68Ga-DOTATATE and 68Ga-DOTATOC to detect 
neuroendocrine tumors [73]). 68Ga-DOTATOC has been 
approved by the US Food and Drug Administration in 2019 
and 18F-DCFpyl followed in 2021. 18F-tetrafluoroborate for 
NIS has been evaluated in healthy human volunteers [74] and 
thyroid cancer patients [75]. NIS does not internalize upon 
ligand binding but is physiologically expressed in organs such 
as thyroid, salivary/lacrimal glands, and stomach. SSTR2 is 
expressed in the kidneys, gastrointestinal tract, and hemat-
opoietic cells. Internalization of SSTR2 and reported negative 
impact on immune cell function by an agonist are concerns 
[76].

NIS [77], SSTR2 [78], NET [79], and a PSMA variant 
 tPSMAN9Del engineered to prevent internalization and intra-
cellular signaling [51] have been used to track T cells, includ-
ing CAR-T cells, in mouse models. NIS has been reported 
to detect 3 ×  103 CAR-T cells in vitro with 18F-tetrafluorob-
orate PET [77] and 1.5 ×  104 subcutaneously injected cells 
in vivo with 99mTc-pertechnetate SPECT [40]. Sensitivity 
of SSTR2 has been estimated to be 4 ×  106 Jurkat cells/cm3 
tumor with 68Ga-DOTATOC [78]. NET has been reported to 
detect <  105 subcutaneously injected T cells with 18F-MFBG 
[72] and PSMA to detect 2-3 ×  103 CAR-T cells incubated 
with 18F-DCFpyI in vitro (Fig. 5b) [51, 77]. Again, in vitro 
tracer incorporation assays and incorporation to subcutane-
ously injected cells do not accurately represent the in vivo 
tracer delivery and subsequent cellular uptake in physiologi-
cal conditions. Possibly, real detection limits are higher in 
cell numbers than in vitro assay results and lower than results 
obtained from subcutaneously injected cells.

DOTA-antibody reporter gene 1 (DAbR1) is a new 
reporter gene system that introduces murine anti-DOTA 
scFv fused to human IgG4 CH2-CH3 and CD4 transmem-
brane domain [80]. This scFv forms a covalent bond with 
the acrylamide group of (S)-2-(4-acrylamidobenzyl)-DOTA 
(AABD) that can be conjugated with yttrium-86 (86Y, half-
life 14.7 h) for imaging. CD19-CAR-T cell targeting to sub-
cutaneous tumor has been demonstrated in mice (Fig. 5c). 
Consideration of scFv humanization is required for clinical 
application of DAbR1. The gastrointestinal tract clearance of 
86Y-AABD, in addition to kidneys, causes high non-specific 
signals, making detection of the cells in the abdominal lesion 
difficult.

Various reporter gene tracers show gastrointestinal tract 
clearance (e.g., 18F-MFBG, 18F-FIAU, 18F-FEAU), which 
could be problematic in assessing whole-body cell distri-
bution, such as analyzing memory T cell distribution or 
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addressing unforeseen side effects from the therapeutic 
cells. Because of the differences in the normal organ distri-
bution, clearance, and radioactive decay among the tracers, 
selection of the reporter gene/tracer combination affects 
image quality and cell detection sensitivity [72]. Of note, 
some of the reporter genes can become suicide systems by 
selecting a therapeutic counterpart of the tracers, such as 

lutetium-177 (177Lu)-DOTATATE for SSTR2, that kills the 
cells expressing the genes in vivo when transferred cells 
are no longer needed or cause problematic side effects. 
For a full review of reporter gene PET/SPECT imaging 
systems, including non-human systems, see references 
[36–38].

