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Abstract

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinical syndromes that cause significant mortality 
in clinical settings and morbidity among survivors accompanied by huge healthcare costs. Lung-resident cell dysfunction/death 
and neutrophil alveolitis accompanied by proteinous edema are the main pathological features of ALI/ARDS. While 
understanding of the mechanisms underlying ALI/ARDS pathogenesis is progressing and potential treatments such as statin 
therapy, nutritional strategies, and mesenchymal cell therapy are emerging, poor clinical outcomes in ALI/ARDS patients persist. 
Thus, a better understanding of lung-resident cell death and neutrophil alveolitis and their mitigation and clearance mechanisms 
may provide new therapeutic strategies to accelerate lung repair and improve outcomes in critically ill patients. Macrophages are 
required for normal tissue development and homeostasis as well as regulating tissue injury and repair through modulation of 
inflammation and other cellular processes. While macrophages mediate various functions, here we review recent dead cell 
clearance (efferocytosis) mechanisms mediated by these immune cells for maintaining tissue homeostasis after infectious and non
-infectious lung injury.

Keywords
 

Acute lung injury, Lung repair, Macrophages, Alveoli, Efferocytosis

Peer Review

The peer reviewers who approve this article are:

1.
	

Hongguang Nie, Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical 
University, Shenyang, China

 

Competing interests: No competing interests were disclosed.
 

2.
	

Narasaiah
 
Kolliputi,

 
University

 
of

 
South

 
Florida,

 
Division

 
of

 
Allergy

 
and

 
Immunology,

 
Department

 
of

 
Internal

 
Medicine

 

and
 
Department

 
of

 
Molecular

 
Medicine,

 
College

 
of
 

Medicine,
 

Tampa,
 

Florida
 

33612,
 

United
 

States
 

 

Sekhar P. ReddyPatrick M. Noone 1,2*,X1,X

X Equal contributors

       Competing interests: No competing interests were disclosed.



Faculty Reviews 2021 10:(33)Faculty Opinions

*Corresponding author: Sekhar P. Reddy (sreddy03@uic.edu)

Competing interests: The authors declare that they have no competing interests.

Grant information: This work was supported by the National Institutes of Health grants HL136946 and GM124235 (SR).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Reddy SP et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Noone PM and Reddy SP. Recent advances in dead cell clearance during acute lung injury and repair. Faculty Reviews 

2021 10:(33) https://doi.org/10.12703/r/10-33

Published: 30 Mar 2021, Faculty Reviews 10:(33) https://doi.org/10.12703/r/10-33

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12703/r/10-33
https://doi.org/10.12703/r/10-33


Faculty Reviews 2021 10:(33)Faculty Opinions

Acute lung injury
Acute lung injury (ALI) and its most severe form, acute respira-
tory distress syndrome (ARDS), together affect approximately  
200,000 patients per year in the United States alone, with 
reported mortality rates of about 30–40%1. Oxygen supple-
mentation (hyperoxia) by mechanical ventilation remains the 
primary therapy used for supporting critically ill patients with 
ALI/ARDS proven to decrease mortality2, but as many as 9–27%  
of patients undergoing this therapy contract nosocomial pneu-
monia, leading to excess morbidity and mortality3. Nosocomial 
pneumonia poses a substantial cost burden4 and accounts for 
approximately 27% of hospital-borne infections in American 
ICUs, of which 86% of cases were associated with mechanical  
ventilation2. Thus, identification of novel mechanisms under-
lying abnormal lung repair and microbial susceptibility may  
provide a basis for new therapeutic strategies that can improve 
clinical outcomes and decrease healthcare costs associated  
with ALI/ARDS.

Understanding of the mechanisms underlying ALI/ARDS is 
evolving, but, aside from ventilation, limited therapies of signifi-
cant clinical benefit are available for intervening in lung injury  
progression5,6. Currently, treatments include statin therapy7,  
nutritional strategies8, and mesenchymal cell therapy9,10, but  
persistence of high mortality rates demonstrates their limitations 
and warrants exploration of alternative approaches5,6. Strategies  
for promoting lung repair that show favorable in vitro and  
in vivo results include plasma membrane repair via amphiphilic 
macromolecules11, administration of growth factors12, selec-
tive blockade of matrix metalloproteinases13,14, and modulation  
of proliferation-regulating transcription factors15,16. Additionally, 
gene therapy studies using viral and non-viral vector delivery,  
gene expression strategies, or enhanced therapeutic targeting  
offer promising evidence of restoring lung function, clearing 
inflammation, and enhancing repair mechanisms in vitro and  
in vivo6. However, clinical use of these techniques requires 
extensive progress to be made in terms of basic science and its  
translational approach. Perhaps most importantly, there are still 
immense gaps in our knowledge of molecular targets involved 
in the pathogenesis of ALI/ARDS. Therefore, better char-
acterization of cellular mechanisms involved in heightened  
inflammation resolution and repair is necessary to develop  
novel therapies for ALI/ARDS patients.

