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Abstract

Rare variants are becoming the new candidates in the search for genetic variants that predispose individuals to a
phenotype of interest. Their low prevalence in a population requires the development of dedicated detection and
analytical methods. A family-based approach could greatly enhance their detection and interpretation because rare
variants are nearly family specific. In this report, we test several distinct approaches for analyzing the information
provided by rare and common variants and how they can be effectively used to pinpoint putative candidate
genes for follow-up studies. The analyses were performed on the mini-exome data set provided by Genetic
Analysis Workshop 17. Eight approaches were tested, four using the trait’s heritability estimates and four using
QTDT models. These methods had their sensitivity, specificity, and positive and negative predictive values
compared in light of the simulation parameters. Our results highlight important limitations of current methods to
deal with rare and common variants, all methods presented a reduced specificity and, consequently, prone to false
positive associations. Methods analyzing common variants information showed an enhanced sensibility when
compared to rare variants methods. Furthermore, our limited knowledge of the use of biological databases for
gene annotations, possibly for use as covariates in regression models, imposes a barrier to further research.

Background
The aim of genome-wide association studies (GWAS) is to
determine genetic patterns that underlie human traits of
medical interest. Despite their relative, the combined effect
of the identified genetic variants accounts for only a small
portion of the heritability for complex traits, such as
hypertension or cancer [1]. Rare variant single-nucleotide
polymorphisms (SNPs) are becoming the current candi-
dates for explaining this missing heritability paradox.
Because of their low frequency, some variants are almost
family specific; their detection requires sufficiently large
samples, dedicated platforms, and new statistical methods
[2]. Deep-sequencing platforms are sensitive to detecting

these variants, and the widespread use of these platforms
will result in an immense number of rare variants detect
[3].
Several approaches have been recently proposed to

analyze rare genetic variants information. A common
way to model is to count their relative abundance in case
and control groups [4]. Hypothetically, alleles showing a
higher frequency in case subjects are more likely to har-
bor at least one causal variant. Arguably, several more
sophisticated approaches ought to be considered. Meth-
ods for common variants analysis (minor allele frequency
[MAF] > 0.01) are well established, and their utility for
rare variants needs to be evaluated. Using the Genetic
Analysis Workshop 17 (GAW17) family data set, we
explored and compared different approaches to account
for both common and rare variants for traits of interest
in the GAW17 phenotype simulation [5].
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Methods
GAW17 data set
We classified each variant on the basis of its MAF supplied
by the GAW17 snp_info file; a SNP was classified as a rare
variant (MAF < 0.01;) otherwise as a common variant. We
carried out all analyses using the family-based data set and
the first family-based phenotype simulation (fam_phen.1).
The GAW17 data set consists of 24,487 genetic variants
(6,356 common and 18,131 rare variants) located in 3,204
genes. We used the gene_info file to annotate genes har-
boring putative associated variants. The sample is com-
posed of 697 individuals distributed in eight extended
pedigrees, and we performed the analyses using the binary
variable, affected versus unaffected.

Heritability estimates
We calculated polygenic heritability estimates for the
affection status and quantitative traits Q1, Q2, and Q4
with Sex, Age, and Smoking status as covariates in each
model. Using the variance components approach imple-
mented in the SOLAR package [6], we calculated the
heritability as the total phenotypic variance proportion
explained by additive genetic effects after accounting for
covariates. We scaled measures of qualitative traits (e.g.,
affection and Smoking status) so that the regression
coefficient represents the effect of having the covariate
present as opposed to absent.

Family-based association analysis
The GAW17 allele files were formatted for the QTDT
software [7]. The identity-by-descent (IBD) values were
made available by the GAW17 data providers. The pair-
wise IBD matrices were gene specific and were encoded
as 0, 0.5, or 1 (denoting sharing of 0, 1, or both alleles
identical by descent). Using direct association and var-
iance component analysis, we carried out four different
QTDT analyses combining the information provided by
common or rare variants.

Identifying candidate genes using polygenic additive
models
We obtained heritability estimates for affection status
using Age, Q4, and the information provided by rare and
common variants in each analyzed gene. We tested four
different ways to deal with such information. In the first
analysis, the total sum of rare alleles (synonymous and
nonsynonymous) was used as a continuous covariate in
the polygenic model. In the second analysis, only nonsy-
nonymous rare variants were considered; individuals
were coded as 0 for those homozygous for the wild-type
allele of a particular variant or as 1 for those presenting
at least one rare allele. The third analysis was based on
counting the absolute number of minor alleles in each
common SNP from a gene and using this variable as a

covariate in the polygenic model. In the fourth analysis,
the pedigrees were considered separately and each SNP
was used as a covariate in a polygenic model. Variants
reducing trait heritability in at least one family were
selected.

