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    Despite the development of more potent anti-
malarial drugs, there has been little progress in 
identifying interventions that improve the out-
come of cerebral malaria (CM) ( 1, 2 ). This may 
be attributable, at least partly, to the observation 
that severe malaria syndromes such as CM ap-
pear to be primarily mediated by host responses 
to infection rather than by the parasite directly. 

 Experimental infection of inbred and con-
genic mice with  Plasmodium berghei  ANKA (PbA) 
provides a well-established model to identify 
host genetic determinants that regulate both 
protective immunity and infection-associated 
immunopathology, including the develop-
ment of CM. Similar to  P. falciparum  infection 

in humans, mice susceptible to PbA (e.g., 
C57BL/6 mice) develop symptoms of severe 
malaria and CM, including cytokine-associated 
encephalopathy, acidosis, coagulopathy, shock, 
and pulmonary edema, culminating in a fatal 
outcome ( 3 – 5 ). Conversely, A/J mice, although 
equally susceptible to PbA infection, are more 
resistant to the associated CM syndrome ( 6 – 7 ). 

 Excessive or dysregulated infl ammatory re-
sponses to malaria, including high levels of 
TNF/lymphotoxin- �  or inadequate production 
of regulatory (antiinfl ammatory) cytokines such 
as TGF- �  and IL-10, are associated with the 
development of CM in both human infections 
and rodent models of disease ( 4, 8 – 12 ). High 
levels of infl ammatory cytokines are associated 
with endothelial cell activation and increased 
expression of adhesion molecules that contribute 
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 Experimental infection of mice with  Plasmodium berghei  ANKA (PbA) provides a powerful 

model to defi ne genetic determinants that regulate the development of cerebral malaria 

(CM). Based on the hypothesis that excessive activation of the complement system may 

confer susceptibility to CM, we investigated the role of C5/C5a in the development of CM. 

We show a spectrum of susceptibility to PbA in a panel of inbred mice; all CM-susceptible 

mice examined were found to be  C5  suffi cient, whereas all  C5 -defi cient strains were resis-

tant to CM. Transfer of the  C5 -defective allele from an A/J (CM resistant) onto a C57BL/6 

(CM-susceptible) genetic background in a congenic strain conferred increased resistance to 

CM; conversely, transfer of the  C5 -suffi cient allele from the C57BL/6 onto the A/J back-

ground recapitulated the CM-susceptible phenotype. The role of  C5  was further explored in 

B10.D2 mice, which are identical for all loci other than  C5 .  C5 -defi cient B10.D2 mice were 

protected from CM, whereas  C5 -suffi cient B10.D2 mice were susceptible. Antibody block-

ade of C5a or C5a receptor (C5aR) rescued susceptible mice from CM. In vitro studies 

showed that C5a-potentiated cytokine secretion induced by the malaria product  P. falci-

parum  glycosylphosphatidylinositol and C5aR blockade abrogated these amplifi ed responses. 

These data provide evidence implicating  C5/ C5a in the pathogenesis of CM. 
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survival during the acute phase of infection ( 6, 7, 25 – 27 ). 
To more completely defi ne the phenotypic expression of diff er-
ential susceptibility in this experimental model, we simulta-
neously challenged a panel of inbred mice under carefully 
controlled experimental conditions with a uniform inoculum 
of PbA and examined parasitemia, the development of experi-
mental CM, and survival over a course of infection ( Table I  
and  Fig. 1 A ).  We observed diff erences in survival between 
A/J and C57BL/6 mice (A/J vs. C57BL/6: P = 0.002 and 
 �  2  = 9.879 using a log-rank test for survival;  Fig. 1 A ). However, 
in this analysis a broader spectrum of susceptibility was ob-
served than previously reported ( 6, 7, 25 – 27 ). This phenotypic 
expression ranged from highly susceptible to highly resistant 
to experimental CM ( Table I  and  Fig. 1 A ). Compared with 
CM-susceptible C57BL/6 mice, highly susceptible mice such 
as 129sv/J and 129P3/J mice had an earlier onset of neuro-
logical symptoms and succumbed signifi cantly sooner to CM 
(as confi rmed by histopathology;  Fig. 1 C ) during the course 
of infection (P = 0.001 and  �  2  = 11.317 using a log-rank 
test). In contrast, AKR/J mice were highly resistant, with 
signifi cantly improved survival compared with other strains 
(P = 0.00001 and  �  2  = 13.568 using a log-rank test;  Fig. 1 C ). 
To examine whether parasite burden contributed to these 
diff erent phenotypes, we examined the parasitemia in these 
inbred lines. No signifi cant diff erence in parasitemia was 
observed between susceptible, resistant, and highly resis-
tant mice throughout the course of infection ( Fig. 1 B  and 
Fig. S1, available at http://www.jem.org/cgi/content/full/
jem.20072248/DC1). In contrast, highly susceptible mice, 
such as 129sv/J mice, developed signifi cantly higher parasite 
burdens earlier in the course of infection, as indicated by day 
6 peripheral parasitemias (P = 0.006 using a Kruskal-Wallis 
test;  Fig. 1 B ). 