Alveolar macrophages (AMФs) account for approximately 95% 
of airspace leukocytes17. They are major regulators of the lung 
inflammatory microenvironment and the first line of defense 
against infectious and non-infectious stimuli18. The course 
of systemic inflammation and progression to ALI/ARDS is  
heavily dependent on signaling from these cells, and their defec-
tive functioning is associated with multiple acute and chronic 
inflammatory conditions19,20. This regulatory capability is in 
part due to the phagocytic role AMФs play in clearing dead  
cells from the alveolar space, which facilitates injury resolu-
tion and prevents necrosis of apoptotic cells and release of  
pro-inflammatory mediators21. AMФs are highly functionally  
heterogeneous and phenotypically variable, which allows them  

to use intracellular signals to switch between pro-inflammatory  
and anti-inflammatory states as well as several further  
subdivisions and hybrid states. It is known that AMФ subtype  
populations vary between healthy individuals and patients 
with ALI/ARDS22, and by further investigating the cellular  
mechanisms by which this variation occurs it is likely we may  
discover new immunomodulatory targets that have the potential  
to mitigate the devastating effects of ALI/ARDS.

Role of apoptosis in amplifying lung inflammatory 
responses and injury
The main pathological features of ALI/ARDS include alveolar 
epithelial and endothelial cell death, neutrophil alveolitis, and 
destruction of epithelial capillary barriers, leading to vascular  
permeability and edema infiltration5,6. Furthermore, hyper-
oxic ventilation causes excess epithelial and endothelial cell  
death, exacerbates pre-existing lung injury and inflammation, 
and impairs alveolar fluid clearance23. Unchecked inflamma-
tion and cell death can promote tissue scarring, organ damage, 
and the development of autoimmune and chronic inflammatory  
disorders24, and impaired management of these insults can 
have severe long-term consequences25. Pro-apoptotic members  
of the tumor necrosis factor (TNF) family, Fas/FasL, are  
known to facilitate cell death, and increased concentrations of 
these mediators have been detected in bronchoalveolar lavage 
(BAL) samples of ARDS patients26,27. Instillation of Fas/FasL 
induced lung injury and inflammation28–30, while inhibition of  
Fas/FasL signaling or apoptosis attenuated lung injury in  
animals subjected to endotoxemia and mechanical ventilation29,30. 
This suggests that apoptosis, to some extent, affects the severity  
of ALI/ARDS progression and how well patients recover. Apop-
totic cells may undergo secondary necrosis, or unprogrammed 
cell death, if not removed, leading to the release of endogenous  
ligands called damage-associated molecular patterns (DAMPs). 
High-mobility group box 1 (HMGB1) and other DAMPs 
resemble pathogen-associated molecular patterns (PAMPs) 
such as lipopolysaccharide (LPS)19. These molecules exac-
erbate tissue inflammation and contribute to injury observed 
in ALI/ARDS, COPD, pneumonia, asthma, and pulmonary  
fibrosis20. As expected, elevated HMGB1 levels were found in 
BAL obtained from peripheral airways of COPD patients31. Many 
patients at risk for ALI require medical attention well into the  
course of their initial systemic inflammatory illness, which 
means that blocking late-acting DAMPS may have greater clini-
cal relevance than more rapidly released mediators. However, 
it appears that while ALI may resolve entirely in some patients, 
along with lung function recovery, other patients are more  
susceptible to the development of chronic disorders5,6.

Pyroptosis (pyro meaning “fever” or “fire”) is a pro-inflammatory  
process of pre-programmed cell death distinct from apoptosis  
that results from activation of inflammatory proteases belong-
ing to the caspase family, particularly caspase-1, -4, and -532. 
Inflammasomes are multiprotein complexes assembled by 
pattern recognition receptors (PRRs) in response to bacte-
rial or viral PAMPs (e.g. LPS, bacterial flagella, viral DNA  
and RNA) and/or damaged host-cell derived DAMPs. These  
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complexes recruit either caspase-1 in the canonical inflammasome  
or caspase-4 and -5 in the non-canonical inflammasome33. 
Recruitment occurs either directly or indirectly through a  
caspase activation and recruitment domain (CARD) containing 
adapter protein called an apoptosis-associated speck-like protein 
containing a CARD (ASC)32. The activated caspase molecules 
serve two crucial functions: 1) proteolytic cleavage of perfora-
tion inducing protein Gasdermin D, which creates pores in the 
cell membrane to induce pyroptosis, and 2) cleavage of IL-1β  
and IL-18 into their active forms, which are then released by 
the pyroptotic cell and initiate a pro-inflammatory response33,34.  
Furthermore, pyroptosis also promotes HMGB1 release, 
which as mentioned is highly expressed in inflammatory lung  
conditions30,35. Pyroptosis works in accordance with apoptosis 
and is necessary for clearing pathogen-infected cells but when 
unrestricted can induce inflammation and can lead to organ 
failure, sepsis, and death34. In addition to pyroptosis, necro-
sis and necroptosis, ferroptosis, and autophagy-dependent  
cell death are all distinct from apoptosis in their activating  
stimuli36–38 but nonetheless must be cleared from the alveolar  
space to prevent ALI/ARDS.

