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ABSTRACT

MicroRNAs (miRNAs) are a class of short RNA mol-
ecules that play an important role in post-
transcriptional gene regulation. Computational pre-
diction of the miRNA target sites in mRNA is crucial
for understanding the mechanism of miRNA-mRNA
interactions. We here develop a new computational
model that allows us to treat a variety of miRNA-
mRNA kissing interactions, which have been
ignored in the currently existing miRNA target pre-
diction algorithms. By including all the different
inter- and intra-molecular base pairs, this new
model can predict both the structural accessibility
of the target sites and the binding affinity (free
energy). Applications of the model to a test set of
105 miRNA-gene systems show a notably improved
success rate of 83/105. We found that although the
binding affinity alone predicts the miRNA repression
efficiency with a high success rate of 73/105, the
structure in the seed region can significantly influ-
ence the miRNA activity. The method also allows us
to efficiently search for the potent miRNA from a
pool of miRNA candidates for any given gene
target. Furthermore, extension of the method may
enable predictions of the three-dimensional (3D)
structures of miRNA/mRNA complexes.

INTRODUCTION

microRNAs (miRNAs) are short single-stranded
non-coding RNAs (�22 nt). In eukaryotic cells, miRNAs
bind to the 30-untranslated region (UTR) of the target
messenger RNA transcripts (mRNAs) (1–3) and cause
silencing of a specific sequence and result in translational
repression. miRNAs play crucial roles in gene expression,
development and human diseases such as cancer. Since the
discovery of the first miRNA (lin-4) in Caenorhabditis
elegans (4), to date, over 16 000 miRNAs (including over
1400 in humans) have been identified (http://
www.mirbase.org/) (5,6). A large number of these
miRNAs have been found to be crucial for the normal

cell development. Down-regulated expression of
miRNAs have been related to several diseases such as
heart hypertrophy and cancer in human. Recent evidences
indicate that mir-34a (7) and mir-26a (8) can suppress
tumor growth. Such miRNAs could lead to promising
anti-cancer drug in the future. To understand how
miRNAs function, we need the structural information
about the target sites and miRNA/mRNA complexes.
Given the fact that few 3D structures have been
determined in experiments (9,10), computational predic-
tions of the target sites and the miRNA/mRNA structures
become highly needed (11,12).
Many current computational predictions for miRNA

targets are based on either sequence-match/RNA second-
ary structures, sequence/site conservation or a combin-
ation of the structural and sequence features (13–27).
For example, one of the first miRNA target predicting
programs, TargetScan (17), requires orthologous 30-UTR
sequence and target site conservation in multiple organ-
isms as well as sequence complementarity at the ‘seed’
region of the UTR (17). The algorithm is mainly based
on the sequence-match method and does not explicitly
account for the conformational distribution for the
miRNA and the target mRNA. Other algorithms are
based on the energetics for miRNA–target binding. For
example, RNAhybrid (16) ranks the target sites according
to the binding affinities. However, RNAhybrid does not
treat complex structural motifs such as kissing complexes
and does not account for the accessibility of the target,
which has been suggested to be potentially important for
miRNA–target interaction.
In order to form a stable miRNA/mRNA complex

(Figure 1), the intramolecular base pairs inside miRNA
and around the target sites are completely unzipped.
Disruption of these intramolecular base pairs allows for
the formation of new intermolecular base pairs (usually
�20 bps). Thus, both the site accessibility and the
binding affinity between miRNA and target sites are im-
portant. Computational predictions based on models such
as STarMir, PITA and mirWIP (13,14,26), which can
account for the site accessibility and the binding affinity,
have suggested that including the site accessibility led to
improvement in the prediction of the target
(13,14,26,28,29).
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Despite the recent advances in the predictions of
miRNA target sites, several crucial problems remain.
One of the problems is the accurate calculation of the
binding affinity for miRNA–target interaction (see
Figure 1b). The current algorithms do not treat
binding-induced redistribution of the conformational
ensemble of the miRNA–target system (13,14,26). An im-
portant issue here is how to evaluate the entropy and free
energy changes of the system upon binding. Previous
studies on the kissing complexes and other RNA folding
systems such as pseudoknots suggested that a reliable es-
timation for the entropy is indispensable for folding pre-
dictions (30–36). In addition, few miRNA/mRNA
complex structures have been experimentally determined
(9), which highlights the necessity of developing a compu-
tational model that can predict miRNA/target structure
and folding stability. In the present study, we develop such
a model based on the statistical mechanical analysis of the
system. In the model, we consider explicitly the entropy
change associated with the formation of the miRNA/
mRNA complex. This model distinguishes from the
other existing algorithms through the physics-based
direct computation of the entropy and the binding free
energy, especially for the different kissing complexes
between miRNA and mRNA. Statistical mechanical
approach requires the enumeration of all the possible
structures. For a miRNA–mRNA complex which can be
a large system, exhaustive enumeration for the complete
conformational ensemble (the original statistical mech-
anics method) is not viable due to the required exceedingly
long computational time. We develop a probabilistic
domain-based method to dissect the full structure of the
miRNA–mRNA complex into the miRNA–mRNA
binding domain and the 50 and 30 unbound domains; see
‘Materials and Methods’ for details. Comparisons
between the structure and free energy predictions from
the domain-based method and from the original statistical
mechanical method (based on the exact conformational
enumeration for the full miRNA–mRNA system) show