VEGAS analysis
VEGAS (versatile gene-based association study) suite
combines the HapMap Phase 2 haplotypic information
with association p.values of markers to establish a gene-
based p–value [8]. Initially, we defined the set of GAW17
SNPs that could be mapped to the HapMap phase 2 YRI
data set, which is composed of 8,850 variants.

Linkage analysis
We performed linkage analyses using the SOLAR package
[6]. To compose the map file, we used Haldane functions
to map chromosomal locations (in centimorgans). Then
we conducted two-point and multipoint linkage analyses
for each of the 22 chromosomes. The linkage analysis
used an interval of 5 cM and a fine-map parameter of 0.5.

KEGG pathway analysis
A reliable analytical approach can disentangle a complex
phenotype by presuming that associated genes share func-
tional characteristics and probably belong to the same bio-
logical pathways. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) database organizes biological pathways
knowledge. Initially, we downloaded the latest database
release (September 1, 2010) and determined which genes
were annotated in the KEGG database. We found that
1,032 genes were mapped in 189 pathways (a gene could
participate in more than one pathway). Annotated genes
represent only a third of the genes present in the GAW17
data set. A hypergeometric test were use to determined
overrepresented pathways [9].

Computer environment
All analyses were carried out in a computational environ-
ment composed of 24 Intel i7 computers summing a total
of 192 computing nodes. This cluster is managed by a
Linux Rocks distribution specially.

Results
Characteristics of the phenotype and polygenic analysis
We focused on trying to understand the genetic determi-
nants of the main phenotype, affection status, which has a
prevalence of approximately 30%. Using unrelated indivi-
duals from the first case-control data set, we were able to
observe that affection was significantly associated with
Age (odds ratio [OR], 1.07 per year; range, 1.05–1.08), Q1
(OR, 7.3; range 5.34–9.96), Q2 (OR, 2.6; range, 2.16–3.23),
Q4 (OR, 0.2; range, 0.19–0.30), and current Smoking (OR,
2.0; range, 1.41–2.28). In a multivariate logistic regression
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model (using only independent samples), we tested the
association of these variables and Affection Trait. . The
results as follows: Age (p = 0.06, OR 1.04), Smoking status
(p = 0.04, OR 2.25), Q1 (p < 0.001, OR 20.1), Q2 (p <
0.001, OR 20.6), and Q4 (p < 0.001, OR 0.06). Trait herit-
ability varied depending on the model specified; without
any covariates the heritability was only 0.10 (SE 0.07), but
we observed higher values when adjusting for different
covariates, especially for Age and Q4 (0.58) (Table 1). We
used this last model with Age and Q4 as covariates in
future mapping and association efforts because it maxi-
mized the trait’s heritability compared with a model with-
out covariates and because it was more parameterized.

Linkage analysis
Modest signals of linkage were observed in chromosomes
3, 5, and 11 with LOD scores of 1.03, 1.29, and 1.52,
respectively. Any one of these results would be accepta-
ble for a follow-up study. These somewhat modest results
could be due to the limited number of individuals in the
cohort and the use of a binary trait reducing statistical
power of this approach.

Associated genetic variants through polygenic models
A set of 15 causal genes was used to simulate individual
phenotypes. and we determined the sensitivity, specificity,
positive predictive value, and negative predictive value of
each strategy based on this set [10] (Table 2). The most
significant p-value for each causal gene observed in each
analysis is shown in Table 3,. The first analysis (Table 2,
column A) used the absolute count of rare variants as a

covariate, and it presented low sensitivity and low posi-
tive predictive Only one true causal gene (PTK2) was
detected (Table 3, column A). Only 19 of the detected
genes could be annotated in 16 KEGG pathways (8 of
them enriched).
In the second analysis, we created a binary variable indi-