The phagocytic machinery that recognizes dead cells is regu-
lated by signaling cascades and selective upregulation of  
anti-inflammatory genes coordinated by communication between 
apoptotic cells and phagocytes39. Engulfment of apoptotic cells 
by phagocytosis results in an abundance of reactive oxygen 
species (ROS), which stimulates macrophage apoptosis and 
inflammation persistence40,41. Regarding the role phagocytes  
play in mitigating ALI/ARDS progression, AMФs are recog-
nized as initiators of pro-repair and pro-resolution processes  
necessary for restoring lung function following injury42.  
However, AMФs also recruit inflammatory cells, produce  
pro-inflammatory cytokines, and mediate pro-fibrotic processes43. 
This functional dynamic makes AMФs influential during both 
acute and resolution/recovery phases of lung injury44–46. Studies 
performed with serial BAL in humans with ARDS determined  
that increased AMФ numbers and matured cellular phenotype  
correlated with favorable clinical outcomes47–49. Currently, 
there is increasing evidence suggesting that macrophages, 
including resident AMФs and recruited AMФs derived from  
blood-circulating monocytes, are key regulators of ALI/ARDS 
pathogenesis50,51. These macrophages are phenotypically flexible  
and functionally heterogeneous, suggesting a key regulatory  
role in inflammation, injury, and repair throughout the course 
of ALI/ARDS52,53. This dual functionality AMФs play in both 
resolving and inducing inflammation demonstrates their unique 
and evasive role in maintaining lung homeostasis. Since these 
processes remain incompletely understood, further inves-
tigating the role of AMФs in ALI/ARDS pathogenesis is  
of clinical interest.

Macrophage plasticity and lung injury resolution
Phagocytes are classified as either “professional” or  
“non-professional”. Professional phagocytes (e.g. monocytes, 
macrophages, neutrophils, etc.) are more abundant, secrete 
more cytokines, and display a wider range of phagocytic  

receptors54 than their non-professional counterparts (e.g.  
epithelial cells, fibroblasts, etc.). They act as first responders to  
infection in the steady state by recognizing and removing 
bacteria and promote adaptive immunity by displaying anti-
gens of digested pathogens for T and B cell recognition55.  
Phagocytes use PRRs including Toll-like receptors (TLRs), 
Nod-like receptors (NLRs), and RIG-I-like receptors (RLRs) 
to initiate phagocytosis or inflammatory signal transduction in 
response to microbial infection56,57. In the lung, macrophages 
comprise two subtypes: resident and recruited. The former  
and more prevalent population is found within the alveoli 
themselves, whereas the latter are derived from circulating 
monocytes recruited from the interstitial space to infection  
or injury sites58. Resident AMФs originate from progenitor 
yolk sac and fetal liver monocytes and become functionally  
active as soon as the first week after birth, continuously repopu-
lating alveoli by auto-regeneration59. Resident AMФs act as 
sentinels providing the first line of defense against respiratory  
infection and injury by clearing pathogens and debris60. How-
ever, severe enough insult can induce circulating (bone  
marrow-derived) monocyte migration from the periph-
ery to the inflamed tissue, where they differentiate into  
monocyte-derived AMФs and initiate a pro-inflammatory and  
profibrotic response42,58.

AMФs are particularly unique in their phenotypic plasticity, 
which refers to polarization between two distinct phenotypes 
depending on inflammatory microenvironment conditions61. 
Classically activated (M1) AMФs (AMФsM1) are cytotoxic and  
pro-inflammatory mediators that protect against pathogens by 
secreting pro-inflammatory cytokines and promoting Th1-type  
immunity62. Macrophage stimulation with interferon gamma 
(IFNγ) or TNF alpha (TNF-α) in accordance with TLR  
agonists (e.g. LPS) induces M1 polarization. AMФsM1 produce  
cytotoxic and bactericidal ROS, reactive nitrogen species 
(RNS), and Th1 pro-inflammatory cytokines (e.g. IL-1, IL-6,  
IL-12, IL-23, and TNF-α) and strongly express major  
histocompatibility complex (MHC) II, CD80, CD86, and iNOS  
surface markers63–65 (Figure 1A). The classically activated  
phenotype promotes inflammation and assists in opsonization,  
antibody-dependent cytotoxicity, and phagocyte-dependent 
defense functions. Enhanced clearance of dead cells performed 
by pro-resolution AMФs is a key process in tissue repair and 
resolution of AMФM1-promoted inflammation. This process  
limits the production of pro-inflammatory cytokines (e.g. 
IFNγ, TNF-α, IL-1, IL-6, IL-8, and LTB4) and increases the 
production of anti-inflammatory/reparative cytokines (e.g.  
M-CSF, IL-4, IL-10, IL-13, and transforming growth factor beta  
[TGF-β])43.

