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Abstract. The inference of ancestral genomes is a fundamental problem
in molecular evolution. Due to the statistical nature of this problem, the
most likely or the most parsimonious ancestral genomes usually include
considerable error rates. In general, these errors cannot be abolished by
utilizing more exhaustive computational approaches, by using longer ge-
nomic sequences, or by analyzing more taxa. In recent studies we showed
that co-evolution is an important force that can be used for significantly
improving the inference of ancestral genome content.

In this work we formally define a computational problem for the
inference of ancestral genome content by co-evolution. We show that
this problem is NP-hard and present both a Fixed Parameter Tractable
(FPT) algorithm, and heuristic approximation algorithms for solving it.
The running time of these algorithms on simulated inputs with hundreds
of protein families and hundreds of co-evolutionary relations was fast (up
to four minutes) and it achieved an approximation ratio < 1.3.

We use our approach to study the ancestral genome content of the
Fungi. To this end, we implement our approach on a dataset of 33, 931
protein families and 20, 317 co-evolutionary relations. Our algorithm
added and removed hundreds of proteins from the ancestral genomes
inferred by maximum likelihood (ML) or maximum parsimony (MP)
while slightly affecting the likelihood/parsimony score of the results. A
biological analysis revealed various pieces of evidence that support the
biological plausibility of the new solutions.

Keywords: Co-evolution, reconstruction of ancestral genomes, maximum
parsimony, maximum likelihood.

1 Introduction

The problem of reconstructing ancestral genomic sequences is as old as the field of
molecular evolution. The first approach for inferring ancestral genomic sequences
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was suggested by Fitch around 40 years ago [18]. This first algorithm assumed a
binary alphabet, and was based on the Maximum Parsimony (MP) criteria, i.e.
find the labels to the internal nodes of a tree that minimize the number of mu-
tations along the tree edges. Over the years this basic algorithm was generalized
in many ways. Sankoff showed how to efficiently solve versions of the maximum
parsimony problem with a non-binary alphabet and with multiple edge weights
[43]. Similar algorithms for inferring ancestral sequences based on maximum like-
lihood (ML; instead of maximum parsimony) were suggested more than 15 years
later [1,40,8,17,30,38]. Recently, similar approaches were used to infer ancestral
sequences in phylogenetic networks [25].

Dozens of biological studies have dealt with the reconstruction of ancestral
genomic sequences and ancestral genomes. For example, reconstruction of an-
cestral sequences was used for understanding the origins of genes and proteins
[54,46,45,24,22,21,4,3,37], and for aligning genomic sequences [23], and for infer-
ring ancestral enzymes and genomes [51,29,41,34,7,6].

The main problem related to reconstructing ancestral sequences and genomes
is that in practice many times the reconstructed sequences contain a large num-
ber of errors. A major source of this phenomenon is the existence of multiple
local and/or global maxima in the solution space searched by both the maximum
likelihood and the maximum parsimony approaches (see e.g. [5,48]). Thus, many
times our confidence in the most likely or most parsimonious reconstructed an-
cestral state is not too high. As the above mentioned algorithms assume that
different sites and different genes/proteins evolve independently, this problem
cannot be solved by adding more samples or more taxa [32].

Several studies demonstrated that functionally and physically interacting pro-
teins tend to co-evolve [26,44,12,49,16], and that co-evolutionary relations between
proteins are quite ubiquitous [10,9,13,15,11]. Some of these previous investigations
used the fact that interacting proteins have correlative evolution in order to suc-
cessfully predict physical interactions (for example, see [26,44,12]).

Based on these results, we recently suggested a different approach, the Ances-
tral Co-Evolver (ACE), for improving the accuracy of reconstructed ancestral
genomes [48]. Our approach was based on utilizing information embedded in
the co-evolution of functionally/physically interacting proteins. We used this
approach to study the genome content of the Last Universal Common Ancestor
(LUCA). In this work we give a formal description of the ancestral co-evolution
problem, we analyze its computational complexity and describe algorithms for
solving it; the performances of these algorithms are demonstrated by a simula-
tion study. Additionally, we use the ACE for studying a new biological example,
the ancestral genome content of the Fungi.