Fig. 5.  Examples of reporter gene PET imaging of adoptively transferred CAR-T cells targeting cancers and cell detection sensitivity. a 
19F-FEAU PET/CT images at 6 h after anti-PSMA dCKDM CAR-T cell transfer and 2 h after tracer injection show high tracer accumulation 
in pulmonary PC3/hPSMA tumors. Without T cell transfer, 19F-FEAU did not accumulate in tumors. Adapted from [71]. b The combi-
nation of reporter gene and tracer affects target cell detection sensitivity. Gastrointestinal clearance of the tracer and physiological 
uptake to normal organs could make detection of the cells in the proximity (e.g., abdominal area) difficult. Adapted from [51, 72]. c 
86Y-AABD PET/CT images at 4 and 16 h after injection depicting accumulation of anti-CD19 CAR-T cells co-transduced with DAbR1 at 
Nalm-6 tumor. No uptake above background at tumor site is noted after DAbR1 T cell administration. Adapted from [80].
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Ex Vivo Cell Labeling Methods for Tracking Cells 
with MRI

SPIO-based cell tracking has been performed in DCs 
implanted intranodally [81, 82] and neural stem cells 
implanted in regions of brain trauma [83, 84]. Because of 
difficulty in detecting the labeled cells throughout the body, 
the clinical application seems to be more focused on image-
guided local cell injections and tracking.

19F-PFC-based cell labeling agents for 19F-MRI include 
perfluorooctyl bromide (PFOB), perfluoro-15-crown-5-ether 
(PFCE), and perfluoropolyether (PFPE), which are biologi-
cally inert, highly stable, and non-toxic [85]. A clinical trial 
has been conducted to evaluate intradermally delivered autol-
ogous DC vaccines. 19F-MRI detected 1 ×  107 cells but not 
1 ×  106 cells, indicating an estimated DC detection sensitivity 
of approximately  105 cell/voxel [44]. In general, sensitivity 
is affected by multiple factors such as the PFCs used, the 
cell type, image acquisition methods, and MRI configura-
tion, ranging  103–105 cells per voxel [86]. To augment 19F 
incorporation within cells, cell-permeating transactivating 
transcription sequence (TAT) peptide-conjugated PFCs have 
been developed. Using TAT achieved > eightfold increase in 
19F incorporation in CAR-T cells, resulting in significantly 
higher 19F-MRI signals [87] (Fig. 6). Generally, using trans-
fection agents or larger size PFCs increases cellular uptake 
of 19F, but these agents (e.g., > 500 nm PFCs) can induce 
undesired activation of the cells [88].

Multimodal Cell Tracking Methods

Multimodal cell tracking methods take advantage of dif-
ferent imaging modalities compensating for weaknesses. 

64Cu-SPION is a PET-MRI multi-modal imaging nanopar-
ticle that benefits from the high sensitivity of PET and the 
detailed anatomical information of MRI [89]. 64Cu-SPION-
labeled CD19-specific CAR-T cells showed cytotoxic action 
against target lymphoma cells in vitro, although at a lower 
level than the unlabeled CAR-T cells [89]. A first-in-human 
clinical trial has been performed in CAR-T cells [90]. 19F-
PFC containing radiometal chelate fluorous hydroxamic acid 
that captures 89Zr has visualized inflammatory lesions in 
mice, including an experimental inflammatory bowel disease 
and a periphery of tumors, presumably through phagocytosis 
by macrophages, both in PET and 19F-MRI [91]. Although 
the reported work is to detect endogenous macrophages, this 
agent holds promise for an application to ex vivo labeling of 
phagocytes in the context of cell-based immunotherapy.

Considerations for Cell Tracking by Cell 
Type
T Cells and NK Cells

T cells rapidly proliferate upon recognition of the nominal 
antigen, but proliferating T cells are especially sensitive to 
irradiation. Toxicity of 111In-oxine to labeled T cells has been 
reported [21]. Variance between the radioactive dose require-
ment for detection and radiotoxicity may limit the application 
of 111In-oxine for imaging T cells. Labeling expanded NK 
cells presents similar difficulties. In contrast, 89Zr-oxine has 
shown promise for tracking these cells [17, 29–31]. Ex vivo 
labeling with 19F-PFC for MRI has also been performed in T 
cells [87]. In either ex vivo cell labeling method, the signal 