Alternatively activated (M2) AMФs (AMФsM2) are  
anti-inflammatory and promote tissue repair, fibrotic remod-
eling, and Th2-type immunity62,66. IL-4 and IL-13 play an 
important role in resolving inflammation and aid in lung regen-
eration by facilitating wound healing through suppression of 
inflammatory signaling (Figure 1B). Macrophage stimulation 
with IL-4 and IL-13 induces AMФM2 polarization, leading to the 
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resolution of lung inflammation. AMФ phenotypic changes are  
largely regulated by signal transducer and activator of transcrip-
tion (STAT) transcription factors and suppressors of cytokine  
signaling (SOCS). STAT1/SOCS2 activation promotes the 
AMФM1 phenotype while activation of STAT3/6 and SOCS3 
promotes the AMФM2 phenotype67. AMФsM2 have been shown 
to resolve inflammation and initiate wound healing via the  
production of immunosuppressive cytokines (e.g. IL-10, TGF-β,  
CCL18, and CCL22) and angiogenesis mediators (e.g. 
VEGF and EGF) as well as express high levels of scavenger  
receptors (e.g. CD163 and CD206)63–65. AMФsM2 also release 
immunosuppressive cytokines such as TGF-β, an inhibitor of NO  
production63, and Arginase 1, which neutralizes reactive nitro-
gen intermediates50,68. AMФsM2 are highly heterogeneous, with  
several further subdivisions (i.e. M2a, M2b, and M2c)61,69. Distinct  

functional roles between AMФsM1 and AMФsM2 suggest that 
a counterbalance between their pro- and anti-inflammatory  
responsibilities must be maintained to promote lung homeostasis  
in response to infection and injury.

M1 and M2 classification is generally useful for describing  
functional differences in AMФs throughout inflammatory  
processes but as a dichotomy neglects what appears to be a 
continuum of activation states that exists in vivo70. AMФs are  
constantly altered by extrinsic factors, with M1 and M2  
phenotypes representing the extreme sides of an expression  
spectrum71. In fact, most AMФs in the steady state display 
markers of both M1 and M2 phenotypes simultaneously, 
which is thought to allow quick switching between M1 and  
M2 functions72. Due to this flexible programming, AMФs 

Figure 1. Different stimuli contributing to macrophage polarization along with differential surface markers, gene regulation, cytokine 
release, and physiological functions. A) Monocyte differentiation into classically activated alveolar macrophages (AMФM1) upon stimulation 
with interferon gamma (IFNγ), tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS). High expression of major histocompatibility complex 
(MHC) II, inducible nitric oxide synthase (iNOS), CD80, and CD86 surface markers. Upregulation of nuclear factor (NF)-κB, activator protein 1 
(AP-1), signal transducer and activator of transcription 1 (STAT1), suppressors of cytokine signaling 2 (SOCS2), and interferon regulatory factor 
5 (IRF5). Release of TNF-α, interleukin (IL)-1, IL-6, IL-12, and IL-23 cytokines leading to pro-inflammatory response, antimicrobial activity, and 
collateral tissue injury. B) Monocyte differentiation into alternatively activated alveolar macrophages (AMФM2) upon stimulation with IL-4 and 
IL-13. High expression of MHC I, CD163, and CD206 surface markers. Upregulation of STAT3, STAT6, SOCS3, vascular endothelial growth 
factor (VEGF) and epithelial growth factor (EGF). Release of IL-10, transforming growth factor (TGF)-β, macrophage colony-stimulating factor 
(M-CSF), CCL18, and CCL22 leading to anti-inflammatory response, efferocytosis, wound healing, and angiogenesis.
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have shown critical activity at all stages of alveolar repair and  
fibrosis and phenotype-dependent roles at distinct inflammatory  
and resolving phases. Transcriptomic datasets have provided  
immense amounts of information regarding macrophage inte-
gration and computation of local inflammatory signals, and 
understanding of AMФ transcriptional regulation can poten-
tially be used to locate macrophage subset-specific therapeutic  
targets73. Flexibility in AMФ programming and their adapt-
ability to environmental changes suggests modulating these  
processes may provide therapeutics for ALI/ARDS patients.