  C5  suffi ciency is associated with susceptibility to CM 

 To test the hypothesis that excessive C5a generation may 
confer susceptibility to CM, we determined the  C5  status in 
the panel of susceptible and resistant mice we had pheno-
typed, as well as those reported in the literature ( Table I ) ( 26 – 28 ). 
C57BL/6, 129sv/J, and 129P3/J strains were shown to be 
susceptible to PbA-induced CM, and each of these strains 
is  C5  suffi  cient (wild-type sequence for  C5 ). A/J, DBA/2J, 
and AKR/J mice are  C5  defi cient (i.e., they possess a known 
frame-shift mutation in the  C5  gene and do not express func-
tional C5) and were signifi cantly more resistant to PbA-
induced CM. A similar association of CM with  C5  suffi  ciency 
was established by determining the  C5  status of other inbred 
mouse strains reported in the literature as susceptible or resis-
tant to PbA. In each case, inbred mice reported to be suscep-
tible to CM were found to be  C5  suffi  cient. Conversely, all 
 C5 -defi cient mice analyzed in this study and those reported in 
the literature were found to be resistant to CM. However there 
were two notable exceptions to this association. C3H/HeN 
mice are reported to be  C5  suffi  cient but resistant to CM ( 28 ). 
We genotyped and phenotyped this strain together with ap-
propriate controls and determined that it contained a wild-type 

to the sequestration of parasitized erythrocytes and leukocytes 
in the cerebral vascular bed and the resultant CM syndrome 
( 10, 13 – 15 ). Although it is well established that host response 
contributes to the development of CM, the underlying genetic 
determinants of susceptibility are poorly characterized ( 10 ). 
A detailed understanding of the host genetic factors that con-
tribute to susceptibility or resistance to CM may facilitate the 
identifi cation of novel interventions to modulate host response 
and improve the outcome of CM ( 2, 15 ). 

 The complement system is an essential component of 
the innate immune response to several infectious agents ( 16 ). 
The complement cascade can be activated by four diff erent 
pathways, three of which converge at the level of the C3 
component, leading to the cleavage of C3 and C5 to their 
activated forms, C3a and C5a, as well as the formation of 
the terminal membrane attack complex ( 17, 18 ). A recently 
described pathway results in the generation of C5a in the 
absence of C3 ( 19 ). 

 A growing body of evidence has implicated excessive acti-
vation of the complement system, especially formation of the 
potent proinfl ammatory anaphylatoxin C5a in mediating del-
eterious host responses to bacterial infections and contributing 
to the development of sepsis, adverse outcomes, and death 
( 16, 18, 20 ). Blockade of C5a activity or C5aR with antibod-
ies or C5aR antagonists in animal models of sepsis prevents 
multiorgan injury and improves survival ( 19, 21 – 24 ). Genera-
tion of C5a is normally tightly regulated, and under controlled 
conditions, local production of C5a can enhance eff ector 
function of macrophages and neutrophils and contribute to an 
eff ective innate response to infection. However, detectable 
systemic C5a suggests a loss of regulation of complement 
activation. Elevated C5a levels are associated with several 
deleterious eff ects on host innate defense, including defective 
phagocyte and endothelial cell function, robust chemokine and 
cytokine secretion, and lymphoid apoptosis ( 16, 18, 20 ). 

 Similar to sepsis, CM is believed to be the result, at least 
partly, of a dysregulated infl ammatory response to infection. 
However, the roles of  C5  and C5a in the pathogenesis of CM 
have not been studied. We hypothesized that excessive gener-
ation of C5a in response to infection confers susceptibility to 
CM and investigated the role of C5a in the development of 
CM in vivo. Using a panel of inbred and congenic mice, we 
demonstrate a spectrum of diff erential susceptibility to CM 
that is associated with the presence or absence of  C5  and the 
generation of C5a, as well as the engagement of C5aR. These 
data provide direct evidence indicating that C5a plays a role in 
the pathogenesis of CM in the PbA model. 