that the domain-based method is quite accurate.
Furthermore, based on a recently developed 3D RNA
structure prediction model (37), the current model
enables predictions for the 3D structures for miRNA–
mRNA complexes, which would provide the highly
needed structural details and mechanistic insights into
miRNA–mRNA interactions.

MATERIALS AND METHODS

Site accessibility

In the miRNA–mRNA binding process, the intramolecu-
lar base pairs between miRNA and mRNA often requires
the disruption of the intramolecular base pairs in miRNA
and mRNA around the target sites (Figure 1). Such site
accessibility combined with the binding free energy
together affect the miRNA–target binding and miRNA
activity. As follows, we describe a statistical mechanical
model that explicitly accounts for those effects.

We previously developed a virtual bond-based RNA
folding model (called the ‘Vfold’ model) (38). The model
provides an effective method for direct and complete con-
formational sampling. Extensive tests with the experimen-
tal data suggest that the model may be quite reliable (38).
The Vfold model can treat both intramolecular and inter-
molecular base pairing and predict the free energy change
(�Gbind) upon binding (38):

�Gbind ¼�GmiRNA=mRNA � ð�GmiRNA þ�GmRNAÞþ

�Ginit ¼ �kBT ln
QmiRNA=mRNA

QmiRNA �QmRNA

� �
þ�Ginit

ð1Þ

where QmiRNA/mRNA, QmiRNA and QmRNA are the parti-
tion functions for the microRNA–RNA complex and the
single-stranded (free) microRNA and mRNA, respect-
ively. kB=0.002 kcal/mol/K is the Boltzmann constant
and T is the temperature. �Ginit is the free energy
change associated with the nucleation of the two single
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Figure 1. (a) The binding process between a microRNA and a target mRNA. The binding often involves the disruption of the intramolecular base
pairs inside microRNA and mRNA. (b) A kissing interaction between miRNA and mRNA, in which miRNA binds to the hairpin or internal loop of
the structural mRNA.
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strands (miRNA and mRNA, respectively). For the two
strands at equal concentration, we can calculate �Ginit

from the following formula: �Ginit=�kBT ln(CT/2),
where CT is the concentration of microRNA or mRNA.

In the calculations for the partition functions, we sum
over all the possible structures (base pairing patterns) for
the miRNA–mRNA complex, the free miRNA and the
mRNA. Therefore, the algorithm accounts for the
binding-induced changes in the conformational distribu-
tion. Moreover, in each miRNA–mRNA complex struc-
ture, inter-molecular base pairs compete with intra-
molecular base pairs because a nucleotide is allowed to
participate only one base pair in a structure. Therefore,
the theory can effectively account for the accessibility of
the target site.

�Gbind is an important criteria to determine
microRNA–target binding. We use the experimental
data for small interfering RNA (siRNA)–target binding
and activity such as cleavage efficiency to test the
�Gbind-activity correlation. A siRNA is a close analogy
of miRNA though they may regulate gene expression
through different mechanisms. A siRNA interferes with
the expression of a specific gene through base-pairing
with and cleaving the specific target in mRNA. As
shown in Supplementary Figure S1a, the predicted
�Gbind (from Equation 1) indeed shows an excellent
correlation with the cleavage efficiency (39). From
Supplementary Figure S1a, we can extract an analytical
relationship between the cleavage efficiency Zcleavage and
�Gbind:

�cleavage ¼ e0:0189ð�Gbind=kBTþ6:48Þ � 1:

In the calculation, the ion concentration is assumed to be
1M Na+, the strand concentration for siRNA and the
target RNA is equal to 1 nM and the temperature is
42�C (39). We do not consider the kinetic effect because
the system has reached the thermal equilibrium in the
experiment (39).