2 Definitions and Preliminaries

For simplicity, we assume a binary alphabet. However, all the results here can
be easily generalized to models with more than two characters. In this work we
assume that in general, if they do not have co-evolutionary relation, neighbor
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sites in the input sequences evolve independently. Thus, the basic components
in the model and algorithms are single characters.

Our goal is to reconstruct the ancestral states for a set of organisms T of
size |T | = n. A phylogenetic tree is a rooted binary tree T = (V(T ), E(T ))
together with a leaf labeling function λ, where V(T ) is the set of vertices and
E(T ) the set of edges. In our context, a weight table is attributed to each edge
(u, v) = e ∈ E(T ). This weight table includes a weight (a positive real number)
for each pair of labels of the two vertices (u, v) = e.

In this work, we assume that each node in a phylogenetic tree corresponds to
a different organism. The leaves in a phylogenetic tree correspond to organisms
that exist today (T ), while the internal nodes correspond to organisms that have
become extinct (T ′). Thus, the leaf labeling function is a bijection between the
leaf set L(T ) and the set of organisms that exist today, T .

In our binary case, each label is a binary sequence; all the sequences have the
same length. In the case of conventional ML/MP, as we assume an i.i.d. case
where different characters in a sequence evolve independently, we can describe
the algorithm for sequences of lengths one: i.e. either ′1′ or ′0′. A full labeling of
a phylogeny λ̂(T ) is a labeling of all nodes of the tree such that the labels at the
leaves are the same as in λ, i.e., for all l ∈ L(T ) λ(l) = λ̂(l).

We can name each node after its corresponding organism. Let OT (·) denote a
function that returns the index of the organisms corresponding to each node in
T , i.e. for every v ∈ V (T ), OT (v) is the index of the organism (from T ∪ T ′)
corresponding to v.

A co-evolving forest F = (SF = {T1, T2, ...}, Ec(SF )) is a set of phyloge-
netic trees,SF , with identical topology that correspond to the same organisms
[i.e. each tree has the same O(·)], and an additional set of edges, Ec(SF ),
that connect pairs of nodes in different trees. This set of edges and repre-
sent the co-evolutionary relations between pairs of protein families. Edges in
Ec(SF ) must connect pairs of nodes that correspond to the same organism (i. e.
(v, u) ∈ Ec(SF ), v ∈ V (T1), u ∈ V (T2) =⇒ OT1(v) = OT2(u); Figure 1); we call
such pairs of nodes legal co-evolutionary pairs.

The edges in Ec(SF ) are named co-evolution edges while edges that are part
of the evolutionary trees are named tree edges. For example, Figure 1 A. includes
a co-evolving forest with two trees (the co-evolution edges are dashed with ar-
rows while the tree edges are continuous). As co-evolutionary relations. In this
work we assume that new co-evolutionary edges do not appear/dissapear during
evolution. Namely, we assume that if there is a co-evolutionary edge between a
legal co-evolutionary pair of nodes in two trees than all the legal co-evolutionary
pairs of nodes in the two trees are connected by co-evolutionary edge.

A full labeling of a co-evolving forest λ̂(SF ) is a full labeling, {λ̂(T1), λ̂(T2), ...},
of all the nodes of the trees in SF . The roots of a co-evolving forest are the set
of roots of the phylogenetic trees in the co-evolving forest.

As mentioned, a co-evolving forest also includes a weight table for each co-
evolution edge and each tree edge. These weight tables are cost functions that
return a real positive number for each pairs of labels at the two ends of the edge.
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Fig. 1. A. A simple example of a co-evolving forest with three trees, and one co-
evolution edge connecting node x2 in tree T1 and node y2 in tree T2; the weight table
corresponding to this co-evolution edge is in red. The weight table corresponding to
the tree edge (x1, x2) in T1 is in green. B. The co-evolutionary graph corresponding to
the co-evolving forest in A.