  RESULTS  

 Differential susceptibility of inbred mice to PbA-induced 

experimental CM 

 Previous studies have established that inbred strains of mice 
such as C57BL/6 are susceptible to PbA infection and de-
velop symptoms of experimental CM and rapidly succumb 
to infection. In contrast, other inbred mice, such as DBA/2 
or A/J mice, are more resistant to CM and display enhanced 
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sequence for  C5  and was sensitive to PbA-induced CM, with 
a survival course similar to CM-susceptible C57BL/6 mice 
( Table I  and  Fig. 2 ).  BALB/c mice are also reported to be 
resistant to CM and  C5  suffi  cient ( 8, 27, 29 ). Because sev-
eral diff erent lines of BALB/c mice are in current use and be-
cause C5  “ suffi  ciency ”  in the literature often meant only that 
the  C5  gene did not contain the single A/J frame-shift muta-
tion (as detected by PCR), we phenotyped the line in use in 
our laboratory and investigated this line for the presence of 
 C5  suffi  ciency by sequencing the entire  C5  gene to exclude 
any other point mutations, confi rming gene transcription us-
ing RT-PCR, and by measuring C5a production over the 
course of PbA infection by ELISA. BALB/c mice were found 
to be resistant to the development of CM, with signifi cantly 
higher survival than C57BL/6 mice ( Fig. 3 A ).  Sequence 
analysis showed that the  C5  gene from BALB/c mice con-
tained no mutations in the open reading frame and therefore 
would have been predicted, by our hypothesis, to be suscep-
tible to PbA-induced CM. To explain this apparent discrep-
ancy, serum C5a levels in BALB/c and C57BL/6 mice over 
the course of an infection were analyzed. CM-susceptible 
C57BL/6 mice were shown to have signifi cantly higher 
levels of C5a in the peripheral blood than BALB/c mice dur-
ing infection, particularly at early time points ( Fig. 3 B ). 
These observations were also supported by RT-PCR analysis 
demonstrating that BALB/c mice have levels of C5 that are 
signifi cantly lower than susceptible C57BL/6 mice and are 

  Table I.    PbA-induced experimental CM is associated with the 

presence of the  C5  gene 

Strain  C5  status CM phenotype  a  

 C57BL/6  Suffi cient  Susceptible 

 C57BL/10  Suffi cient  Susceptible 

 CBA/Ca  Suffi cient  Susceptible 

 DBA/1  Suffi cient  Susceptible 

 SJL/J  Suffi cient  Susceptible 

 129sv/J  Suffi cient  Highly susceptible 

 129P3/J  Suffi cient  Highly susceptible 

 C3H/HeN  Suffi cient  Susceptible 

 B10.D2/nSnJ  Suffi cient  Susceptible 

 B10.D2/oSnJ  Defi cient  Resistant 

 A/J  Defi cient  Resistant 

 DBA/2  Defi cient  Resistant 

 AKR/J  Defi cient  Highly resistant 

 BALB/c  Suffi cient  Highly resistant 

 a CM phenotype describes mice that were judged as developing CM if they displayed 

neurological symptoms including mono-, hemi-, para-, or tetraplegia, movement 

disorder, ataxia, hunching, convulsions, and coma, and succumbed to infection by 

day 12 after inoculation (references  6, 7 ). Susceptible strains developed neurological 

symptoms within 6 – 10 d after inoculation. Highly susceptible mice showed both a 

signifi cantly higher parasite density and an early onset of neurological symptoms 

and death than susceptible mouse strains. Resistant strains displayed a signifi cantly 

delayed onset of neurological symptoms and improved survival compared with 

susceptible groups. Highly resistant strains did not develop neurological symptoms 

and displayed enhanced survival compared with resistant strains. Strains analyzed 

in this study are bolded. Other strains (italicized) were derived as previously 

described (references  26 – 28 ).

similar to C5-null A/J mice (BALB/c vs. C57BL/6 mean [SD] 
day 1 C5 mRNA copy number = 427.1 [471] vs. 4,132 [961], 
P = 0.002; BALB/c vs. A/J mean [SD] day 1 C5 mRNA copy 
number = 427.1 [471] vs. 691.6 [480], P = 0.498). These data 
indicate that susceptibility to PbA-induced CM is associated 
with  C5  suffi  ciency and support a role for the generation of 
C5a early during the course of infection as a putative media-
tor of CM in susceptible animals. 

 Congenic mice confi rm a role for  C5  in susceptibility to CM 

 The phenotypic diff erences to PbA infection between the 
inbred mouse lines observed in  Table I  could be either the 
direct result of  C5  suffi  ciency/defi ciency or secondary to other 
genetic factors acting alone or in combination with  C5 . There-
fore, we further explored the hypothesis that C5a contrib-
utes to the pathogenesis of CM by examining the phenotype 
in recombinant congenic mice and in closely related mouse 
lines that diff er in the presence or absence of  C5 . Recombi-
nant congenic mice were derived from systematic inbreed-
ing of a double backcross between  C5 -defi cient A/J mice and 
CM-susceptible,  C5 -suffi  cient C57BL/6 mice ( 30 ). In this 
system, each congenic strain contains a fi xed set of congenic 
segments (12.5% of DNA from the donor parent) placed 
on the genetic background of the recipient parent (87.5% of 
DNA). Thus, AcB55 recombinant congenic mice contain 
12.5% of C57BL/6 genetic material, including a functional 
 C5  gene, on a predominantly A/J genetic background ( 30 ); 
conversely, BcA76 recombinant congenic mice are composed 
of 12.5% A/J genetic material (including the mutant  C5  
gene) on a C57BL/6 background. Experimental challenge 
of these recombinant congenic mice with PbA showed 
that transfer of the  C5 -suffi  cient allele onto an A/J back-
ground, as in AcB55 mice, accelerated the development of 
CM and fatal outcomes compared with the parental A/J 
( C5 -defi cient) mice (A/J vs. AcB55: P  <  0.05 and  �  2  = 4 
using a log-rank test). In contrast, BcA76 mice that carry 
the A/J  C5  defi ciency allele had reduced incidence of CM 
and improved survival compared with the parental C57BL/6 
mice (C57BL/6 vs. BcA76: P  <  0.05 and  �  2  = 4.038 using 
a log-rank test;  Fig. 4 ).  We found no diff erence in parasite 
burden between congenic AcB55 and BcA76 mice (unpub-
lished data). 