Fig. 6.  19F-MRI signal enhancement in cell-penetrating peptide TAT-PFC-labeled CAR-T cells. A mouse with bilateral EGFP-expressing glio-
mas received intratumoral injection of anti-EGFR CAR-T cells labeled with either F68-PFC (control, left: LT) or TATP-F68-PFC nanoemulsions 
(right: RT). An external capillary reference (REF) consists of 1:20 dilution of F68-PFC in agarose. Combined 19F (hot-iron) and 1H (grayscale) MRI 
images. TAT-F68-PFCs showed ~  eightfold in vivo apparent 19F atoms increase compared to control. Figures adapted from [87] with permission 
from the publisher.
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strength in the target (e.g., cancer) reflects the labeled cells 
homed to the target, but not the cell expansion at the target. 
These methods will suffice to evaluate the homing property 
of the cells, such as cells engineered to enhance homing. 
However, if the goal is to evaluate the therapeutic efficacy 
of the cells, reporter gene imaging will more accurately 
reflect the cell number. Reporter gene imaging could track 
long-lived memory T cells differentiated from the trans-
ferred T cells and their responses to the recurrent tumors. 
It has been considered that NK cells do not differentiate 
into memory cells. However, accumulating evidence sug-
gests the presence of a subset of NK cells that possess 
antigen-specificity and also a memory or memory-like NK 
cell subset [92].

DCs

DCs, as they differentiate and mature, upregulate the major 
histocompatibility complex or human leukocyte antigen mol-
ecules and co-stimulatory molecules such as CD80, CD86, 
and CD40. The ability of DCs to present antigens to T cells 
differs by their maturation status. When they mature, they 
stop proliferation. In preclinical studies, careful selection of 
immature or mature DCs is needed. As DCs are relatively 
resistant to irradiation, PET or SPECT is a good modality 
for whole-body tracking of DCs. The phagocytic nature of 
DCs also enables ex vivo labeling with SPIOs and 19F-PFCs 
for MRI.

Monocytes and Macrophages

Monocytes and macrophages are increasingly popular clinical 
candidates for cell-based immunotherapy due to their plastic-
ity and functionality spectrum. Monocytes exhibit anti-cancer 
cytotoxicity in the presence of interferons and have been used 
in the treatment of patients with peritoneal metastatic ovarian 
cancer [93]. Macrophages can polarize into two opposite phe-
notypes, M1-type (pro-inflammatory, anti-cancer) vs M2-type 
(anti-inflammatory, pro-cancer). Reprogramming polarized 
macrophages into the desired type has been investigated for 
cell-based immunotherapy [94]. Monocytes/macrophages are 
highly phagocytic and incorporate SPIOs and 19F-PFCs for 
MRI [95]. As monocytes are prone to stimulations and their 
activation induces quick differentiation to macrophages, care 
should be taken during the labeling process.

HSPCs

Labeling HSPCs with 89Zr-oxine and 19F-PFCs has shown to 
delay proliferation after labeling and slightly reduce viabil-
ity, respectively, but retain multipotency [64, 96]. Minimum 
labeling doses must be selected when monitoring HSPCs. 
Trafficking of HSPCs in various recipient conditions has been 
successfully studied by 89Zr-oxine PET [64, 65].

MSCs, Neural Stem Cells, and Other Cell Types

Most MSC-based therapies are performed by injecting cells 
directly into damaged tissues as regenerative therapies [47]. 
Neural stem cells have also been used to treat brain trauma 
[83, 84]. Cell implantations can be monitored by most ex vivo 
labeling methods, but to track the month-long cell engraft-
ment process, reporter gene imaging methods that visualize 
only surviving cells should be considered. For cell tracking 
for 1–2-week period, 89Zr-oxine is applicable to virtually any 
cell type, but it is imperative to confirm maintenance of cel-
lular functions after labeling.