Neutrophil death contributions to ALI/ARDS
Neutrophils are specialized leukocytes with life cycles rang-
ing from only a few hours to days61. Due to these cells’ short 
lifespans, neutrophil death is highly concerted and can occur via 
several mechanisms, including apoptosis, necrosis/necroptosis,  
and release of neutrophil extracellular traps (NETs).  
Neutrophil alveolitis and cell death contribute to inflammatory  
injury observed in ALI/ARDS patients, and their activating  
stimuli leading to efferocytosis influence the course of  
systemic inflammation. Distinct modes of neutrophil cell death  
have been implicated in several pathologies, including cancer,  
neurodegenerative disease, and autoimmune disorders74.  
Neutrophils are recruited as first responders to microbial infec-
tion to fight off invading pathogens, where they participate in  
phagocytosis, degranulation, ROS release, and NET release74. 
NETs are DNA–protein complexes released by neutrophils to neu-
tralize pathogens in a process called NETosis. NETs are increas-
ingly being investigated as contributors towards ALI/ARDS75,76.  
In vitro, in vivo, and clinical studies have confirmed that NETs  
promote ARDS inflammation by inducing AMФM1 polarization  
and pro-inflammatory cytokine release, and increased M1  
markers and decreased M2 markers were found in ARDS BAL 
fluid and lung tissue77. Furthermore, ARDS patients experi-
ence increased NET formation accompanied by decreased  
levels of AMФ engulfment of NETs and apoptotic neutrophils78. 
Neutralization of HMGB1 in the BAL fluid was shown to 
improve efferocytosis and NET clearance78, and engulfment 
of apoptotic neutrophils by phagocytes was found to promote  
anti-inflammatory signaling and homeostasis maintenance79. 
These results demonstrate that neutrophil contributions to 
ALI/ARDS are at least in part due to their influence on AMФ 
phenotype switching and in part due to the effectiveness of  
efferocytotic clearance following cell death.

Efferocytosis and resolution of inflammatory lung 
injury
Host defense and the protective roles leukocyte recruitment 
and phagocytosis play in acute inflammatory injury were first 
described in 1908 by Nobel Prize laureate Elie Metchnikoff80.  
However, much remains unclear as to how cellular com-
munication facilitates apoptotic cell clearance and promotes  
homeostasis. As many as 150 billion cells, representing 0.4% of 
the body’s cellular mass, are known to be turned over via apop-
tosis every day in the average adult81. Apoptotic cells are rarely 
observed, even in tissues with frequent cell turnover82, which  
suggests an efficient framework for clearing dead cells24. 

Removal of apoptotic cells and debris by phagocytosis, a term 
coined “efferocytosis” by Henson, Gardai et al. (from the Latin 
effero meaning “to carry to the grave” or “to bury”)83,84, appears 
to serve a crucial protective role against inflammatory injury. 
The process by which dead cells are identified, taken up, and 
disposed of by phagocytes is a highly regulated and concerted  
series of coordinated signaling (see below).

Activation of efferocytosis machinery
Efferocytotic signaling refers to phagocyte recruitment (“find 
me”), engulfment (“eat me”), and “post-engulfment” signals  
(Figure 2), and communication of these signals depends on 
phagocyte/apoptotic cell type, apoptotic stimuli, and stage 
of apoptosis24. Apoptotic cells release “find me” signals to  
initiate phagocytic uptake. Four different apoptotic “find me” 
signals have been identified: lysophosphatidylcholine (LPC),  
sphingosine-1-phosphate (S1P), nucleotides ATP and UTP, 
and CX3CL1 or fractalkine39. The first three mechanisms are  
caspase-3 dependent: 1) phosphatidylcholine is converted into  
LPC by apoptotic cells and subsequently released and recog-
nized by G2A receptors on proximal macrophages85; 2) S1P, 
produced by the sphingosine kinase-catalyzed conversion of 
sphingosine, is released from apoptotic cells and recognized by  
S1P receptors on macrophages86; and 3) apoptotic release 
of nucleotides ATP and UTP induces monocyte recruitment  
through recognition by phagocytic purinergic receptors.  
Furthermore, ATP and UTP receptor P2Y

2
 deficiency in mice 

showed a significant decrease in monocyte and macrophage 
recruitment, and nucleotide deficiency/P2Y

2
 interference also 

resulted in inadequate clearance of apoptotic thymocytes87. In a  
caspase-3-independent mechanism, CX3CL1, or fractalkine, 
a membrane-associated protein released by apoptotic cells,  
binds to CX3C motif chemokine receptor 1 (CX3CR1) on 
phagocytes to promote recruitment88. Additionally, upregulation  
of several solute carrier (SLC) proteins was found to take place 
at distinct “find-me” and “eat-me” stages of efferocytosis,  
suggesting a complex and incompletely understood regulatory 
system that warrants further investigation89. After recognition of  
these apoptotic “find-me” signals, phagocytes use additional  
cell signaling mechanisms to dispose of marked cells.