 In addition to the recombinant congenic mice, we also 
examined PbA-induced CM susceptibility in congenic B10.
D2/nSnJ and B10.D2/oSnJ mice, which are genetically iden-
tical strains except that the B10.D2/nSnJ strain is  C5  suffi  -
cient, whereas B10.D2/oSnJ mice contain the mutant allele 
of the  C5  gene (with both on a C57BL/10 background). 
B10.D2/nSnJ mice were found to be susceptible to PbA-
 induced CM and rapidly succumbed to infection, whereas B10.
D2/oSnJ mice displayed signifi cantly improved survival (P  <  
0.0001 and  �  2  = 12.274 using a log-rank test;  Fig. 5 A ).  C5a 
levels were examined over the course of infection, and B10.
D2/nSnJ mice displayed signifi cantly higher levels of cir-
culating C5a as early as day 1 after infection ( Fig. 5 B ). 
Together with the observations in C57BL/6 and BALB/c 
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  Figure 1.     Differential susceptibility to PbA-induced experimental CM.  The phenotypes of inbred mice strains infected with PbA range from highly 

susceptible (early onset of cerebral symptoms and high parasitemia) to highly resistant (very little mortality caused by CM). (A) 129sv/J mice were highly 

susceptible and died signifi cantly earlier than C57BL/6 mice (C57BL/6 vs. 129sv/J: P = 0.001 and  �  2  = 9.879 using a Mantel-Cox log-rank test). A/J mice 

survived signifi cantly longer than C57BL/6 mice (A/J vs. C57BL/6: P = 0.001 and  �  2  = 9.879 using a Mantel-Cox log-rank test). AKR/J mice were highly 

resistant and had signifi cantly improved survival rates compared with all other strains (A/J vs. AKR/J: P = 0.00001 and  �  2  = 13.568 using a Mantel-Cox 

log-rank test). The fi gure is representative of two independent experiments ( n  = 10 mice/group/experiment). 100% of 129sv/J and C57BL/6 mice developed 
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rank test;  Fig. 7 ).  Similar results were obtained using anti-C5a 
serum (P = 0.0019 using a log-rank test; unpublished data). 
These data provide the fi rst direct evidence that the blockade 
of complement activation improves outcome in experimental 
CM and demonstrate that C5a – C5aR interactions play a central 
role in initiating and/or amplifying CM. 

  DISCUSSION  

 This study provides the fi rst evidence implicating excessive 
activation of the complement system, in particular C5a, in 
mediating experimental CM. We demonstrate a spectrum of 
diff erential susceptibility to PbA-induced CM associated with 
the presence or absence of  C5  ( Fig. 1 and Fig. 2 ). A role for 
 C5  was confi rmed by reciprocal transfer of  C5 -defective 
or -suffi  cient alleles in recombinant congenic mice and by para-
site challenge of genetically identical mice that diff er only at 
the  C5  locus ( Fig. 4 and Fig. 5 ). In vitro experiments suggest 
that the mechanism by which C5a contributes to CM in-
cludes the potentiation of host infl ammatory responses to 
malaria products such as  PfGPI  ( Fig. 6 ). Additionally, our 
fi ndings that disruption of C5a – C5aR interactions blocks 
augmented infl ammatory responses in vitro and leads to pro-
tection from CM in vivo ( Fig. 6 and Fig. 7 ) demonstrate that 
complement activation has a pivotal and causative role in 
mediating or amplifying the CM syndrome. Collectively, 
these data provide direct evidence for a role for C5a in the 
development of CM in the PbA model and suggest a poten-
tial role for excessive complement activation in the patho-
genesis of CM. 

 There are several putative mechanisms by which exces-
sive complement activation might mediate or augment the 
pathophysiologic mechanisms underlying CM. During sep-
sis, activation of the complement system, particularly the 
generation of C5a, has been associated with several deleteri-
ous impacts on host defense, including defective phagocyte 
function and oxidative killing; potentiated macrophage che-
mokine and cytokine secretion in response to TLR ligands 
such as LPS, caspase activation, T cell apoptosis, and associ-
ated immunodefi ciency; and enhanced secretion of proin-
fl ammatory mediators and tissue factor from endothelium 
( 17, 19, 21 ). Excessive generation of C5a during severe malaria 
infections may contribute to similar defects in host response. 
C5a has been shown to up-regulate several endothelial cell 
adhesion molecules relevant to parasite sequestration and 
malaria pathogenesis, including intercellular cellular adhe-
sion molecule 1, vascular cellular adhesion molecule 1, and 
P- and E-selectins ( 21, 34 – 36 ). Increased expression of ad-
hesion molecules, particularly in the cerebral microvascula-
ture, would be expected to enhance leukocyte and parasitized 

mice, these data further support the contention that an early 
and sustained induction of C5a confers susceptibility to CM. 

