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Abstract
In Drosophila, the pattern of the wing selector gene, vestigial (vg), is established by at least two enhancers: the Boundary
Enhancer, which drives expression along the disc’s Dorsal-Ventral boundary; and the Quadrant Enhancer (QE) that patterns the
rest of the wing pouch. Using CRISPR/Cas9 editing, we deleted DNA fragments around the reported QE sequence and found
that the full Vg pattern is formed. Furthermore, adult wings arising from these gene-edited animals are normal in shape and
pattern, but slightly smaller in size, although this reduction is not wing-specific in males. We suggest that other enhancers act
redundantly to establish the vg pattern and rescue wing development.
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Figure 1. Vg patterning and adult wing development is largely unaffected in CRISPR-edited animals that lack the QE
sequence.

(A) Scheme of the vg gene showing the two intronic enhancers (BE, Boundary Enhancer; QE, Quadrant Enhancer) that
account for the full Vg pattern in the third-instar wing imaginal disc (photo in the right: vgBELacZ=reporter of the BE marked
by βGal immunostaining; vgQE>GFP=reporter of the QE marked by GFP expression under the Gal4-UAS system). The
location of gRNAs (marked by red arrows) that were used to delete different fragments (black bars) within the fourth intron
that contains the QE are shown: vg∆QE+SID (gRNA3 and gRNA2, that contains an additional SID (green arrowhead) outside
of the reported QE element), vg∆QE (gRNA1 and gRNA2), or vg∆CTRL. The sequencing results confirming each of the
CRISPR/Cas9 deleted elements are shown; gRNAs protospacers (highlighted in blue) and PAM sites (highlighted in orange)
are illustrated; sequence mismatches are displayed in red font. (B) Photos of representative wing imaginal discs displaying late
third-instar larvae immunostained with Vg and female adult wings for each of the CRISPR/Cas9 edited lines. (C) Pairwise
comparison of control vs. QE-deleted wings. An isometric transformation is applied to each control wing to match an
experimental wing and the isometric transformation factor (in %) is plotted. Female and male wings are independently
compared. Groups that are statistically significant after a one-way ANOVA analysis are shown. (D, E) Comparison of anterior
tibia lengths (D) and wing to tibia length ratios (E) in each of the CRISPR/Cas9 edited lines. Female and male animals are
independently compared. Groups that are statistically significant after a one-way ANOVA analysis are shown. (**:p-
value<0.005; ***:p-value<0.0005; ns: not statistically-significant).

Description
Activation of gene expression during development is controlled by enhancers, which are DNA sequences that contain
transcription factor binding sites and drive the recruitment of the transcriptional machinery in a context-specific manner (Field
& Adelman, 2020; Furlong & Levine, 2018; Long et al., 2016). Complex developmental patterns often require the action of
one or multiple enhancers, which are precisely coordinated in space and time. Sometimes, two or more cis-regulatory elements
establish an overlapping pattern of gene expression and they are referred as shadow enhancers (Hong et al., 2008). Shadow
enhancers appear to be widespread in metazoan genomes suggesting that their role may be evolutionary conserved to confer
robust gene expression patterns under genetic or environmental perturbations (Kvon et al., 2021).

In Drosophila, wing fate is determined by the expression of the selector gene, vestigial (vg), which is confined to an area
within the wing imaginal disc referred as the wing pouch (Kim et al., 1996; Williams et al., 1991; Williams et al., 1993). The
vg pattern is established by two intronic enhancers: the Margin or Boundary Enhancer (BE), and the Quadrant Enhancer (QE;
Fig. 1A). Early in wing disc development, the BE drives vg expression in cells abutting the Dorsal-Ventral (DV) boundary
(cyan staining, Fig. 1A) in response to a short-range Delta/Serrate-Notch and Wingless (Wg) signaling (Couso et al., 1995; de
Celis et al., 1996; Doherty et al., 1996; Irvine & Vogt, 1997; Kim et al., 1995; Williams et al., 1994). As these Vg-expressing
cells proliferate, they leave the DV signaling center, but maintain vg expression presumably through Polycomb/Trithorax
Responsive Elements (PRE) and Vg autoregulation (Ahmad & Spens, 2019; Halder et al., 1998; Klein & Arias, 1999; Pérez et
al., 2011; Simmonds et al., 1998). In addition, the QE drives vg expression in the rest of the wing pouch through the
integration of several signaling networks including the long-range action of the Wg and Decapentaplegic (Dpp) morphogens
(Kim et al., 1996; Klein & Arias, 1998; Lecuit & Cohen, 1998; Nellen et al., 1996; Neumann & Cohen, 1996; Zecca et al.,
1996) and a Fat/Dachsous polarization signal that results in the recruitment of Vg in neighboring cells (Zecca & Struhl, 2007a;
Zecca & Struhl, 2007b; Zecca & Struhl, 2010). At the transcriptional level, the recruitment signal depends on the nuclear
translocation of Yorkie (Yki), the effector of the Warts-Hippo tumor suppressor pathway, which binds the TEAD-transcription
factor Scalloped (Sd) and activate vg expression through Scalloped-Interaction Domains (SIDs) (Simmonds et al., 1998; Zecca
& Struhl, 2010). A bioinformatic analysis reveals two SIDs within the fourth intron of the vg gene; one within the reported QE
sequence (Klein & Arias, 1999; Williams et al., 1994; Zecca & Struhl, 2007a) and another one located 544 base pairs upstream
of it (Fig. 1A).

