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INTRODUCTION

A
cting on fibroblast growth factor receptor 1
(FGFR1), FGF23 reduces renal phosphate reab-

sorption through downregulation of the sodium phos-
phate cotransporters NPT2a and NPT2c at the apical
membrane of the proximal renal tubule.1,2

Human disorders of phosphate handling and hypo-
phosphatemic rickets have been related to increased
FGF23 serum levels resulting from mutations affecting
the FGF23 gene itself or genes regulating FGF23 secre-
tion, such as PHEX or DMP1. These mutations present
as autosomal-dominant rickets (ADHR), X-linked
dominant rickets (XLHR), and autosomal-recessive
hypophosphatemic rickets (ARHR), respectively.3

Iron plays a role in FGF23 regulation in humans,
and an inverse relationship between iron status and
FGF23 concentrations has been described in several
populations.4–6

Inflammation and iron deficiency increase fgf23
transcription in mice by activating Hif1a signaling, but
relationships between iron and FGF23 secretion in
humans remain a matter of debate.7,8

Kapelari et al. reported an association between iron
supplementation and a complete loss of biochemical
ADHR phenotype, allowing withdrawal of rickets
medication.6

Conversely, we report here the case of a man affected
by a homozygous DMP1 rare variant and presenting
with hyperphosphaturia associated with high serum
FGF23 levels. This exceptional case raises concerns
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about the relationships between iron chelation and
renal phosphate leak, potentially promoting bone
demineralization and urolithiasis in genetically pre-
disposed patients.
PATIENT AND METHODS

Clinical Case

A 22-year-old man presented with a medical history of
Diamond Blackfan anemia. This rare disorder results
from a mutation of RPS19 gene (RPS19: NM_001022.3;
c.320T>G; p.Leu107Arg) responsible for intrinsic
progenitor cell defect. There was no consanguinity in
the family. He was 150 cm tall, had moderately bowed
legs, and weighed 50 kg. Since birth, he had received
iterative transfusions inducing post-transfusional he-
mochromatosis. He had therefore been treated with
iron chelators, mainly deferasirox. He progressively
developed mild renal failure (serum creatinine 108
mmol/l), and deferasirox was therefore replaced by
deferiprone and deferoxamine with doses adapted to
serum ferritin levels.

When he was 21 years of age, he developed massive
kidney stones treated by reno-ureteroscopy. Stone
analysis revealed a predominance of calcium phosphate
(mildly carbonated apatite) and, to a lesser extent, the
presence of calcium oxalate dihydrate (weddellite).

Initial serum biochemistry findings [normal range]
were as follows: calcium, 2.42 [2.16�2.52] mmol/l;
phosphate, 0.56 [0.85�1.31] mmol/l; intact parathyroid
hormone (PTH), 18 [8�76] pg/ml; 25-hydroxy-vitamin
1
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D (25(OH)D), 45 [30�100] ng/ml, and 1,25[OH]2D, 58
[17�67] pg/ml. Serum bicarbonate level was at the
lower limit at 22.5 mmol/l, and potassium level was
normal at 3.8 [3.7�5.1] mmol/l. Urine tests revealed a
low tubular phosphate reabsorption rate (TPR), 75%
[85%�97%] and decreased tubular maximum reab-
sorption of phosphate to glomerular filtration rate
[TmP/GFR] at 0.44 [>0.67] mmol/l.GF. Urine calcium
excretion was increased at 7.7 [<6] mmol/d.

The patient therefore presented with biological fea-
tures associating low serum phosphate level caused by
a massive renal loss and hypercalciuria, which was
responsible for calcium phosphate nephrolithiasis.
These features were consistent with an acquired
proximal tubulopathy due to deferasirox. However, the
C-terminal FGF23 serum level was 218 [33.7�96.5] RU/
ml, suggesting that renal phosphate leak was instead
due to increased FGF23 secretion.

A few months later, C-terminal FGF23 decreased
transiently to 89 RU/ml, and both serum phosphate and
1,25[OH]2D serum levels increased at the same time up
to 0.72 mmol/l and 78 pg/ml, respectively.

Hypotheses and Methods

These observations suggested that renal phosphate
loss was due to excessive FGF23 secretion. Therefore,
we conducted molecular genetic analysis to detect
mutations affecting FGF23, PHEX, and DMP1 genes.
PolyPhen-2 (available at: http://genetics.bwh.harvard.
edu/pph2/, 15/06/2017) and SIFT (available at: http://
sift.jcvi.org/, 15/06/2017) software was used to predict
in silicowhether an amino acid substitution would affect
protein function. Informed consent was obtained from
the patient and both parents to perform DNA analyses
and to collect clinical and biochemical data.
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Figure 1. Evolution of serum phosphate and C-terminal FGF23 levels under
and after iron chelator reintroduction. Dotted lines indicate serum phosp
serum-level evolution.
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Moreover, the simultaneous fluctuations of FGF23
and phosphate levels supported the hypothesis that
intermittent determinants, for example, drugs, would be
involved. Considering in vitro and animal studies sug-
gesting that iron deficiency can increase FGF23 levels,
the contribution of iron chelators in renal loss of phos-
phate has been hypothesized.7,8 Actually, this patient
had intermittent iron chelator intake. To test this hy-
pothesis, iron chelators were withdrawn for 72 hours. C-
terminal FGF23 and phosphate levels were monitored
during iron chelation, after discontinuation for 72 hours,
and after treatment reintroduction several weeks later.