 Association of  C5  status with CM susceptibility in con-
genic and recombinant congenic mice support the hypothesis 
that C5 is an important pathological contributor to the host 
response. Furthermore, with confi rmation in genetically iden-
tical B10.D2 mice that diff er only at the  C5  locus, we can re-
move the roles of other background genetic eff ects and state 
more confi dently that the  C5  gene itself infl uences overall 
outcome in experimental CM. 

 C5a enhances  P. falciparum  glycosylphosphatidylinositol 

( Pf  GPI) – induced proinfl ammatory responses in vitro 

 High levels of proinfl ammatory cytokines are associated with 
CM in humans and in mouse models ( 2 – 6 ). The  P. falciparum  
product  Pf GPI has been shown to induce proinfl ammatory 
cytokine responses in a Toll-like receptor (TLR) 2 – dependent 
manner ( 31 – 33 ). Because C5a may potentiate infl ammatory 
cytokine induction to other TLR ligands, such as LPS, and 
because we show that peripheral C5a levels are signifi cantly 
higher in susceptible mice during malaria infection, we in-
vestigated whether the presence of C5a enhances  Pf  GPI-
induced TNF and IL-6 production in vitro. The exposure of 
human PBMCs to HPLC-purifi ed  Pf GPI in vitro induced the 
production of TNF and IL-6. The addition of C5a potenti-
ated  Pf  GPI-induced cytokine production, whereas C5aR 
blockade using anti-C5aR antibody signifi cantly inhibited TNF 
and IL-6 production (TNF, P = 0.0064; and IL-6, P = 
0.0001 using a two-way analysis of variance interaction eff ect 
[C5* Pf GPI];  Fig. 6, A and B ).  These data indicate that C5a 
augments  PfGPI -stimulated TNF and IL-6 production and, 
thus, may play a signifi cant role in the development of the 
CM syndrome observed in susceptible mice. 

 C5a and C5aR blockade rescues susceptible mice 

from experimental CM 

 The above genetic approaches implicated C5 in the patho-
genesis of CM. C5 cleavage generates two eff ector pathways, 
the potent anaphylatoxin C5a and C5b, which initiates the 
C5b-9 membrane attack complex. To distinguish the role of 
C5a from the C5b-9 membrane attack complex in PbA in-
fection and to provide direct evidence that C5a is a mediator 
of CM rather than a consequence of infection, we performed 
C5a and C5aR blockade experiments to determine whether 
we could protect susceptible mice from CM. Treatment of 
B10.D2/nSnJ (C5-suffi  cient) mice with anti-C5aR antibod-
ies early in PbA infection (2 h before and 30 h after infection) 
conferred signifi cant protection from CM compared with 
mice that received control serum (P = 0.0022 using a log-

CM (as described in Materials and methods), compared with 30% of A/J and 0% of AKR/J mice. (B) 129sv/J mice had signifi cantly higher mean parasitemia 

than other CM-susceptible or -resistant mice on day 6 after infection (P = 0.006 using a Kruskal-Wallis test). Representative data from one of two inde-

pendent experiments ( n  = 5 mice/group/experiment) are shown. Data are presented as means  ±  SD. (C) Histopathological examination of brains from 

susceptible (129sv/J, B10.D2/nSnJ, and C57BL/6) and resistant (AKR/J, B10.D2/oSnJ, and BALB/c) mice, isolated on day 6 after inoculation and formalin 

fi xed. 5- μ M sections were prepared and stained with Giemsa. CM-susceptible mice displayed characteristic histological evidence of CM, including the 

accumulation of mononuclear cells and parasitized erythrocytes in the microvasculature. Bar, 50  μ M.   
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experimental CM. Collectively, these observations indicate 
that CM is a complex and polygenic process, and that in 
highly susceptible and highly resistant strains other genetic 
factors, in addition to  C5 , contribute to the phenotypes ob-
served. Although the precise genetic determinants regulating the 
control of acute blood-stage parasite replication in  P. berghei  
are unknown, studies have identifi ed several loci, including 
 Char1 ,  Char2 ,  Char3 , and  Char9 , in the control of peak par-
asitemia in  P. chabaudi  – infected mice ( 47 – 50 ); more recently, 
 Berr1 ,  Berr3 ,  Berr4 , and  cmsc  loci on chromosomes 1, 9, 4, and 
17 (in the H-2 region), respectively, have been associated with 
the genetic control of host response ( 26, 51 – 52 ). 