In addition to the sequences in Supplementary Figure
S1a, we also find a good correlation between the
Luciferase expression and �Gbind for other sequences.
For example, for HIV(40), we find the Luciferase expres-
sion is inversely correlated to the �Gbind (see
Supplementary Figure S1b), which is consistent with the
above correlation between the cleavage efficiency and the
�Gbind. A large �Gbind indicates a high binding affinity
between siRNA and HIV targets and a lower Luciferase
expression. Supplementary Figure S1b also yields an ana-
lytical expression between the Luciferase expression (Zluci)
and the free energy change �Gbind:

�luci ¼ 2� e0:0164ð�Gbind=kBTþ19:42Þ:

All the sequences in Supplementary Figure S1a and b
have the same target sites, which can form the complemen-
tary base pairs with siRNAs. Different target structures
result in very different cleavage efficiency and Luciferase
expression. The two tested examples show the importance
of considering the site accessibility in predicting siRNA–
target binding and cleavage efficiency. The conclusion is

consistent with the recent computational studies on
siRNA and miRNA (13,14,41).

A new computational model for predicting the target sites

In the previous study (38), we developed a computational
model for predicting the free energy landscape and folding
thermodynamics of RNA–RNA complex up to hundreds
of nucleotides. However, the length of the 30-UTR mRNA
sequence for a specific gene can reach thousands of nu-
cleotides. Thus, direct application of the previous folding
model to miRNA and mRNA interaction is not feasible.
Here, we develop a new computational model that allows
us to treat long RNA sequences.
In the Vfold model, the inter-molecular base pairs are

inferred from the base pairing probability pij between the
nucleotide i in miRNA and the nucleotide j in mRNA. In
the statistical mechanical framework, pij is computed from
the partition function:

pij ¼
�QmiRNA=mRNAði; jÞ

Qtot
;

Qtot ¼ ð�QmiRNA=mRNA þQmiRNA �QmRNAÞ

ð2Þ

where � ¼ e��Ginit=kBT and QmiRNA/mRNA(i,j) is the condi-
tional partition function of all the conformations that
contain base pair (i, j). QmiRNA/mRNA(i, j) can be
calculated from the method described in Ref. (38). Qtot

is the total partition function for the system that consists
of the free miRNA, the free mRNA and the miRNA–
mRNA complex. In the above equation, a represents the
initiation penalty for miRNA–mRNA association. Thus,
the computational time for calculating all the possible
base pairing probabilities scales with the sequence
lengths as lmiRNA � lmRNA � tunit, where lmiRNA and lmRNA

are the lengths of miRNA and mRNA, respectively, and
tunit is the computational time for calculating a partition
function (such as Qtot or QmiRNA/mRNA(i, j) for a given
(i, j)).
In the new computational model, for structures without

kissing interaction, we dissect the mRNA sequence into
three domains, namely, (1, iw� 1), (iw, iw+lw� 1) and
(iw+lw, lm) (see Supplementary Figure S2a). (iw,
iw+lw� 1) is the domain for miRNA–mRNA binding. lw
is the width of the binding window. iw is the starting point
of the binding site and lm is the length of the mRNA. For
this type of structures, there is no interaction between the
domains outside the binding site region, thus the probabil-
ity for miRNA binding to the binding domain (iw,
iw+lw� 1) of the mRNA is determined by the following
equation:

Pbðiw; lwÞ ¼
�Qð1;iw�1ÞmRNA Q

ðiw;iwþlw�1Þ
miRNA=mRNAQ

ðiwþlw;lmÞ
mRNA

Qtot
:

Here Q
ð1;iw�1Þ
mRNA and Q

ðiwþlw;lmÞ
mRNA are the partition functions for

the mRNA from nucleotides 1 to iw� 1 and from nucleo-

tides iw+lw to lm, respectively, and Q
ðiw;iwþlw�1Þ
miRNA=mRNA is the

partition function for the miRNA–mRNA complex

formed from nucleotides iw to iw+lw� 1 (in the mRNA).
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For structures with kissing interactions outside the
miRNA–mRNA binding region (see the color-shaded
region in Supplementary Figure S2b), we divide the
mRNA sequence into four parts: the colored region with
inter-domain interactions and the other three domains
(x+1, iw� 1), (iw, iw+lw� 1) and (iw+lw, y� 1). The par-
tition function QmiRNA/mRNA for the miRNA-mRNA
complex can be calculated as the following:

QmiRNA=mRNA ¼�Q
ðxþ1;iw�1Þ
mRNA Q

ðiw;iwþlw�1Þ
miRNA=mRNAQ

ðiwþlw;y�1Þ
mRNA

QIðx; yÞ e
�S2ðlw;leffÞ=kB

where Q
ðxþ1;iw�1Þ
mRNA and Q

ðiwþlw;y�1Þ
mRNA are the partition func-

tions for the mRNA from nucleotides x+1 to iw� 1 and

from nucleotides iw+lw to y� 1, respectively. In the cal-

culation of Q
ðxþ1;iw�1Þ
mRNA and Q

ðiwþlw;y�1Þ
mRNA , we allow the forma-

tion of all the possible stem-loop structures (not shown in
the figure) in domains (x+1, iw� 1) and (iw+lw, y� 1).
�S2(lw, leff) is the loop entropy change upon the formation
of the kissing interaction (base pairing). �S2(lw, leff) is
dependent on the length of the binding site (lw) and the
effective loop length (leff). To calculate leff, we replace the
stem closed by the base pair (x, y) with 1 nt. leff is equal to
the number of unpaired nucleotide from x+1 to iw� 1
and from iw+lw to y� 1 plus 1. In practice, �S2 can be
pre-calculated and tabulated so that the entropy param-
eters can be directly read out from the table [such as Table
1 and the supplementary material in Cao and Chen (42)].
QI(x, y) is the partition function for the kissing region

(color-shaded in the figure), i.e. the complex formed by
strands s1 and s2 (Supplementary Figure S2c). Here s1
and s2 are the chain segments (y, lm) and (1, x), respect-
ively, and QI(x, y) is calculated from the method in Cao
and Chen (38).
For a fixed window width lw, we vary iw from 1 to lm-

lw+1 and for each lw, we calculate the binding probability
Pb(iw, lw). We set lw to vary from 7 to 30 nt. Here lw=7
corresponds to the minimal requirement to form a viable
miRNA/mRNA complex (15,17) and lw=30 is a reason-
able maximum length for the region of the known target
site (17).
The purpose of dividing the whole mRNA sequence

into domains is to parse the conformational enumeration
in the partition function calculation into the shorter chain
segments whose conformational enumerations are compu-
tationally less intensive. The algorithm causes the total
conformational count to be an additive (instead of multi-
plicative) combination of the conformational count for the
chain segments. Thus, the algorithm significantly
improves the computational efficiency. Specifically, the
computational time ttot for predicting the different Pb(iw,
lw)’s is on the same order of magnitude as tunit and this
new algorithm can reduce the computational time by a
factor of lmiRNA � lmRNA compared to the previous
method (38). Supplementary Figure S3 shows the compu-
tational time for the current new model (rectangle) and the
original statistical mechanical method (circles). The results
show that the new method is much faster than the original

statistical mechanical method. The new method can treat
long sequence around 1400 nt in a few days on an Intel(R)
Xeon(R) CPU 5150 @ 2.66G Hz on Dell EM64T cluster
system.

Inclusion of the entropy parameter

The Vfold model provides an effective computational tool
to enumerate the conformations from which we can
evaluate the conformational entropy and the partition
function. The partition function gives the free energy of
the system. In particular, the model can give the conform-
ational entropy and an estimation for the free energy for
the different kissing complexes between miRNA and
mRNA (Figure 1b). In addition, the Vfold can also
predict the partition function and free energies for the
free mRNA and miRNA (43). For example, before
miRNA–mRNA binding, the hairpin loop entropy (�S1)
can be obtained from the computational model (43) and
the empirical thermodynamic parameter (53). After
binding, the entropy of the constrained hairpin loop
(�S2) is dependent on the length of the binding region
(lw) and the number of unpaired nucleotides in the con-
strained hairpin loop (see filled circles in Figure 1b and
Supplementary Figure S2b). The benchmark test in
Supplementary Figure S3 shows that inclusion of an
accurate entropy parameter for the kissing interaction
does not significantly slow down the computational speed.