Apoptotic cells expose phosphatidylserine (Ptd-Ser) as an 
“eat-me” signal that can be recognized by several receptors  
(Figure 2). Remarkably, many molecules have been shown to act 
as Ptd-Ser receptors, including scavenger receptors (CD36 and 
SRA-1), αvβ3 integrins, MerTK, Tim-4, BAI1, and stabilin-1  
and -290. Many Ptd-Sers recognize multiple ligands and 
likely have roles other than apoptotic cell clearance91. 
Among the known Ptd-Ser receptors, Tim-4 and BAI1 and  
stabilin-2 directly bind to Ptd-Ser on apoptotic cells. Tim-4 
is exclusively expressed on professional phagocytes92 and the 
main receptor mediating the phagocytosis of apoptotic cells93. 
Tim-4 is thought to act as a tethering receptor rather than 
directly transmitting engulfment signals94, and Tim-4-dependent  
efferocytosis depends on the activation of integrins, focal  
adhesion kinase (FAK), and phosphoinositol-3 kinases93. Dys-
regulation of Tim-4 expression has been found in autoimmune  
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conditions95,96, and expression of Tim-4 decreased in response 
to oxidative stress97. Increased expression of Ptd-Ser receptor  
MerTK was found in airway macrophages of cigarette smok-
ers and has been implicated in apoptotic cell buildup in the 
lungs of patients with COPD98. The MerTK–ERK pathway is 
also known to play a role in the resolution of inflammation99.  
Ptd-Ser receptor Axl is thought to play a role in apoptotic 
cell removal and was found to be expressed in mouse airway  
macrophages but not in interstitial macrophages or other  
lung leukocytes100. Receptor for advanced glycation end prod-
ucts (RAGE) is a recently characterized Ptd-Ser receptor highly 
expressed in AMФs. RAGE-deficient macrophages showed 
impaired phagocytic uptake of apoptotic thymocytes and  
neutrophils and led to increased alveolar accumulation of inflam-
matory cells following LPS stimulation101. Additionally, cal-
reticulin (CRT) is thought to act as a Ptd-Ser-binding bridging  
molecule that can behave as an “eat-me” signal in cell death 
induced by endoplasmic reticulum (ER) stress. Protein kinase  
RNA-like ER kinase (PERK) phosphorylates eIF2α, promoting  
Bap31 cleavage and Bax activation in a caspase-8-dependent  
manner. CRT then moves from the ER to the Golgi apparatus 
and is displayed by apoptotic cells through SNARE-mediated  

exocytosis, where recognition of low-density lipoprotein 
receptor-related protein (CD91) by local phagocyte receptors  
leads to dead cell engulfment102. Hodge et al. have done exten-
sive work investigating efferocytotic deficiency in COPD 
patients and have found reduced CD31, CD91, CD44, and 
CD71 expression and enhanced Ki-67 expression in the lungs of  
smokers compared with non-smokers103.

In contrast to “eat me” signals, “don’t eat me” signals are  
displayed by healthy cells to prevent uptake by phagocytosis.  
Some of these signals have recently been characterized and 
are now of clinical interest as potential therapeutic targets in 
ALI/ARDS recovery. One of these “don’t eat me” signals  
is integrin-associated protein (CD47), a surface membrane  
protein activated by activator protein 1 (AP-1) transcription 
factor c-Jun in fibroblasts, overexpression of which is associ-
ated with fibrotic injury104. Interestingly, antibody-mediated  
blockage of CD47 was found to be sufficient for reversing fibro-
sis and improving lung function in mice by increasing phago-
cytosis of profibrotic fibroblasts104. CD47 is an anti-phagocytic  
molecule that was found to be constitutively expressed in  
certain myeloid leukemias, indicating its role in assisting  

Figure 2. Efferocytosis broken down into “find me”, “eat me”, and engulfment signals. A) Apoptotic cells express “eat me” signals 
including lysophosphatidylcholine (LPC), sphingosine-1-phosphate (S1P), nucleotides ATP/UTP, and CX3CL1. These signals are recognized 
by G2A, S1PR, P2Y2, and CX3C motif chemokine receptor 1 (CX3CR1) receptors, respectively, by proximal macrophages. B) Recognized cells 
use Ptd-Ser receptors as an “eat me” signal to initiate engulfment, which can include αvβ3 integrins, MerTK, TIM-4, BAI1, stabilin-1/2, CD36, 
SRA-1, and receptor for advanced glycation end products (RAGE). C) Following engulfment, dedicator of cytokinesis protein 1 (Dock180) 
and engulfment and cell motility protein 1 (ELMO1) act together as a guanine nucleotide exchange factor (GEF) to induce Rac1 GTPase, 
leading to cytoskeletal changes via actin polymerization followed by apoptotic cell internalization and phagolysosomal degradation.
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cancer cells by evading phagocytic recognition105. Preclinical 
data on anti-CD47 cancer therapy is promising106,107, and clinical  
trials have shown optimistic results in ameliorating tumor  
growth108,109. Similarly, platelet endothelial cell adhesion  
molecule (CD31) is another surface membrane protein that plays 
a role in preventing engulfment by a repulsive CD31–CD31 
interaction between healthy cells and phagocytes110. Many 
“don’t eat me” signals with therapeutic potential for alleviat-
ing ALI/ARDS remain undiscovered or are not fully understood, 
so continuous investigation into these molecules is of clinical  
interest.