erythrocyte adherence to endothelium, contributing to the 
release of toxic mediators, disruption of microcirculatory fl ow 
and regional metabolism, and endothelial cell activation and 
injury that characterize CM ( 37 – 39 ). Similar to sepsis, dys-
regulated infl ammatory responses to microbial products have 
also been implicated as key factors in the pathogenesis of 
human CM ( 3, 10, 32, 33 ). Parasite products such as  Pf GPI 
have been shown to induce infl ammatory mediators in a TLR2-
dependant manner ( 31 – 33 ). In this study, we show that C5a 
enhances  Pf GPI-induced infl ammatory responses ( Fig. 6 ), as 
it does for LPS ( 40 – 42 ), and may contribute to the marked 
infl ammatory response and endothelial cell activation that 
are central to the pathophysiology of CM ( 3, 32, 43, 44 ). 
In addition, C5aRs are constitutively expressed by CNS neu-
rons, suggesting that they may be at risk in settings of CM-
associated infl ammation and complement activation ( 45 ). 

 Several studies have reported that parasite burden does 
not appear to play a pivotal role in the development of CM 
in the PbA model ( 8, 9, 32 ). Consistent with these data, we 
observed no signifi cant diff erence in parasitemia between CM-
susceptible and -resistant mice, suggesting that C5/C5a does 
not signifi cantly aff ect parasite burden ( 7 – 9, 32 ). However, 
we observed that highly susceptible 129sv/J mice had signifi -
cantly higher parasite densities than either susceptible or re-
sistant mice ( Fig. 1 B  and Fig. S1). The inability of this strain 
to control initial parasitemia may predispose 129sv/J mice 
to more severe disease and the rapid development of CM. 
As suggested by Amante et al. ( 46 ), these fi ndings indicate 
that parasite burden may also contribute to the pathogenesis of 

  Figure 3.     Survival and C5a levels in BALB/c, C57BL/6, and A/J 

mice.  Sequence analysis showed that the BALB/c mice used in these 

studies were  C5  suffi cient and therefore, by our hypothesis, should be 

susceptible to PbA-induced CM. (A) However, BALB/c mice are highly 

resistant to CM despite  C5  suffi ciency (P  <  0.0001 and  �  2  = 16.531 using 

a log-rank test). The fi gure is representative of two independent experi-

ments ( n  = 10 mice/group/experiment). 100% of C57BL/6 mice developed 

CM compared with 0% BALB/c mice. (B) Serum C5a levels of C57BL/6, 

BALB/c, and A/J mice are represented by mean OD at 405 nm (error bars 

show SD). C57BL/6 mice had higher circulating C5a levels, particularly on 

days 1 and 5 compared with A/J ( C5 -defi cient) mice, whereas BALB/c 

mice only show a C5a peak at day 5 and not early in the course of PbA 

infection (**, P  <  0.0001; *, P  <  0.05; and #, P  <  0.01 using a Mann-Whitney 

U test). The graph represents pooled data from two independent 

experiments ( n  = 5 mice/group/experiment).   

  Figure 2.     The role of  C5  in the development of PbA-induced 

 experimental CM in C3H/HeN mice.  To determine the phenotype and role 

of  C5  in PbA infection in the  C5 -suffi cient mice strain C3H/HeN, C3H/HeN 

mice, as well as control strains A/J (CM resistant) and C57BL/6 (CM sus-

ceptible), were challenged with PbA. C3H/HeN mice were susceptible to 

the development of CM (100% developed CM) and displayed similar mor-

tality rates as C57BL/6 ( C5 -suffi cient) mice (C57BL/6 vs. C3H/HeN: P = 

0.2237 and  �  2  = 1.481 using a log-rank test), but signifi cantly higher 

rates than A/J ( C5 -defi cient) mice (A/J vs. C3H/HeN: P = 0.0033 and  �  2  = 

8.656; and C57BL/6 vs. A/J: P = 0.0017 and  �  2  = 9.879 using a log-rank 

test). The data are representative of two independent experiments ( n  = 10 

mice/group/experiment).   
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value in patients who are at risk of CM but have not yet de-
veloped the syndrome. To defi ne the role of C5a as a puta-
tive mediator of human CM and determine whether elevated 
C5a levels will be a useful biomarker will require additional 
study in prospective clinical trials. 

 Interventions that prevent CM would be of potential clini-
cal benefi t in the management of human  P. falciparum  infection 
( 2 ). In this study, C5a – C5aR blockade results in signifi cant 
protection against CM in infected susceptible mice ( Fig. 7 ). 
Although the precise trigger of complement activation during 
malaria infection requires further investigation, the observa-
tions that C5a is required for the development of experimental 

 Current evidence indicates that a tightly regulated proin-
fl ammatory response is critical in the control and resolution of 
malaria infection, whereas excessive and sustained infl amma-
tory responses contribute to immunopathology ( 8,10-12, 
53 – 55 ). Similar to infl ammatory responses to infection, our 
fi ndings indicate that both the timing and the peak concentra-
tions of C5a are important in determining outcome. We show 
that early induction of C5 activation during the course of 
infection contributes to potentiated infl ammatory responses and 
predisposes mice to the development of CM (e.g., C57BL/6 
mice). Conversely, BALB/c mice do not display early activa-
tion of C5 but rather a gradual activation that may facilitate 
the regulated responses necessary for the control of acute PbA 
infection while limiting host immunopathology. 