RESULTS

Computational prediction of target sites

siRNA/HIV complex. Westerhout and Berkhout (40)
perform a systematic study on how the target structure
affects siRNA function. It was found that siRNA can
completely disrupt the target structure and tightly bind
to the target sites. We here use one of the HIV mutants,
T4, to show the structural change in the binding process.
Experimental studies indicate that the siRNA is a potent
repressor for the gene expression of T4. The sequence
lengths of siRNA and T4 are 19 and 47 nt, respectively.
The short lengths of the sequences allow us to exhaustively
enumerate all the possible conformations for the miRNA–
mRNA complex and use the original statistical mechanical
method to predict the structure of the single-stranded
T4 sequence and the siRNA–T4 complex. Figure 2a and
b show that the stem of T4 is completely disrupted upon
siRNA binding at the target site. Meanwhile, we find that
the nucleotides in the 30 tail can refold into a new
hairpin-like structure.

We have also applied the domain-based method to this
system. Comparisons with the original statistical mechan-
ical method show that the two methods give consistent
structure and binding affinity for the complex. The
result supports the validity of the domain-based method.
Figure 2c shows the binding probability Pb(iw, lw) as pre-
dicted from the domain-based method for miRNA
binding to an lw-nt stretch in mRNA starting from nucleo-
tide iw. Pb(iw, lw) is sharply peaked at (iw=1, lw=19). The
result agrees with the predicted secondary structure
(Figure 2b) predicted from the original statistical
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mechanical method. From the test case, we find that the
domain-based method can indeed correctly predict the
target site.

Drosophila melanogaster: to further validate the
new computational model, we predict the binding sites
for several experimentally confirmed systems in
D. melanogaster. Figure 3 shows the predicted binding
sites for mir-4/bagpipe, mir-2/grim, mir-7/hairy and
mir-2/rpr. We draw the density plots for the binding prob-
ability function Pb(iw, lw). The darkest dot in the figure
indicates the most probable binding site. From Figure 3,
which shows the predicted binding sites for mir-4/bagpipe,
mir-2/grim, mir-7/hairy and mir-2/rpr are [93, 109],
[59, 82], [441, 465] and [181, 202], we find that the pre-
dicted sites are consistent with the experimental results
(14,44). In addition, Supplementary Figure S4 (upper
panel) shows the predicted binding sites of three other
experimentally studied systems. The binding regions are
[34, 58], [363, 382] and [230, 245] for mir-2b/sickle,
mir-9a/sens and mir-278/expanded, respectively. The pre-
dicted sites again agree with the suggested target sites from
the experimental data (18,45,46).

Homo sapiens: we further tested the new computational
model using the experimental data for miRNA binding to
H. sapiens. Supplementary Figure S4 (lower) shows the
predicted binding sites for three systems in H. sapiens. It
has been found in the experiment that mir-29b can
regulate the gene expression of Tcl1, which is related to
the prognosis and progression of chronic lymphocytic
leukemia (47). Our theory predicts that mir-29b tightly
binds to Tcl1 with a binding affinity of
e��Gbind=kBT � 2115:8. In the calculation, we use 4.1 kcal/
mol for the initiation free energy �Ginit (38,48) for the
association of miRNA and mRNA (Equation 1). In
addition, the predicted binding site is in agreement with
the experiment (47). Moreover, application of the theory
to other systems, such as the mir-196a/hoxb8 and mir-126/
vcam-1 complexes, also shows good agreement with the
previously reported results from sequence alignment
among different species (49) for mir-196a/hoxb8 and the
experimental data for the mir-126/vcam-1 complex (50).

Prediction of the functional miRNAs that tightly bind
to the target

The above studies aim to predict the targets for a given
miRNA. An equally important problem is to predict
the miRNAs for a given target. The ability to identify
the miRNA from a pool of miRNAs for any given gene
target is highly needed for efficient therapeutic design
through the strategy of miRNA-regulated gene expres-
sion. Figure 4 shows the predicted binding affinity
between gene rpr and the available 163 miRNAs from
‘http://www.microrna.org/microrna/home.do’. rpr is a
central regulator of apoptosis in D. Melanogaster. The
computational screening based on the binding affinity
ranks mir-2a as the top candidate. The calculated
binding affinity for mir-2a is 1.2� 109. The high affinity
is consistent with the experimental findings that mir-2a
can efficiently repress the gene expression of rpr (14).
This example on rpr indicates that the functional
miRNAs tightly bind to the target sites and the computa-
tional approach can indeed identify the functional
miRNAs from the predicted binding affinities.