Transgenic reporters show that the QE can drive vg expression in most of the wing pouch (magenta staining, Fig. 1A), but it is
unknown whether or not the QE is necessary for vg expression and wing development. In order to investigate this, we
designed guide RNAs (gRNAs) to delete the reported QE (vg∆QE; using gRNA1 and gRNA2, Fig. 1A) or the reported QE
plus the additional SID (vg∆QE+SID; using gRNA3 and gRNA2, Fig. 1A) using CRISPR/Cas9 Non-Homologous End-
Joining (NHEJ) technology (see Methods; Evans, 2017; Port et al., 2014). As a control, we deleted a small piece of DNA that
does not overlap with the reported QE sequence nor contains a SID (vg∆CTL; using gRNA1 and gRNA4; Fig. 1A). However,
none of these deletions have an effect in the Vg pattern of late third-larval wing discs, which appears to cover all the wing
pouch, nor in the shape and pattern of the adult wing (Fig. 1B). We did notice a minor, albeit significant reduction in wing size
of the vg∆QE+SID line in both males and females with respect to the other deletions (Fig. 1C). Strikingly however, this
reduction is not specific to the wing, as measurements of anterior legs’ tibias are also significantly smaller in vg∆QE+SID
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animals with respect to the other lines, especially in males (Fig. 1D). In fact, when each wing measurement is normalized to
the length of the corresponding tibia (wing to tibia ratio), we found that the size difference only persist in females (Fig. 1E),
suggesting that vg∆QE+SID males are proportionally smaller. These results highlight the potential impact of the additional
SID on size control. Taken together, our data suggest that the QE is not required for Vg nor wing patterning, except for small
sex-specific effects in animal size that occur only with an additional SID is deleted. However, we cannot rule out that Vg
expression levels or its dynamics may be affected by the deletions.

Given the importance of Vg expression for wing differentiation, other regulatory elements may ensure that animals develop
fully functional wings upon genetic mutations in the QE. This suggests the existence of shadow enhancers within the
Drosophila genome that rescue the Vg pattern in the absence of the QE. These shadow enhancers likely respond to the same
signaling pathways since the Vg pattern does not expand without these signals (Zecca & Struhl, 2007b). In addition, our data
reveal the potential impact of SIDs on animal size. How could a regulatory sequence within the wing selector gene have an
effect in the overall size of an animal? One possibility is that SIDs affect overall size through Yki-Sd binding, which is known
to promote cell growth and/or proliferation in a plethora of systems (Goulev et al., 2008; Hariharan, 2015; Huang et al., 2005;
Wu et al., 2008). Alternatively, perhaps the vg∆QE+SID deletion affects size in a wing-specific manner and inter-organ
coordination of size is established through systemic signals (Boulan et al., 2019; Colombani et al., 2012; Mesquita et al.,
2010). Another interesting finding to explore in future work is the sex-specific wing vs. overall size difference (Fig. 1D,E).
Since the sd gene is located in the first chromosome (Dmel\sd, FlyBase ID FBgn0003345), it is plausible that males and
females respond differently to SID deletions. Finally, since vg is an evolutionary-conserved wing selector gene in insects
(Abouheif & Wray, 2002; Clark-Hachtel et al., 2013; Clark-Hachtel et al., 2021; Zhang et al., 2021), our work highlights the
impact of CRISPR/Cas9 editing to understand the contribution of regulatory elements to wing diversity (Medved et al., 2015;
Linz & Tomoyasu, 2018).

Methods
gRNA Design

Target sites were designed using flyCRISPR online tool CRISPR Optimal Target Finder (https://flycrispr.org) (Iseli et al.,
2007; Gratz et al., 2014).