RESULTS

Molecular Genetic Analysis

DNA sequencing of DMP1 gene (NM_004407) revealed
a rare homozygous variant affecting exon 5 (c.427C>A,
p.Gln159Lys). No mutation has been identified in
PHEX or FGF23 genes. The Gln159Lys variant is pre-
dicted to be deleterious. Both parents were heterozy-
gous carriers of this rare variant.

Metabolic Response to Iron Chelation Withdrawal

and Reintroduction

After discontinuation of iron chelators for 72 hours,
C-terminal FGF23 levels values halved and serum
phosphate levels normalized from 0.56 to 0.89 mmol/l
(Figure 1). Stopping iron chelation during 72 hours
induced resolution of renal phosphate loss. Treatment
reintroduction had the opposite effect, and a decline in
serum phosphate level was observed (back to 0.56
mmol/l), due to an increase in C-terminal FGF23 levels
(116.6 to 276.4 RU/ml). These results provided evidence
that iron chelation promoted renal loss of phosphate,
through an increase in FGF23 levels (Figure 1).
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DISCUSSION

To our knowledge, this is the first report of an asso-
ciation between iron chelation in a human and so-called
hypophosphatemic rickets. Farrow et al. previously
demonstrated in vitro that iron chelation with defer-
oxamin increased FGF23 mRNA expression in osteo-
blasts by 20-fold.7 David et al. provided evidence that
functional iron deficiency, following hepcidin injection
into wild-type mice, stimulated FGF23 production and
preferentially increased circulating concentrations of
C-terminal FGF23.8

Regarding the patient, we first hypothesized that
renal phosphate loss resulted from an acquired prox-
imal tubulopathy induced by deferasirox.9 Actually,
nephrotoxicity is the most frequent adverse effect of
deferasirox treatment. Nephrotoxicity can present as an
acute or chronic decrease in glomerular filtration rate,
and features of proximal tubular dysfunction are also
frequent.10 High levels of FGF23 rapidly ruled out this
assumption. Genetic analysis identified a rare homo-
zygous DMP1 variant, but the pathogenicity of this
variant is unknown to date. It seems likely that the
presence of both minor alleles may predispose to renal
phosphate leak through an increase in FGF23; however,
in the absence of iron chelation, biological expression
was minimal. It appears that the DMP1 variant was a
predisposing condition requiring a second hit to pro-
mote renal phosphate leak. The exact role of DMP1
remains unknown, but recent murine experimental
models have shown that mutations in the DMP1 gene
create a lower set point for extracellular phosphate and
maintain it through the regulation of FGF23 cleavage
and expression.11

In this case, chronic medical iron chelation played a
major role in the ARHR biochemical phenotype by
simulating a transitory iron deficiency. This hypothesis
was confirmed by serum phosphate levels and C-
terminal FGF23 levels evolution associated with iron
chelator withdrawal and reintroduction.

Previous studies reported an association between
iron status and FGF23 levels. Imel et al. observed an
inverse correlation between iron status and (i) C-
terminal FGF23 levels in healthy individuals and (ii)
both intact and C-terminal FGF23 levels in patients
presenting with ADHR (FGF23 mutation) or XLH
(PHEX mutation).4 Iron substitution has been associ-
ated with a C-terminal FGF23 level reduction, and with
phosphate renal loss reduction in ADHR patients.4–6

In this case, C-terminal FGF23 was dramatically
increased, a further argument in favor of relative iron
“deficiency.”

Beyond this case, another issue of interest concerns
nephrolithiasis composition (calcium phosphate).
Kidney International Reports (2018) 3, 1–4
Recently, Wong et al. reported that deferasirox was
associated with a high prevalence of nephrolithiasis
and bone demineralization in patients affected by
thalassemia.12 In this study, among patients receiving
deferasirox, those affected by nephrolithiasis had
significantly lower serum phosphate and ferritin levels.
FGF23 was not assessed, but it might be hypothesized
that deferasirox would promote renal phosphate leak
and calcium phosphate stones in genetically predis-
posed individuals. More recently, Wong et al.
observed hypercalciuria in 92% of subjects on defer-
asirox, with a significant dose-dependent relationship,
but also in 83.4% of the smaller group of subjects on
deferoxamine.13 In the present report, the patient was
also affected by hypercalciuria; however, the role of
iron chelators in tubular defects leading to hyper-
calciuria remains unknown.

In conclusion, this case presentation supports the
hypothesis that iron status would be involved in
C-terminal FGF23 and serum phosphate level regula-
tion. Iron chelation was associated with increased C-
terminal FGF23 and decreased serum phosphate levels,
which were rapidly reversible after stopping treat-
ment, in a genetically predisposed individual. Further
studies are required to identify the mechanisms
involved, in particular the sequence of events modi-
fying FGF23 secretion and cleavage.

Beyond this case, the role of iron chelators in kidney
stone formation, osteomalacia, and bone demineraliza-
tion is an open question that must be addressed.
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