Assessment of miRNA activity

The activity of a miRNA is determined not only by the
binding affinity (13,14), but also by the structure of the
target sites (44). The miRNA function is also influenced by
other factors as shown by several experimentally deduced
rules. For example, the complementarity between nucleo-
tides 2 and 8 of miRNAs (the ‘seed’ region) and the target
counterpart is also critical for target recognition for a
functional miRNA (44). Previous studies showed that
the combination of binding affinity and seed-pairing rule
can lead to improved predictions for miRNA activities
(14). However, lacking a physical model for the entropies
and the binding free energies for the miRNA–mRNA
system, especially for the key intermolecular interactions
such as the kissing complexes, would adversely impact the
reliability of the computational predictions (13,14,16,28).
Here, as shown below, a more rigorous physical modeling
for the the inter- and intra-molecular interactions (such as
kissing complexes) and the conformational redistributions
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Figure 2. The conformational change caused by the siRNA binding to a HIV-1 mutant (T4). siRNA can induce the complete unzipping of T4 and
T4 refolds into a new structure.
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upon miRNA–mRNA binding can indeed lead to
improved predictions for miRNA activities.
To test our method, we predict the miRNA activities for

the 105 test cases in Ref. (14). The selected 105 test cases
satisfy two criteria: (i) the length of gene is shorter than
1400 nt, and (ii) the sequence of the gene can be found in
the database (http://flybase.org/). In the calculation, we
allow two types of seed sites, namely, the canonical seed
site and non-canonical seed site. For the canonical seed
sites, we allow only WC or GU base pairs in the seed site.
For the non-canonical seed sites, we allow mismatches or
single-nucleotide bulges in the seed site.
Supplementary Table S1 shows the predicted results for

the test cases. With a 7.48/28.67 cutoff for the binding
affinities for the canonical/non-canonical sites, we can cor-
rectly predict the activities for 73 out of 105 miRNA–gene

target pairs. The 105�73=32 failed cases are mostly due
to false positive predictions. However, the binding affinity
does not provide information about the structures of the
miRNA–mRNA complexes, especially in the seed region.
We further applied our method to predict the structures
for the (totally 97) complexes that have non-zero binding
affinities; see Supplementary Figure S5. A close examin-
ation of the structures in Supplementary Figure S5 indi-
cates three types of ‘non-classical seed sites’: (i) a bulge
loop longer than 1 (e.g. rtGEF and htt genes), (ii) a single
mismatch or unpaired nucleotide in positions 2, 3 and 4
(e.g. CG18662, CG4484 and sd genes), and (iii) a binding
site that is too close to the coding gene (�8 nt) (e.g.
yellow-c and boss genes). According to the rule of the
miRNA–mRNA sequence complementarity in the seed
region, we treat the above non-classical seed sites as
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non-functional. The consideration of such structural
requirement leads to further improved results.
Supplementary Table S1 lists the predicted activity solely
based on the predicted structures around the target sites.
For a miRNA being functional, we require the miRNA–
mRNA complex to pass both the binding affinity (the
7.48/28.67 cutoff) and the structure criteria (see the the
above three rules for the non-functional seed sites).
Comparisons with the experimental results give a success
rate of 83 out of 105 cases for our model. This suggests
an improved accuracy of the model as compared to other
existing models (see Figure 5). We attribute the improved
success rate to the accurate free energy model for the
kissing interactions between the miRNA and the target

as well as the more detailed structural studies for the
target site. For the 105 test cases, we found that the pre-
dicted binding sites for 17 cases involve kissing inter-
actions (Figure 1b): mir-279/SP555, mir-310/imd,
mir-124/Gli, mir-287/DIP1, mir-7/hairy, mir-2b/skl,
mir-2a/rpr, mir-7/Brd, mir-7/Tom, mir-14/wg, mir-278/
Lar, mir-278/CG18815, mir-2b/CG1969, mir-2b/
CG4269, mir-8/disp, mir-2a/scyl and mir-9a/brat. As an
example, in Supplementary Figure S6, we show the pre-
dicted structure for the mir-7/Brd complex. We find that
mir-7 forms kissing interactions with Brd through binding
to a long internal loop (see the nucleotides marked by
green color in the figure).