 High levels of circulating C5a in the susceptible mice are 
consistent with studies of severe malaria and experimental ma-
laria challenge models in humans, which reported activation 
of the complement system by both the classical and alterna-
tive pathways during human infection ( 56 – 58 ). The observa-
tion that C5a appears very early in the course of experimental 
CM supports its role as a potential early mediator and also 
suggests that it may be a useful biomarker to predict those 
who will go on to develop CM. Because only a small propor-
tion of malaria-infected individuals progress to severe disease, 
a predictive biomarker would be of clinical utility in identify-
ing and more eff ectively allocating therapeutic resources to 
those at greater risk of adverse outcomes. To be valuable as a 
biomarker would require that C5a levels have a predictive 

  Figure 4.     Congenic mice confi rm a role for  C5  in susceptibility to 

CM.  To further explore the hypothesis that C5a contributes to the patho-

genesis of CM, we examined the phenotype in recombinant congenic mice 

derived from systematic inbreeding of A/J and C57BL/6 mice that differ in 

their  C5  status. Transfer of the  C5 -suffi cient allele onto an A/J back-

ground in AcB55 mice accelerated the development of CM and fatal out-

comes, whereas BcA76 mice that carry the A/J  C5  defi ciency allele had 

reduced incidence of CM and improved survival compared with parental 

C57BL/6 mice. The data are representative of two independent experi-

ments ( n  = 10 mice/group/experiment).  C5 -defi cient congenic mice sur-

vive signifi cantly longer than  C5 -suffi cient congenic mice (P  <  0.05 and 

 �  2  = 4.038 using a log-rank test).   

  Figure 5.     Role of C5 in pathogenesis of CM in closely related 

B10.D2 mouse strains.  To examine whether the survival difference was 

solely attributable to C5, the congenic B10.D2/nSnJ ( C5 -suffi cient) and 

B10.D2/oSnJ ( C5 -defi cient) mice were infected with PbA. (A) B10.D2/oSnJ 

mice are resistant to the development of CM and survive signifi cantly 

longer than  C5 -suffi cient mice (75 vs. 0%; P  <  0.0001 and  �  2  = 12.274 

using a log-rank test). The fi gure is representative of two independent 

experiments ( n  = 8 mice/group/experiment). 100% of B10.D2/nSnJ mice 

developed CM compared with 25% of B10.D2/oSnJ mice. (B) Levels of 

serum C5a, shown as mean OD at 405 nm, were signifi cantly increased 

in  C5 -suffi cient (B10.D2/nSnJ) mice compared with  C5 -defi cient (B10.D2/

oSnJ) mice at days 1, 3, 5, and 7 after infection (*, P  <  0.0001 using a 

Mann-Whitney U test). The data are representative of two independent 

experiments ( n  = 5 mice/group/experiment). Data are presented as 

means  ±  SD.   
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 MATERIALS AND METHODS 
 Mice, parasites, and experimental infections.   Experiments involving 

animals were reviewed and approved by the University of Toronto Animal 

Use Committee and were performed in compliance with current University 

of Toronto animal use guidelines. Mice used in this study were 8 – 16 wk old 

and were maintained under pathogen-free conditions with a 12-h light 

cycle. C57BL/6 and BALB/c mice were purchased from Charles River Labo-

ratories. 129sv/J, C3H/HeN, 129P3/J, DBA/2J, A/J, AKR/J, B10.D2/oSnJ, 

and B10.D2/nSnJ mice were purchased from the Jackson Laboratory. 

 PbA parasites were maintained by passage through naive C57BL/6 

mice, as previously described ( 29, 32 ). Experimental infections were initi-

ated by i.p. injection of 5  ×  10 5  PbA-parasitized erythrocytes. The course of 

infection was monitored twice daily for neurological symptoms including 

mono-, hemi-, para-, or tetraplegia, movement disorder, ataxia, hunching, 

convulsions, and coma, to defi ne CM as previously described ( 3 – 9, 26 – 28, 

46, 60 ). Mice were judged to have CM if they displayed these neurological 

criteria within days 6 – 10 after infection and either succumbed to infection 

or were humanely killed as per the requirements of our institutional animal 

use committee. Parasitemias were monitored using thin blood smears stained 

with modifi ed Giemsa stain (Protocol Hema 3 stain set; Sigma-Aldrich) 

from 3 d after infection onwards. CM was confi rmed by histological exami-

nation of cerebral pathology. Brain tissue was carefully removed, fi xed in 

10% neutral-buff ered formalin, embedded, sectioned (5  μ M), and stained 

with Giemsa or hematoxylin and eosin. 