Efferocytosis-induced intracellular signaling
Following engulfment, phagocytic cytoskeletons must adapt to 
internalize dead cells. The Rho family of GTPases is an estab-
lished regulatory factor in cellular movement and cytoskeletal  
changes111 and is involved in virtually all actin-dependent  
processes including mobility, adhesion, and phagocytosis112. 
Rho GTPases use guanine nucleotide exchange factors (GEFs) 
to switch between inactive, or GDP-bound, and active, or  
GTP-bound, states112. One of these Rho family proteins highly 
expressed in macrophages113, Rac1, induces plasma membrane  
remodeling to allow phagosome internalization of dead 
cell particles by stimulating actin polymerization via the  
Rac-WAVE-Arp2/3 pathway114,115. Rac1 activation occurs when 
engulfment and cell motility protein 1 (ELMO1) and dedica-
tor of cytokinesis protein 1 (Dock180) work coactively as a 
GEF for Rac1, promoting the cytoskeletal changes required 
for internalization116. Additionally, the intracellular domain 
of BAI1 was found to interact with ELMO1 and Dock180  
GEF processes117. The role of ELMO1/Rac1 signaling in proper 
inflammatory functions is becoming particularly clear. For 
example, ELMO1 and Rac1 were found to be necessary for 
internalization processes and promoting inflammatory sign-
aling, and inhibition of ELMO1 led to a sixfold decrease in  
Salmonella internalization118. Furthermore, ELMO1-deficient 
macrophages experienced reduction in TNF-α and mono-
cyte chemoattractant protein 1 (MCP-1) release and in nuclear  
factor-κB (NF-κB) activation and bacterial internalization117,118.  
Rac1 actin polymerization abilities likely involve interplay 
with ERK, FAK, AKT, and STAT6 as well119. Other members 
of the Rho GTPase family including Rac2, Rho, and Cdc42  
showed involvement in macrophage efferocytosis120. Rho A is 
known to antagonize Rac1-mediated actin reorganization121,122, 
and its suppression assisted in apoptotic engulfment, whereas  
its overexpression inhibited phagocytic uptake123. Cigarette 
smoke has been found to inhibit efferocytosis through oxidant-
dependent activation of RhoA, but antioxidant supplementation  
prevented this effect, leading to the reversal of efferocytotic  
impairment124. RhoA was found to assist in actomyosin cytoskel-
eton contractions via the Rho-associated coiled-coil-containing  
protein kinase (ROCK) pathway, as well as in other processes 
including cell proliferation and migration125. C-type lectins like 
mannose-binding lectin (MBL) have also shown therapeutic 
potential. MBL promotes apoptotic cell uptake by increasing  

Rac1/2/3 expression and is reduced in airways of COPD  
patients126.

Oxidant stress and efferocytosis impairment
The accumulation of ROS inflicts intracellular destruction 
and initiates enhanced pro-inflammatory gene expression and  
cell death127. Engulfment of apoptotic cells creates an abun-
dance of harmful ROS, and macrophage functions are heavily 
regulated by ROS production40,41. ROS are involved in macro-
phage polarization, functional and phenotypic regulation, and 
cell death, proliferation, and phagocytic ability40. ALI/ARDS  
patients exhibit significant oxidative stress on the lungs due 
to ventilation therapy-induced ROS accumulation128. Mitiga-
tion of excessive ROS and maintenance of intracellular redox 
homeostasis is crucial for ALI resolution. Cells have intrinsic  
antioxidant defense mechanisms for maintaining equilibrium in 
response to excess ROS generation129,130. A better understand-
ing of the host defense response, such as antioxidant enzyme 
functions and deregulation in ARDS patients with and with-
out hyperoxic ventilation, can help detect therapeutic targets  
that may prove useful for alleviating lung injury.