Prediction of 3D structure for microRNA/mRNA complex

The 3D structure for the microRNA/mRNA complex and
for the free miRNA and mRNA are highly needed for
understanding the binding energetics. Moreover, the 3D
structures provide the direct information about the forma-
tion of the miRNA–mRNA complex and the interactions
between the complex and other surrounding cofactors
(51). We recently developed a free energy-based method
to predict the 3D structure from the RNA sequence (37).
For any given sequence, we first predict the 2D structures
(base pairs) from the free energy model. For each pre-
dicted 2D structure, we construct a 3D scaffold by using
the fragment templates selected from the PDB database.
In the final step, using the 3D scaffold as the initial struc-
ture, we run the all-atom energy minimization and predict
the all-atom 3D structure. The use of the physical model
for the free energies, especially for structures with
cross-linked loops, and the use of a novel method for
template selection from the PDB database lead to an
improved accuracy in the structure prediction (37).
To show the applicability of the 3D structure prediction

method to miRNA–target systems, we predict the 3D
structure of let-7/lin-41 complex. we chose this structure
because it is one of the few available 3D structures for
miRNA–mRNA complex that have been experimentally
determined (9). Figure 6a shows the predicted 2D struc-
ture for let-7/lin-41 complex, which agrees with the experi-
ment exactly. In the experiment (9), Cevec and Plavec
et al. designed a hairpin structure (Figure 6b) to mimick
the structure of let-7/lin-41 complex. The two structures
contain the same internal loop (UUA-AU). Figure 6c
shows the comparison between the measured NMR struc-
ture and the predicted structure. The overall rmsd is 1.9 Å,
which shows a good agreement with the experimental
result.

DISCUSSION

We developed and applied a new method to identify the
gene–target site and the miRNA activity. Furthermore, to
improve the computational efficiency, we developed a
domain-based reduction method for the miRNA–target
structure prediction. Compared to our previously de-
veloped domain-based model (42), the current model has
two advantages. First, the current model can account for
(long-range) inter-domain interactions (base pairing)
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outside the target sites (see Supplementary Figure S2b).
Second, the previous domain-based model is for mono-
meric RNAs while the current model can treat RNA–
RNA complexes such as miRNA–mRNA complexes.
Extensive tests of the theory showed improved success

rate as compared with other target-finding algorithms.
For example, for 105 test cases in Drosophila, the model
can correctly predict 83 cases, which shows improved
success rate than other existing models (13,14,16,52).
The better performance stems from two main improve-
ments in the model. First, our method accounts for the
different types of kissing contacts between miRNA and
the target sites. The entropies and free energies for the
interactions are evaluated with the explicit consideration
of the excluded volume between different structural
elements. Second, the model is based on the complete
ensemble of all the possible inter- and intra-molecular
base pairs, thus, the model effectively accounts for the
target site accessibility and the conformational
re-distribution of mRNA upon miRNA binding.
Our analysis shows that miRNA activity is largely (with

a rate of 73/105) determined by the miRNA–mRNA
binding affinity. However, the fact that the affinity alone
can lead to many false positives indicates the insufficiency
of using the binding affinity alone as the only indicator of
miRNA activity. Consideration of the structure in the seed
region of the miRNA–mRNA complex leads to much
improved predictions with success rate increased from
73/105 to 83/105. The result suggests that both the
binding energetics (binding affinity) and the structure in
the seed region are important factors responsible for the
miRNA activity.
Moreover, our algorithm also provides a reliable

method for selecting the functional miRNA for a given
gene. For instance, we find that the experimentally
validated mir-2a, which is predicted to have the highest
binding affinity to rpr gene, is correctly identified by our
method. Furthermore, based on a recently developed 3D
structure prediction model (37), we can predict the 3D
structure for the different miRNA–mRNA complex.

The model, however, has several limitations. First, the
model cannot consider the effect of the cofactors such as
the surrounding proteins. Second, the current new model
is based on the assumption that miRNA and mRNA
interact mainly in the target site region and the length of
the target site is <30 nt. The validity of such an approxi-
mation should be further examined for large structures
involving distant contacts, especially with the presence
of cofactors. Third, the current model can only treat
genes with lengths <1400 nt. For a longer gene sequences,
we need to develop a computationally more efficient algo-
rithm. Finally, a web-based software will be needed and
will be set up in the near future for predicting miRNA
target sites and activity.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary figures 1–6.
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