Construction of gRNA plasmid

Cloning was performed using pCFD4-U6:1_U6:3tandemgRNAs vector, that allows in-tandem expression of gRNA sequences
(Port et al., 2014; Evans, 2017), through PCR products using pair of primers 1 and 2, 2 and 3, 1 and 4, and 3 and 4 (see
Reagents), amplified with 2X Phusion Flash PCR Master Mix. Gibson Assembly was performed with PCR products and
pCFD4 BbsI digested vector. Clonings was confirmed by Sanger sequencing by Eurofins Genomics prior to injection.

Identification of CRISPR-modified alleles

The vgQE gRNA plasmid was injected into nos-Cas9 embryos by Best Gene (Chino Hills, CA). Injected individuals (G0) were
crossed as adults to Sco/CyoRFP. Founders (G0 flies producing F1 progeny carrying modified QE alleles) were identified
using pools of three females derived from each G0 cross by PCR with primers 5 and 12 (for vg∆QE+SID) or 12 and 13 (for
vg∆QE and vg∆CTRL) which produce 0.5-kb or 1.5-kb respectively when the respective NHEJ (Non-Homologous End
Joining) are present. From each identified founder, 5-10 F1 males were then crossed individually to Sco/CyORFP virgin
females. After 3 days, F1 males were removed from the crosses and tested by PCR with the same set of primers to verify if
they carried the modified allele. F2 flies from F1 crosses were used to generate balanced stocks, and the modified alleles were
sequenced from genomic DNA using primers 12, 18 and 13 (see Reagents).

Fly stocks and wing imaginal disc immunostaining

The disc shown in Fig. 1A was obtained by crossing flies carrying a transgenic reporter of the vg BE in the second
chromosome (vgBElacZ [obtained from Marco Milán]) with flies expressing nuclear GFP under the Gal4-UAS system
(vgMQGal4 / SM6; UAS-GFPnls / TM6B, Tb). For the immunostaining, wandering third-instar larvae were dissected in PEM
(Na-Pipes 80mM + EGTA 5mM) solution. The internal tissue of anterior part was exposed with independent needles and
larvae were fixed in 4% paraformaldehyde solution during 40 minutes at room temperature. Dissected larvae were then
washed three times in PEM-T solution (PEM + Triton X100) in agitation for 10 minutes. Subsequently, samples were
incubated with a blocking solution that contains PEM-T and 0.5% Bovine Serum Albumin (BSA), for two hours in agitation at
room temperature. Blocking solution was discarded and primary antibodies were added (mouse anti-βGalactosidase at 1:1000
in Fig. 1A [no antibody was needed to detect GFP]; and Guinea-pig anti-Vg [kindly provided by Gary Struhl] at 1:200 in Fig.
1B) in staining solution (blocking solution + 1% Normal Goat Serum) and incubated overnight at 4 °C.
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Primary antibodies were recovered, and the sample was washed three times with PEM-T solution at room temperature for 10
minutes. Incubations with secondary antibodies were performed with Alexa Fluor 647 anti-mouse (Fig. 1A) and Alexa Fluor
594 anti-Guinea Pig (Fig. 1B) at a concentration of 1:1000 each for two hours at room temperature in the dark. The sample
was washed once again three times with PEM-T solution and one time with PEM solution for 10 minutes at room temperature
in the dark. Discs were dissected and mounted using a stereoscopic microscope (Nikon SMZ800) in 15 µl of Mowiol solution.

Confocal microscopy and image capture

Imaginal wing disc micrographs were taken using a Spectral confocal microscope (Leica TCS-SP8) using a 63x objective (PL
APO CS2, 63x, App. Num. 1.4 oil immersion) and the following specifications in LAS X software: Format 1024 x 1024,
speed 600, Frame average 4, Phase X -33.48, Zoom factor 1.00, Z-step size 0.50, Smart gain 776.8 V, Smart offset -3.0% and
Pinhole 1 AV. The images were stored in “.lif” format and subsequently analyzed with ImageJ software
(https://imagej.nih.gov/ij/download.html) (Schneider et al., 2012). Values and statistical analysis were plotted in GraphPad
Prism version 8.0.1.

Isometric transformation

Using Python (3.7.6), we developed a code that given two numpy arrays of the same length (referred with the sub-index 1 and
2):

1. Standardizes the two arrays in such a way the centroid of each array is brought to the origin of coordinates.

2. Returns the isometric transformation factor (Fig. 1C), that minimizes the sum:

Σ(x1i-µx2i )2+ (y1i - µy2i )2

where (x1i, y1i) are the coordinates of the i-th point of the standardized array 1 and µ is the contraction factor. These points are
selected to be the intersection between each vein or intervein with each other or with the wing margin.