In the case of tree edges, these weights reflect the probability of a mutation along
the edge. In the case of co-evolution edges, these weights reflect the distribution
of mutual occurrence of the labels of the nodes at the ends of the edge.

This leads us to the formal definition of the problem we are concerned with,
the Ancestral co-evolution problem:

Problem 1. Ancestral co-evolution (Ancest − co − evol)
Input: A co-evolving forest, F = (SF , Ec(SF )), and a real number, B.
Question: Are there labels for the internal nodes of all the trees in the co-
evolving forest such that the sum of the corresponding weights along all the tree
edges and the co-evolution edges is less than B?

The following example demonstrates the advantages of the ancestral co-evolver
compared to the simple i.i.d parsimony approach.

Example 1. Consider the co-evolving forest that appears in Figure 1, and assume
that all the weight tables of the tree edges are identical to the table that appears
in the figure where [v1, v2, v3, v4] = [0, 1, 1, 0]. It is easy to see that there are two
MP solutions for the labels of the internal nodes in the phylogenetic tree T1:
either [x1, x2, x3, x4] = [0, 0, 0, 0] or [x1, x2, x3, x4] = [0, 1, 1, 1] gives the same
score (2). In the case of the tree T2, it is easy to see that there is one MP
solution: all the labels of the internal nodes are ′0′. Now, suppose that in the
weight table corresponding to the co-evolution edge (x2, y2), w1 is the smallest
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entry. Thus, by co-evolution study, the solution [x1, x2, x3, x4] = [0, 0, 0, 0] is
more plausible and the ambiguity in the labels of T1 is solved.

Note that in general it is not necessarily required that the solution of each tree
separately will be the most parsimonious (see the next sections). The minimal
sum of edge weights corresponding to a co-evolving forest, F (problem 1) is
named the cost of F . A co-evolutionary graph is an undirected graph that de-
scribes the co-evolution edges in the co-evolving forest. In such a graph, each node
corresponds to a tree in the co-evolving forest, and two nodes are connected by
an edge if there is at least one co-evolution edge between their corresponding
trees. A connected component in the co-evolving forest is a sub-set of trees whose
corresponding nodes in the co-evolutionary graph induce a connected component
(see an example in Figure 1 B.)

We finish this section with an observation that will be used in the next sections
(the proof is omitted due to lack in space and will appear in the full version of
the paper).

Observation 1. The optimization problem of inferring the ancestral states of
a phylogenetic tree when the optimization criteria is maximum likelihood (see,
for example, [40]) under i.i.d models such as Jukes Cantor (JC) [27], Neyman
[36], or the model of Yang et al. [51] can be formalized as a maximum parsimony
problem for non-binary alphabet and with multiple edge weights [43].

Observation 1 teaches us that the Ancestral co-evolution problem without
co-evolution edges (|Ec(SF )| = 0) can describe a Maximum Likelihood (ML)
problem. In this work, indeed the weights of the tree edges correspond to the
probabilities to gain/lose proteins and thus we describe and solve a generaliza-
tion of both the ML and the MP problems on trees.

3 Hardness Issues

In this section we show that the Ancestral co-evolution problem is NP-hard. We
will show it by reduction from the max− 2− sat problem which is known to be
NP-hard [20] (the reduction appears in Figure 2).

Problem 2. Maximum 2-Satisfiability (max − 2 − sat)
Input: Set U of variables, collection C of clauses over U such that each clause
c ∈ C has |c| = 2, and a positive integer K ≤ |C|.
Question: Is there a truth assignment for U that simultaneously satisfies at
least K of the clauses in C?

Theorem 1. The Ancest − co − evol problem is NP-hard.

Proof. By reduction from max − 2 − sat. Given an input < U, C, K > to the
max− 2− sat problem reconstruct the following input to the Ancest− co− evol
problem (See Figure 2): |SF | = |U |, and each tree in SF corresponds to one
variable in U ; each tree has the same structure and leaf labels as described in
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Fig. 2. Reduction from max − 2 − sat to Ancest − co − evol

Figure 2. Each co-evolution edge in EC corresponds to one clause in C, and
connects the right-most internal nodes in two trees (see Figure 2). The trans-
lation of the four types of possible clauses (true-true, true-false, false-false) to
the weight matrix of its corresponding co-evolution edge appears in Figure 2.
Finally, choose B = 2 · |U | + |C| − |K|.