cating whether or not a transcript carried a nonsynon-
ymous variant. It was expected that the addition of
biological information would enhance the specificity of the
polygenic model (Table 2, column B). Thirty-nine genes
were detected, but only one causal gene, PTK2, and six
KEGG pathways were considered enriched. Nonsynon-
ymous variants selection is rather simplistic because it
ignores a large proportion of synonymous variants that
may be important for gene regulation. The p-values of the
causal genes obtained in this analysis also show that the
biological information did not assist in the detection of
causal genes (Table 3). Indeed, with the exception of
PTK2, all p-values were equal to or greater than those
obtained with the first approach (Table 3, columns A and
B). Rare genetic variants have a low population frequency
and sometimes are family specific. To detect such variants,
we proposed an alternative approach that relied on separ-
ating pedigrees and using the polygenic model to detect
rare variants that altered trait heritability in at least one
family. This analysis was not successful because many var-
iance component models did not converge. This could be
credited to an analytical limitation imposed by a binary
trait and the limited number of individuals possessing rare
variants (data not shown).
Using the same strategy, we investigated the informa-

tion provided by common variants by counting the
number of minor alleles in each gene for each individualTable 1 Heritability estimates for the affection status

from polygenic models with different covariates

Model h2 (SE) SC KL

No covariance 0.10 (0.07) – –

Age, Sex, Smoking, and
interactions

0.55 (0.16) Age,
Smoking

0.27

Q1, Q2, Q4, and interactions 0.06 (0.18) (ns) Q1, Q2, Q4 0.63

Age 0.53 (0.15) Age 0.24

Smoking 0.11 (0.08) Smoking 0.02

Q1 0.17 (0.13) (ns) Q1 0.32

Q2 0.005 (0.07)
(ns)

Q2 0.12

Q4 0.60 (0.15) Q4 0.27

Q1 × Q2 0.03 (0.07) (ns) Q1 × Q2 0.03

Q1 × Q4 0.15 (0.08) Q1 × Q4 0.02

Q2 × Q4 0.11 (0.06) Q2 × Q4 0.01

Q4, Age 0.58 (0.15) Q4, Age 0.27

Q1, Q2 0.13 (0.13) (ns) Q1, Q2 0.39

Q2, Age 0.42 (0.17) Q2, Age 0.44

The h2 column contains the heritability estimates of the affection status using
the model defined in the model column. The SC column lists the covariates
that were found to be significant in the model. The KL column gives the
Kullback-Leibler R2 statistic. ns, nonsignificant.

Table 2 Sensitivity, specificity, and positive and negative
predictive values of each tested approach

A B C D E F G H

Sensitivity 0.066 0.066 0.133 0.600 0.066 0.133 0.133 0.133

Specificity 0.987 0.984 0.978 0.761 0.994 0.993 0.979 0.978

Positive
predictive value

0.020 0.025 0.029 0.001 0.052 0.095 0.029 0.028

Negative
predictive value

0.995 0.995 0.995 0.997 0.995 0.995 0.995 0.995

Each column represents a tested approach: (A) Using the absolute sum of rare
variants as a covariate in the polygenic model, using the entire cohort.
Selected genes were those that significantly reduced the trait heritability. (B)
Using the absolute sum of nonsynonymous rare variants as a covariate in the
polygenic model, using the entire cohort. Selected genes were those that
significantly reduced the trait heritability. (C) Counting the absolute number
of minor alleles in each common variant from a gene and using the gene as a
covariate in the polygenic model. (D) Using the number of minor alleles
present in common variants as a covariate in the polygenic model, using each
family separately. Selected variants were those that significantly reduced the
trait heritability in at least one family. (E) QTDT results using the common
variants and a linear model of association. (F) QTDT results using common
variants and the variance components model. (G) QTDT results using rare
variants and a linear model of association. (H) QTDT results using rare variants
and the variance components model.
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in the cohort. Sixty-seven genes were found to be asso-
ciated, and only two of them were causal genes (PTK2B
and SOS2), that were not detect by any rare variant
approach (Table 3, column C). Three KEGG pathways
could be considered enriched. In the last polygenic
model tested, we searched for SNPs carrying allelic
information that significantly reduced trait heritability in
at least one family. This approach had significantly
higher sensitivity (60%) compared to the previous
approaches, but it was compromised by low positive
predictive value because 767 genes were detected (Table
2, column D).