Clinical Translation Perspective
19F-MRI has been used in clinical trials within the limited 
field of view. Evaluation of whole-body cell migration is 
challenging with this method. 19F-MRI may better be applied 
to certain types of cell-based therapies that target specific tis-
sues such as lymph nodes, tumors, or damaged tissues (e.g., 
regenerative cell therapy). The low sensitivity and require-
ment of specific MR coils for acquisition for detection of 
19F are also drawbacks for the wide distribution of 19F-MRI. 
Attempts to increase cell incorporation of 19F using cell-
penetrating TAT peptide have been successful, and as TAT 
are in clinical trials for other purposes, this strategy seems 
promising for advancement of 19F-MRI [87].

Whole-body imaging is more straightforward with nuclear 
medicine methods. 89Zr-oxine ex vivo cell labeling technol-
ogy has been gaining popularity since it was first developed 
in 2015. Efforts have been made to translate 89Zr-oxine to 
the clinic. The generation of GMP-compatible 89Zr-oxine has 
been reported by different groups using different synthesis 
methods [60, 97], including quality control tests for human 
use, such as the filter membrane integrity test, endotoxin test, 
and sterility test [97]. Standardization of GMP-quality 89Zr-
oxine production will enhance the clinical use of 89Zr-oxine.

Radio exposure to organs and whole body in humans in 
89Zr-oxine PET is expected to be minimal. The human esti-
mated dosimetry of 89Zr-oxine from results with labeled NK 
cells in a rhesus model confirmed the safety of this method 
[29]. As activated T cells show similar distribution patterns 
to the liver and spleen [17, 30], it is expected that dosimetry 
of 89Zr-oxine-labeled activated T cells will be similar to that 
of NK cells. One concern is that 89Zr could be released from 
dying/dead cells and be taken up in bones. This could be 
problematic when assessing the cell migration to the bone 
marrow or tissues close to the bone. A solution to this is 
to add continuous infusion of deferoxamine alone with the 
labeled cells. The deferoxamine chelates free 89Zr, which is 
then rapidly excreted in the kidneys. Deferoxamine is FDA-
approved for the treatment of iron overload and is, therefore, 
not difficult to add to the regimen of cell infusion.
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As cell-based therapies become a major part of cancer 
treatment, preparation of cell products by commercial third 
parties has already occurred for DCs and CAR-T cells. With 
increased production of GMP-quality 19F-PFCs and 89Zr-
oxine, cell labeling with these reagents could also be per-
formed by third parties, making the cell-tracking imaging 
more routine and less disruptive to workflow, while making 
multi-site clinical trials possible.

The popularity of genetic engineering of therapeutic cells 
has lowered the barriers for reporter gene imaging in cell-
based therapies. An additional transduction of a reporter gene 
to the transduction of TCR or CAR in T cells, for example, 
would be easier to incorporate and justify than attempting to 
do so only for diagnostic purposes in an otherwise unmanipu-
lated cell. Availability of many clinically used PET tracers 
compatible with reporter gene imaging [36–38] facilitates 
the integration of reporter gene PET to evaluate cell-based 
immunotherapies.

Concluding Remarks
Direct ex vivo cell labeling to track cells in whole body by 
PET or MRI complements existing therapeutic cell produc-
tion. Since cell-based immunotherapies usually require cells 
to be extracted and expanded ex vivo, aliquots of the treat-
ment batch can be sequestered for labeling and subsequent 
imaging. 89Zr-oxine PET and 19F-PFC MRI technologies hold 
promise for clinical advancement. Reporter gene PET imag-
ing requires transduction of the cells ex vivo but enables long-
term tracking of genetically engineered cells. These methods 
allow quantification of cell distribution after transfer, provid-
ing crucial information on the biology of these cells, and act 
as a tool for monitoring cellular engineering aimed at increas-
ing the homing of the cells to the target tissue or organs. 
Moreover, pharmacodynamic effects of therapies could be 
visualized. Selecting an imaging method that best suits the 
questions being asked is critical for successful cell tracking. 
Using optimal labeling doses that do not alter viability, phe-
notype, or functionality of the cells is critical, especially in 
therapies. Standardization of ex vivo cell labeling procedures 
will make imaging of cell-based immunotherapy more acces-
sible and enhance multi-site clinical trials.
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