It is easy to see that the optimal parsimony score for each tree in the Ancest−
co − evol problem (excluding the co-evolution edges) is 2; either a solution that
labels all the internal nodes with ’0’ or a solution that labels all the internal
nodes with ’1’ gives this score.

=⇒ Suppose the answer to the max − 2 − sat problem is Y ES (i.e. there is
a truth assignment for U that simultaneously satisfies at least K of the clauses
in C). In this case, we choose the labeling of all the internal nodes of each tree
to be identical to the assignment of its corresponding variable in U . Thus, the
contribution of all the tree edges to the parsimony score ( i.e. excluding the
co-evolution edges) is 2 · |U |.

By the construction of the weight tables (Figure 2), the contribution to the
parsimony score due to co-evolution edges that correspond to one of the K
satisfied clauses is 0, and the contribution to the parsimony score due to each
of the other co-evolution edges is at most 1. Thus, the contribution of all the
co-evolution edges to the parsimony score is at most |C| − |K|, and the answer
to the Ancest − co − evol problem is Y ES.

⇐= Suppose the answer to the Ancest−co−evol problem is Y ES (i.e. the par-
simony score along all the edges is no more than 2 · |U |+ |C|− |K|). As mentioned
earlier, for optimal parsimony score, in each tree all the internal nodes should be
labeled with the same label as that of the internal node that is connected by co-
evolution edges. Thus, the contribution of all the tree edges to the parsimony score
is 2 · |U |, and the contribution of all co-evolution edges to the parsimony score is
at most |C| − |K|. Thus, the contribution to the parsimony score for K of the
co-evolution edges is 0. By the reconstruction of the co-evolution edges, they cor-
respond to K clauses in C that are be satisfied when the assignment to each vari-
able in U is identical to the labeling of the internal nodes of its corresponding tree.
Thus, the answer to the max − 2 − sat problem is Y ES.
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4 Methods

4.1 An FPT Algorithm and Approximation Heuristics

As we have shown in the previous section, the Ancestral co-evolution problem is
NP-hard. In this section, we describe an FPT algorithm and an approximation
algorithm for the Ancestral co-evolution problem. The approximation algorithm
is described in Figure 3. It has three main steps: 1) The input co-evolving forest
is partitioned into smaller co-evolving forests; 2) optimal labels are assigned to
the internal nodes of each of these co-evolving forests by an FPT algorithm; in
total, these labels are an approximation of the solution for the input co-evolving
forest; 3) finally, the solution is further improved greedily.

We will start by describing an FPT algorithm that finds the optimal solution
for the Ancestral co-evolution problem in time complexity that is exponential
with the number of trees in SF but polynomial with the other properties of the
input. This algorithm is used in step 2) of the approximation algorithm where
it is implemented on subsets of SF . Similarly to many algorithms for computing
the labels of internal tree nodes [19,43], our algorithm has two phases (in the
first phase, it traverses the co-evolving forest from the leaves to the root; in the
second phase, it traverses the co-evolving forest from the root to the leaves).
However, our algorithm is performed jointly for all the trees in each connected
component.

Let e = (i, j) denote a co-evolution edge. Let W c
e;(a,b) = W c

(i,j);(a,b) denote the
cost of assigning a to node i, and b to node j where (i, j) is a co-evolution edge.
Similarly, if (i, j) is a tree edge we use W b

e;(a,b) = W b
(i,j);(a,b) to denote the cost of

assigning a and b to the two nodes of e respectively. Let St̄(v̄) denote the cost
of a sub-forest in the co-evolving forest whose roots are t̄, when assigning v̄ to
these roots.