QTDT association analysis
We used QTDT to test for association using a linear
model of association and the parental information as
covariates in separate sets of common and rare variants.
When we inspected the common variants panel, we

detected only one causal gene (PTK2B). This first tested
QTDT approach presented low sensitivity but a signifi-
cant increase in the positive predictive value (0.05)
because only 19 genes showed evidence of association
(p < 0.05) (Table 2, column E). We next applied the
VEGAS approach and found that 135 genes with only 2
causal genes (PIK3R3 and PTK2B) were considered sig-
nificant. The same panel was inspected using a variance
components approach with the same regression model
applied to the polygenic model (Q4 and Age as covari-
ates). Twenty-one genes and two causal genes were
detected. This approach had similar sensitivity and spe-
cificity to the first tested QTDT approach (Table 2, col-
umn F). We found that 135 genes were associated by
using the VEGAS approach, but no causal genes were
detected.
When we applied a linear model of association to the

rare variants panel, we detected 68 genes pinpointed by

Table 3 Observed p-values of causal genes in each tested approach and, when applicable, the genetic variant
detected

Gene A B C D E F G H

AKT3 0.52, NA
−0.74 (0.16)

0.52, NA
−0.74 (0.16)

NCV NCV NCV NCV 1, NA
NC (0.16)

1, NA
NC (0.16)

BCL2L11 0.53, NA
−0.21 (0.22)

0.96, NA
−0.02 (0.22)

0.74, NA
−0.03 (0.27)

0.43, C2S2309
0.17 (0.27)

1, NA
NC (0.27)

1, NA
NC (0.27)

1, NA
NC (0.27)

1, NA
NC (0.27)

ELAVL4 0.01*, NA
−0.76 (0.21)

0.98, NA
−0.02 (0.21)

0.28, NA
−0.12 (0.30)

0.01, C1S3201
0.46 (0.30)

1, NA
NC (0.30)

1, NA
NC (0.30)

1, NA
NC (0.30)

1, NA
NC (0.30)

HSP90AA1 0.09, NA
−0.30 (0.04)

0.32, NA
−0.41 (0.04)

0.63, NA
−0.06 (0.04)

0.008, C14S3706
0.20 (0.04)

0.29, C14S3706
−0.03 (0.04)

0.21, C14S3706
−0.15 (0.04)

1, NA
NC (0.04)

1, NA
0.14 (0.04)

NRAS 1, NA
0.00 (0.18)

1, NA
0.00 (0.18)

NCV NCV NCV NCV 1, NA
NC (0.18)

1, NA
NC (0.18)

PIK3C2B 0.61, NA
0.05 (0.18)

0.69, NA
−0.06 (0.18)

0.45, NA
0.12 (0.30)

0.0006, C1S9210
1.47 (0.30)

1, NA
NC (0.30)

1, NA
NC (0.30)

0.01, C1S9183
0.13 (0.30)

0.04, C1S9183
0.11 (0.30)

PIK3C3 1, NA
0.00 (0.28)

1, NA
0.00 (0.28)

0.23, NA
−0.63 (0.34)

0.27, C18S2479
0.02 (0.34)

1, NA
NC (0.34)

1, NA
NC (0.34)

1, NA
NC (0.34)

1, NA
NC (0.34)

PIK3R3 0.12, NA
5.16 (0.17)

1, NA
0.00 (0.17)

0.23, NA
−0.11 (0.17)

0.08, C1S2903
0.30 (0.17)

0.005, C1S2903
0.02 (0.17)

0.005, C1S2903
0.02 (0.17)

0.003, C1S2864
0.15 (0.17)

0.003, C1S2864
0.15 (0.17)

PRKCA 0.82, NA
−0.21 (0.10)

1, NA
0.00 (0.10)

0.24, NA
0.11 (0.17)

0.035, C17S3578
0.64 (0.17)

0.15, C17S4567
0.04 (0.17)

0.15, C17S4567
0.04 (0.17)

1, NA
NC (0.17)

1, NA
NC (0.17)

PRKCB1 0.47, NA
0.15 (0.23)

0.62, NA
0.27 (0.23)

0.75, NA
0.02 (0.23)

0.11, C16S1808
0.29 (0.23)

1, NA
NC (0.23)

1, NA
NC (0.23)

1, NA
NC (0.23)

1, NA
NC (0.23)

PTK2 0.04, NA
−1.62 (0.03)

0.04, NA
0.27 (0.03)

0.17, NA
−0.28 (0.03)

0.029, C8S4830
0.26 (0.03)