Wing/tibia measures

Adult flies of vg∆QE+SID, vg∆QE, and vg∆CTRL lines were separated by sex, using a stereoscopic microscope (Nikon
SMZ800) and preserved in 1ml 70% ethanol for dehydration for 12 hours. Each specimen was dissected in 15μl of 50%
ethanol to obtain each pair of wings the corresponding pair of front legs mounted in microscope slides.

Wings and legs were photographed in a binocular microscope (Nikon Eclipse Ci) attached to a camera (ProgRes® CT5,
Jenoptik) to allow measures (in wings, length of area between veins L3 and L4; in legs, length of tibia), using the ProgRes®
Capture Pro-2.9 software. Measurements were performed using ImageJ software 1.53c (Wayne Rasband, National Institutes of
Health, USA) using corresponding calibration for 4X objective (Distance in pixels: 100.501; known distance: 0.1; pixel aspect
ratio: 1.0, unit of length: mm). Ratio of each wing to tibia proximal distal length were plotted using GraphPad Prism version
8.0.1.

Statistical analysis

A one-way ANOVA was performed to compare the wing to tibia ratios of each of the fly lines generated through CRISPR,
with α =0.05. Subsequently, to establish the significant differences between groups, Tukey’s range test was performed with α =
0.05.

Reagents

REAGENT SOURCE IDENTIFIER

PIPES sodium salt Sigma-Aldrich Sigma Prod. No.
P2949

EGTA Ethylene glycol-bis(2-amino-ethylether)-N,N,N’,N’-tetraacetic
acid Sigma-Aldrich Sigma Prod. No.

E3889

Triton X-100 Sigma-Aldrich Sigma Prod. No.
T9284
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8% paraformaldehyde Electron Microscopy
Science Cat. # 157-8

Bovine Serum Albumin BSA Sigma-Aldrich Sigma Prod. No.
A2058

Normal Goat Serum Invitrogen Catalog # 31872

GENOTYPE AVAILABLE FROM

vgBElacZ (II) Marco Milán

vgMQGal4;UAS-GFPnls Bloomington Drosophila Stock Center, Stocks #8230 and #4776

vg∆QE+SID This study

vg∆QE This study

vg∆CTRL This study

yw;nos-Cas9(III-attP2)/TM6,Tb,Sb NIG-FLY # CAS-0012

w; Sco/CyO-RFP Generated in Evans laboratory

PLASMID GENOTYPE DESCRIPTION

pCFD4 pCFD4-
U6:1_U6:3tandemgRNAs

Addgene plasmid # 49411; http://n2t.net/addgene:49411; RRID:
Addgene_49411

ANTIBODY ANIMAL AND CLONALITY /
SOURCE DESCRIPTION

Anti-Vestigial Guinea pig polyclonal Kindly provided by Gary Struhl (Columbia
University)

Anti-β-Galactosidase Mouse polyclonal, Promega Catalog #Z378A

Alexa Fluor 594 goat anti-Guinea Pig
IgG (H+L) Thermo Fisher Scientific Catalog # A-11076

Alexa Fluor 647 goat anti-Mouse IgG
(H+L) Thermo Fisher Scientific Catalog #A-21236

OLIGO 5’-
3’ NAME SEQUENCE
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1 QE5’ GGAAAGATATCCGGGTGAACTTCGAACCGAACCGCACCGA
AAGGTTTTAGAGCTAGAAATAGCAAG

2 QE3’ GCTATTTCTAGCTCTAAAACTTATGTGTAATGGAGCTCCC
GACGTTAAATTGAAAATAGGTC

3 TEA2 GGAAAGATATCCGGGTGAACTTCGCAGTATGGTGATTCGA
TTCGTTTTAGAGCTAGAAATAGCAAG

4 Neg GCTATTTCTAGCTCTAAAACTATCTACAAGCGTATCTTCC
GACGTTAAATTGAAAATAGGTC

5 LHA1- F ACATGCATGCATGTGGAAATGCCACCACTTTGTGCG

12 RHA3-R CCGCTCGAGGAAATCGCGCGACGCCGCC

13 LHA
RecSp-F CGCGGATCCCTAGTTGGAATGTGCTAT

18 colLHA2-F GCTGCTCGAAAATAACTGGG
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