Let tj denote the j-th node in the vector of nodes t. Let k and l denote
the corresponding vectors of children of t in the co-evolving forest. In the first
phase, all St̄(v̄) are computed by the following dynamic programming formula
(see Figure 3 C.):
St̄(v̄) = minu{

∑
j W b

(tj ,lj);(vj ,uj)
+Sl(u)}+minw{

∑
j W b

(tj ,kj);(vj ,wj)
+Sk(w)}+

∑
j1,j2:(j1,j2)∈Ec

W c
(tj1 ,tj2 );(vj1 ,vj2 )

In the second phase, the algorithm traverses the sub-forest from the roots to
the leaves, and optimal values are assigned to the internal nodes of the co-evolving
forest by the following dynamic programming formula (see Figure 3 C.):

For the roots of the co-evolving forest:
v̄∗ = argminv{St(v)}
For a general vector of internal nodes k̄ corresponding to the same organism
in the co-evolving forest (after the values t̄∗ were assigned to its parents, t̄):
v̄∗ = argminv{

∑
j W b

(tjkj);(t∗j ,vj)
+ Sk(v)}

The running time of this algorithm on a co-evolving forest with m′ trees of size
n is O(n · 22∗m′

) since, in each of the O(n) it checks all the 2m′ × 2m′
possible
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simultaneous labels to all nodes corresponding to the direct descendant of all
nodes corresponding to the same organism.

As the running time of the algorithm described above is exponential with the
size of co-evolving forest, the general algorithm (see Figure 3 A.) has an initial
stage (stage 1) where the input graph is partitioned into small enough connected
components.

As the running time of the algorithm described above is exponential with
the size of the largest connected component in the co-evolutionary graph, the
general algorithm (see Figure 3 A.) has an initial stage where the input graph is
partitioned into small enough connected components. The input to the general
algorithm (ACE) includes the maximal size of a connected component after this
stage. Let K denote this parameter.

This step is described in Figure 3 B. and is performed by an algorithm that
recursively implements k-means [35] on the co-evolutionary graph. On the first
iteration, the number of clusters is |V |/K where |V | is the number of vertices
in the co-evolutionary graph. If the size of some cluster is larger than K, the
algorithm is executed recursively on this cluster to further partite it to smaller
connected components. The algorithm stops when all parts of the graph (con-
nected components) are smaller than K. Though the problem of clustering is
NP-hard, in practice, and as reported in the next section, the k-means algo-
rithm is very fast.

The input to this step is a weighted graph whose edges correspond to the edges
in the co-evolutionary graph. The weights of the graph edges can be any measure
that represents the strength of the co-evolution between the corresponding trees
(for example, the correlation between the phyletic pattern of the corresponding
proteins).

The final step of the Ancestral-Co-Evolver algorithm is a greedy stage (3 D.).
In each iteration, the greedy algorithm searches for an edge and labels its ends
in a way that improves the cost of the co-evolving forest. As demonstrated in
the simulations in section 5.2, this algorithm converge to a local optimum faster
than the running time of the dynamic programming stage with K = 7 . Note
that the greedy algorithm can be stopped after a certain number of iteration if
it does not converges to a local optimum. The greedy stage can be used as an
independent algorithm when running it from various initial points (e.g., one of
the initial points can be the ML solution).

Let λ̂(SF ) denote the labels found by the Ancestral-Co-Evolver algorithm. Let
MP (λ̂(SF )) denote the parsimony score induced by these labels. Let
MP−(λ̂(SF )) denote the parsimony score induced by these labels when not
considering the co-evolution edges between the connected components found by
the Partite algorithm; let E− denote this set of co-evolution edges. An upper
bound on the approximation ratio of the general algorithm is given in the fol-
lowing observation (the proof is omitted due to lack in space and will appear in
the full version of the paper):
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Fig. 3. A. The general algorithm for inferring ancestral states under co-evolution. B.
The algorithm for partitioning the co-evolutionary graph. C. The algorithm for finding
the ancestral states of a connected component (output of the Partite algorithm). D.
The Greedy stage of the algorithm.