  C5  defi ciency and sequencing of the  C5  gene in BALB/c mice.   All 

 C5 -defi cient mice used in this study had a bp deletion at positions 62 and 63 

of the  C5  gene, which was fi xed in several strains during their generation. 

This frame-shift caused a premature stop codon that resulted in these mice 

being unable to produce  C5  mRNA or functional C5 protein. 

 The coding region of the  Hc  ( C5 ) gene (available from GenBank/

EMBL/DDBJ under GeneID no.  15139 ) was completely sequenced from 

BALB/c/Cr genomic DNA. Primers were designed to amplify all coding 

exons and a minimum of 100 bp in each direction of the fl anking introns us-

ing Primer3 (Table S1, available at http://www.jem.org/cgi/content/full/

jem.20072248/DC1) ( 61 ). Targets were PCR amplifi ed with Taq Platinum 

HiFi (Invitrogen) using 50 ng DNA per reaction in a GeneAmp PCR 

CM and that blockade of C5a – C5aR activity early in the 
course of PbA infection improves outcome identify C5a – C5aR 
as a potential target for intervention in human severe malaria 
and CM. Additional studies are required to investigate the po-
tential role of C5a in human infection, including CM induced 
by  P. falciparum  malaria. If C5a is subsequently shown to be an 
important mediator in CM in humans, then the availability of 
inhibitors of C5a – C5aR, including receptor antagonists and an 
FDA-approved humanized monoclonal antibody against C5, 
might permit direct testing of the hypothesis that C5a – C5aR 
blockade will improve clinical outcome ( 59 ). In summary, these 
data provide direct evidence for a role for C5a in the develop-
ment of CM in the PbA model, and suggest a potential role for 
excessive complement activation and C5a generation in partic-
ular, in the pathophysiology of human CM. 

  Figure 7.     Blockade of C5a – C5aR protects susceptible mice from 

the development of CM.  To identify whether CM outcome in C5-suffi cient 

mice could be modulated, C5aR was blocked using antibody treatment of 

PbA-infected mice. B10.D2/nSnJ ( C5 -suffi cient) mice that received anti-

C5aR serum ( n  = 8) were signifi cantly protected from developing CM 

compared with controls receiving nonimmune serum ( n  = 7; P = 0.0022 

and  �  2  = 9.414 using a log-rank test). 100% of B10.D2/nSnJ mice treated 

with nonimmune serum developed CM compared with 0% of B10.D2/nSnJ 

mice treated with anti-C5aR serum.   

  Figure 6.     C5a potentiates  Pf GPI-induced infl ammatory cytokines, 

and amplifi ed responses are inhibited by C5aR blockade.  Human 

PBMCs were treated in three groups as follows: (a) no antibody treat-

ment (control); (b) 5  μ g/ml of mouse anti-C5aR blocking antibody; or 

(c) mouse anti – human IgG2a  �  isotype control. Each group was subse-

quently treated with 50 nM C5a  ±  300 ng/ml HPLC-purifi ed  Pf GPI for 

6 – 24 h, and the supernatants were assayed for the production of TNF 

and IL-6. Statistical analysis was performed by two-way analysis of 

variance and is representative of the interaction effect (C5a* Pf GPI). 

A Student ’ s  t  test was used to assess whether blockade of C5aR inhibited 

cytokine induction. (A) C5a potentiated  Pf GPI-induced TNF production 

at 6 h (**, P = 0.0064), and this effect was inhibited by blocking C5aR 

(***, P = 0.0008). (B) C5a potentiated  Pf GPI-induced IL-6 production at 

24 h (***, P = 0.0001), and this effect was inhibited by C5aR blockade 

(**, P = 0.0013). Data are representative of two independent experiments 

and are presented as means  ±  SEM.   
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either 0.5 ml anti-C5a or anti-C5aR serum i.p. 2 h before parasite challenge, 

and the control groups received 0.5 ml of corresponding nonimmune serum 

(control serum). Mice were challenged with 5  ×  10 5  PbA-parasitized eryth-

rocytes. After 30 – 32 h, mice received a second injection of 0.5 ml anti-C5a, 

anti-C5aR, or control serum. Mice were monitored for 15 d. 

 Statistical analysis.   Survival studies were analyzed using the log-rank test, 

parasitemias were analyzed using the Kruskal-Wallis test with Dunn ’ s multi-

ple comparison test, and serum C5a levels were analyzed using the Mann-

Whitney U test. Data are presented as means  ±  SD unless otherwise noted. 

All experiments were repeated at least two times. 

 Online supplemental material.   Fig. S1 shows the parasitemia data over 

the course of infection for various strains infected with PbA. Table S1 shows 

the primers used to sequence the C5 gene from BALB/c mice. Primers 

were designed using Primer3 ( 61 ) to amplify all exons and a minimum of 

100 bp in each direction of the fl anking introns. Table S2 shows the prim-

ers used for quantitative real-time RT-PCR detection of C5 mRNA lev-

els in mice. Online supplemental material is available at http://www.jem

.org/cgi/content/full/jem.20072248/DC1. 
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