Hyperoxic stress and ROS accumulation can lead to functional 
changes in AMФs. For example, ROS production upregulates 
the expression of AMФM1-associated pro-inflammatory tran-
scription factors AP-1 and NF-κB131. Additionally, TNF-α  
is known to induce activation of NF-κB and AP-1, both of which 
in accordance produce inflammatory signals used by AMФs for 
communicating the inflammatory response to other cells in the 
lung132. The TNF-α promoter region was found to contain both 
NF-κB and AP-1 binding sites, allowing for autoregulation133.  
Glucocorticoids inhibit NF-κB and impair binding of AP-1, 
leading to a decrease in pro-inflammatory cytokine produc-
tion, but administration of these drugs can detrimentally dampen 
the immune response to acute injury, making them oftentimes 
more harmful than useful to ALI/ARDS patients134. Another 
transcription factor, IFN regulatory factor 5 (IRF5), polarizes  
macrophages toward the pro-inflammatory phenotype (M1)135 
and was found in neutrophils and other myeloid cells136.  
Blockage of IRF5 is being investigated as a therapeutic measure  
for alleviating inflammation137 and promoting efferocytosis138.  
Another IFN-regulated transcription factor is STAT1, a member 
of the STAT protein family. STAT1 is known to activate quickly 
in response to IFNs and other pro-inflammatory cytokines 
and leads to mitochondrial stress, ROS accumulation, and  
apoptosis139. STAT1 has been shown to modulate intracellular 
oxidative stress in macrophages through a p38 MAPK/STAT1/
ROS positive feedback loop140, and the absence of NADPH  
oxidase (NOX)-derived superoxide in AMФsM1 was shown to 
reduce both STAT1 and IRF5 expression as well as increase  
AMФM2 transcriptional profile141. ROS accumulation and 
inflammatory signaling are intimately related, and a better  
understanding of their genetic basis and how it relates to the 
AMФ protective role in efferocytosis can potentially reveal  
therapeutic targets to assist recovery in ALI/ARDS patients.
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Activation of efferocytosis to accelerate lung injury 
resolution
Imbalance between apoptotic cell death and efferocytosis can 
promote pathological conditions such as ALI/ARDS, COPD, 
cystic fibrosis, and asthma142,143, and impaired efferocytosis is 
implicated in complications associated with these conditions144.  
Inflammation in these lung diseases appears to worsen with 
inefficient removal of dead cells and debris, thus prolonging 
inflammation and impeding tissue repair. Delayed efferocy-
tosis can cause apoptotic cells to undergo secondary necrosis  
and release DAMPs, which further promote inflammation 
by stimulating both innate and adaptive immune responses20.  
Efferocytotic impairment of airway macrophages leads to apop-
totic and necrotic cell buildup, DAMPs release, upregulation of  
pro-inflammatory genes, and production of autoreactive T cells  
and B cells, all of which contribute to autoimmunity and  
chronic inflammation145. Prolonged inflammation can weaken 
resolution and potentially develop into fibrosis or chronic inflam-
matory conditions such as COPD145. Efferocytosis promotes 
lung homeostasis, facilitates resolution of apoptotic cell-induced  
inflammation142, and corresponds with improved clinical  
outcomes in ALI/ARDS patients20.

Although defective clearance of apoptotic cells in the devel-
opment of ALI/ARDS has been proposed20,142 and oxidant 
stress affects efferocytotic ability of macrophages in vivo and  
in vitro146,147, the exact mechanisms contributing to dysfunc-
tional efferocytosis are not completely understood. Further  
characterizing the molecular mechanisms used by AMФs to  
perform efferocytosis and resolve excessive inflammation in the 
lung, and how efficient functioning of these mechanisms can aid  
ALI/ARDS patients and other lung diseases in recovery, 
needs to be explored. It is possible that modulating efferocy-
tosis can serve as a vital cellular strategy for managing the  

inflammatory response to injury and preventing development into  
chronic inflammatory disease81,82. Because of airway macro-
phages’ tissue- and disease stage-specific roles, elucidation 
of their efferocytotic signal activation offers promising clini-
cal potential for better prognosis in ALI/ARDS patients with  
fewer off-target effects.

In summary, efferocytosis plays crucial roles not only during  
development and in maintaining tissue homeostasis but also  
during tissue repair processes through a highly regulated and 
concerted network of signaling. Understanding this signal-
ing by macrophages is of clinical interest to enhance lung tissue  
repair and restore respiratory functions following microbial 
and non-microbial insults. Defining whether there are distinct 
and specific set(s) of macrophages that exist in the lung that  
carry out efferocytosis in an injury- and disease-specific  
manner, and how and which efferocytosis machinery is acti-
vated or affected/impaired in acute clinical syndromes resulting  
in chronic lung diseases, may offer better clinical prognosis  
and therapeutic treatment strategies. Identifying both the  
activators and the effectors of efferocytosis that can be easily  
and preferentially targetable with fewer off-target effects,  
perhaps by administration of small molecules/drugs (protein or  
non-proteinous), is necessary to optimally accelerate lung  
tissue repair in ALI/ARDS patients and for improving clini-
cal outcomes and reducing huge healthcare costs associated with  
microbial- and non-microbial-induced lung injury.
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