Observation 2. The approximation ratio of the Ancestral-Co-Evolver algorithm
is ≤ MP (λ̂(SF ))

MP−(λ̂(SF ))
.

We used Observation 2 in order to estimate the approximation ratios of the
different algorithms in the simulations.

One important property of the algorithm is that it enables a trade-off between
accuracy and speed. A larger K (see Figure 3) increases the running time expo-
nentially but at the same time increases the accuracy of the solution; K = |SF |
will give the optimal solution for the Ancestral co-evolution problem.

Finally, it is important to note that by weighting the co-evolution edges rela-
tively to the tree edges we can control the relative influence of these two sources
of information (co-evolution vs. the evolutionary tree) on the resulting labels.
Thus, for example, it is easy to see that (and a very similar proof can be outlined
for the case where tree edges are rational numbers):

Let λ̂(SF /EC) denote the set of the optimal labels of SF when not considering
the co-evolution edges (i.e. EC = 0).
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Observation 3. If the weight tables of the tree edges are natural numbers and
all the entries in the weight tables of the co-evolution edges < 1

|Ec(SF )| then
the optimal labeling of the co-evolving forest is one of the optimal labels in
λ̂(SF /EC).

Due to lack in space the proof of Observation 3 is omitted and will appear
in the full version of this paper. By Observation 1 the ancestral co-evolution
problem without co-evolution edges describes a conventional maximum likelihood
problem. Thus, by Observation 3, if we choose small enough weights for the co-
evolution edges our method can be used for choosing one of the optima (or a
point very close to one of the optima) of the maximum likelihood function – the
one that is supported by co-evolutionary relations.

4.2 Weighting of the Co-evolution Edges

We tested several values for the weights of the co-evolution edges compared to
the tree edges. At one extreme, the entries of the tree edges weight tables are
multiplied by a very large constant. In this case, the tree edge weight tables
are dominant compared to the weights of the co-evolution edges (the solution is
one of the ML/MP solutions). At the second extreme, the fifth weighting, the
co-evolution edge weights are dominant compared to the tree edge weights. In
this case, the entries of the tree edges weight tables are multiplied by a very
large constant.

Let MP b(SF , W ) denote the parsimony score when solving the ancestral co-
evolution problem with weighting W and when considering only tree edges. Let
MP c(SF , W ) denote the parsimony score when solving the ancestral co-evolution
problem with weighting W and when considering only co-evolution edges. In this
work, we used the weighting, W ∗, that optimizes the sum of the two sources
of information (co-evolution, and the evolutionary trees); i.e. we used W ∗ =
argminW ( MP c(SF ,W )

minW (MP c(SF ,W )) + MP b(SF ,W )
minW (MP b(SF ,W )) ).

5 Experimental Results

5.1 Simulated Evolution

To analyze the performances of the algorithms described in the previous section
we generate a probabilistic process that describes the evolution of a co-evolving
forest. In the simulation, each character evolves along the branches of the evo-
lutionary trees, but also has correlations with the other characters that interact
with it. The simulation was performed as in [48]; due to lack in space, all the
details about the simulations are deferred to the full version of this paper.

5.2 Simulation Results

We compared the performances of the following algorithms: 1) The Partitioning
algorithm (Figure 3 B.) with the Dynamic Programming algorithm (Figure 3
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C.). 2) The greedy algorithm (Figure 3 D.) with a few initial points (one of
them is the the ML solution). 3) The ACE algorithm (all the stages in Figure
3). 4) The ML and MP algorithms that do not consider the co-evolution edges.
Let DPX denotes a Dynamic Programming algorithm with K = X ; let ACEX
denotes an ACE algorithm with K = X .

A summary of the simulation results appears in Figure 4; sub-figures A − C
depict the running times (log scale) and sub-figures D−F describe the approxi-
mation ratios as functions of the size of the evolutionary trees, the number of evo-
lutionary trees, the number of co-evolution edges per node in the co-evolutionary
graph. All the running finished in less than a four minutes. As can be seen, the
running time increases exponentially with K (see ACE7, DP7 vs. ACE2, DP2
sub-figures A−C) while the running time of the greedy algorithm alone is larger
than DP2 but exponentially smaller than DP7. As can be seen, in the case of
running time, the most influential parameter is the number of evolutions trees
in the input.

In the case of the approximation ratio (the upper bound from Observation
2), the most influential parameter is number of co-evolution edges per node in
the co-evolutionary graph. As can be seen, ACE7 performs better than all the
other algorithms and always has approximation ratio < 1.3. Interestingly, the
greedy algorithm is only a few percentages worse. These results support using
the greedy algorithm if running time matters. The fact that the upper bound of
the ACE7 < 1.3 demonstrates that our approach can find solutions that are very
close to the optimal ones. As we used here an upper bound on the approximation
ratio the actual ratio can be significantly lower.

In the simulation, as in the case of biological data (see the next section), the
ML solutions (when ignoring co-evolution) are relatively similar to the solutions
found by our approach. Thus, it is not surprising that approximation ratio of ML
is bound to be < 1.7. On the other hand, the margin between the approximation
ratio of the ML and that of the ACE is significant: up to 30%. This result
demonstrates the essentiality of our approach.

5.3 A Biological example: Reconstruction of the Ancestral Genome
Content the Fungi

Using the method outlined above we set to reconstruct the ancestral genome
content of 17 Fungi whose evolutionary tree appears in Figure 5. The input
included 33, 931 families of Fungi orthologs (downloaded from [11]) and a total
of 20, 317 co-evolution edges.

We represented each of the 17 genomes by a binary string of length 33931
where ′1′ in the x position of a string means that there is a gene/protein from the
x group of orthologs in this genome, and ′0′ means that there is no gene/protein
from the x group of orthologs in this genome. We used Neyman’s two state
model [36], a version of Jukes Cantor (JC) model [27] for inferring the edge
lengths of the tree by maximum likelihood. This was done by PAML [50]. These
edge lengths correspond to the probabilities that a protein will appear/vanish
along the corresponding lineage.
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A. B.

C. D.

E. F.

Fig. 4. Running time and accuracy of the partitioning algorithm with the Dynamic
Programming algorithm, the greedy algorithm, the ACE, and the ML/MP algorithms.
A.−C.: The log running time (in ms) of the algorithms as function of the size of the evo-
lutionary trees (A.; 200 trees and 2.5 co-evolution edges per node in the co-evolutionary
graph ), number of co-evolutionary trees (B.; 2.5 co-evolution edges per node in the
co-evolutionary graph, each evolutionary tree with 70 leaves), and the number of co-
evolution edges per node in the co-evolutionary graph (C.; 200 evolutionary trees, each
with 70 leaves). D.−F.: The upper bound on the approximation ratio (Observation 2)
of the solution found by each of the algorithms as function of the number of leaves in
each evolutionary tree (D.), the number of evolutionary trees (E.), and the number of
co-evolution edges per node in the co-evolutionary graph (F.).
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Fig. 5. A. The evolutionary tree of the Fungi that was analyzed by the ACE. B.
Summary of the results for the MP case; the number of proteins inferred by ACE and
not by MP and vice versa. C. Summary of the results for the ML case; the number of
proteins inferred by ACE and not by ML and vice versa.

As co-evolution edges we use various physical and functional interactions that
were downloaded from String [14] (http://string.embl.de/; for example, [15,49]
reported the relation between co-evolution and similar functionality). We filtered
co-evolutionary edges whose their ratio between the highest and lowest probabil-
ity in the co-occurrence distribution table was less than 4.25. The weights in the
tables were computed according to the co-occurrence probabilities of the corre-
sponding pairs of orthologs. We used the weighting whose corresponding solution
optimizes both the score of the co-evolution edges and the score of the tree edges
(see more details in subsection 4.2). The annotation of ancestral proteins was
based on the GO annotations of S. cerevisiae.

We compared our results of the ACE to those obtained by using only tree
edges (by using MP and ML).

The total running time of the ACE algorithm on this large biological dataset
was about 1.5 hours on a conventional PC. Figure 5 summarizes the results of the
analysis by ACE. As can be seen, ACE removed/added hundreds of proteins to
ML/MP labels of the internal nodes of the evolutionary trees. A major fraction of
the discrepancies between the results of the ACE algorithm and those obtained
with the conventional methods (ML and MP) appears in the Euascomycota
subtree (internal nodes 0−2 in the Fungi tree; see Figure 5 A.). In general, ACE
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mainly added proteins to these nodes, implying that ML/MP underestimated
the size of these ancestral genomes. Additionally, both in the case of MP and
ML, the ACE added/removed many proteins from internal nodes 14 and 15. It is
important to note that the likelihood score of the ACE solution was only 0.25%
lower than the ML score, demonstrating that this solution was very close to the
ML point. Similarly, when the ACE was implemented with MP the parsimony
score of its solution was only 2.2% higher than that of the MP solution. These
solutions, however, are supported by the co-evolutionary information and thus
are more biologically plausible.

We further analyzed the proteins added by the ACE to the ML solution for
the ancestors of the Euascomycota (internal nodes 0 − 2): the nodes with the
largest number of discrepancies between ML and ACE. The groups of proteins
added to each of these nodes were very similar (around 95% similarity); thus we
report only the results for node 2, the ancestor of the Euascomycota.

ACE added 89 proteins to the ML solution of internal node 2. Various pieces
of evidence support the biological plausibility of the addition of these proteins by
ACE: First, the group of proteins added to this node was enriched with proteins
that take part in basic and essential metabolic processes. Specifically, it was
enriched with the cellular process: protein amino acid phosphorylation (p-value
= 0.00054), amine transport (p-value = 0.00153), and amino acid transport (p-
value = 0.00518); all p-values passed the False Discovery Rate (FDR) control for
multiple hypothesis testing [2]. Second, all these proteins have orthologs in most
of the analyzed Fungi (on average in 76% of the Fungi); this fact also supports
the essentiality of these proteins. Third, in S. cerevisiae, many of these proteins
are part of the same complex with proteins inferred by the standard ML (note
that co-evolutionary relations used by ACE do not necessarily imply association
in the same complex).

The following is a typical example that demonstrates the three points men-
tioned above:

Example 1: Three of the proteins added by the ACE are orthologs of S. cere-
visiae TPK1, TPK2, and TPK3. The presence of at least one of these genes
is required for normal growth in S. cerevisiae [47]. These genes are part of the
complex cAMP-dependent protein kinase complex that includes another protein
(BCY1), which was inferred by ML.

6 Concluding Remarks

In this study we formally described a new computational approach for recon-
structing ancestral genomic sequences using information about co-evolution.
Our model captures co-evolutionary dependencies between different proteins and
uses this information to disambiguate the labels of the reconstructed ancestral
genomes.

In the future we intend to generalize this work in several ways. First, currently,
our approach is presented in the setup of ancestral genome reconstruction, due
to the importance of this problem and because co-evolutionary information can
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be readily obtained on the gene/protein level. However, it is important to note
that the potential scope of our approach goes beyond the ancestral genome re-
construction problem, to tackle the more general problem of ancestral sequence
reconstruction: that is, the reconstruction of different sites or domains in pro-
teins, and even (provided that sufficient information is available) the reconstruc-
tion of single sites in DNA or RNA sequences (see [52,53,33,39,28,42]). In this
setup, the success of such future applications depends on the existence of reliable
co-evolutionary information on the individual site level. Second, it is also clear
that our approach can be generalized in the future to more complex reconstruc-
tion models (for example, using non-binary alphabets, dependency between close
sites, and various versions of maximum likelihood). Third, we intend to design
algorithms that may compete with those described in this work. Specifically,
we intend to check algorithms that are based on the belief propagation [31] ap-
proach. Finally, we believe that a generalization of the approach described in
this work can be used for joint inference of ancestral genomes and protein in-
teractions or for joint inference of ancestral genomes and metabolic networks of
ancestral and extant organisms.
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