1, NA
NC (0.03)

1, NA
NC (0.03)

1, NA
NC (0.03)

1, NA
NC (0.03)

PTK2B 0.89, NA
0.08 (0.13)

1, NA
0.00 (0.13)

0.003, NA
−0.22 (0.20)

0.01, C8S911
−0.14 (0.20)

0.001, C8S911
0.05 (0.20)

0.001, C8S911
0.05 (0.20)

1, NA
NC (0.20)

1, NA
NC (0.20)

RRAS 0.41, NA
−0.19 (0.17)

0.61, NA
−0.42 (0.17)

0.33, NA
0.10 (0.20)

0.08, C19S4940
0.07 (0.20)

1, NA
NC (0.20)

1, NA
NC (0.20)

1, NA
NC (0.20)

1, NA
NC (0.20)

SHC1 0.71, NA
−0.35 (0.09)

1, NA
0.00 (0.09)

0.15, NA
−0.17 (0.09)

0.03, C1S7055
0.00 (0.09)

1, NA
NC (0.09)

1, NA
NC (0.09)

1, NA
NC (0.09)

1, NA
NC (0.09)

SOS2 1, NA
0.00 (0.25)

1, NA
0.00 (0.25)

0.008, NA
−0.26 (0.28)

0.009, C14136
−0.21 (0.28)

1, NA
NC (0.28)

1, NA
NC (0.28)

1, NA
NC (0.28)

1, NA
NC (0.28)

Each cell gives four pieces of information: In the top line, the p-value and the associated genetic variant resulting from a nonconvergent model (or NA if it was
not applicable) are given. An asterisk next to the p-value indicates that the gene was significant but enhanced the trait’s heritability. In the second line of each
cell, the regression b value obtained in each analysis and the b value used by the GAW17 organization in the data simulation (in parentheses) are given; NC
indicates genes not presenting a convergent QTDT model. NCV (no common variants) in a cell indicates that the gene did not present any common variants.
Columns A and B were compared to the mean value of b of the simulated SNPs, and columns C–H were compared to the top b among simulated SNPs. The
tested approaches A–H are defined in Table 2.
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75 associated rare variants. This approach detected only
two causal genes (PIK3R3 and PIK3C2B) (Table 3, col-
umn G), and the increased sensitivity was accompanied
by a reduction in the positive predictive value (Table 2,
column G). When gene-based scores were established,
174 genes were considered associated, but no causal
genes were detected. The variance component approach
detected 71 genes, and the same 2 causal genes were
identified (PIK3R3 and PIK3C2B) (Table 3, column H).
This approach presents a similar level of sensitivity and
specificity as the other QTDT approaches (Table 2, col-
umn H). Using gene-based scores, we pinpointed a
group of 27 genes but did not detect any causal genes.
The limitation of the gene-based scores is directly
related to the limited information regarding human rare
variants in the current HapMap database.

Discussion
Despite the relative success of GWAS in diseases such as
and diabetes mellitus type 2 [11], their widespread use is
rather limited in complex diseases. Markers identified by
these studies explain only a small proportion of trait herit-
ability.. Next-generation sequencing allows rare genetic
variants (MAF < 0.01) of medical interest to be identified
in any individual and those can be used to resolve the miss-
ing heritability paradox [12]. Because rare variants are
almost family specific, their discovery and interpretation
are best suited for family-based approaches [13]. There are
many uncertainties about how to deal with rare variants;
most approaches have been tested in case-control samples
[2,14]. Collapsing methods summarize rare variant infor-
mation using a counting method or a synthetic marker to
capture the information provided by the haplotypic block
underlying these variants [14]. In this report, we tested sev-
eral statistical approaches to study rare variants using the
familiar structure.
We serially tested and compared different ways to deal

with the information provided by rare and common var-
iants. We did not apply a multiple hypotheses testing cor-
rection in analyses because of the limited number of
individuals in the cohort and consequent low power of the
analysis. The threshold (0.05) is not realistic for deep-
sequencing projects or GWAS where multiple-test correc-
tion is mandatory. Table 3 highlights the limitations of
existing methods for dealing with rare genetic variants;
these limitations are partly due to the use of a less infor-
mative binary trait. All tested approaches showed low sen-
sitivity and low positive predictive value. The polygenic
model using the information provided by common var-
iants that alters trait heritability in at least one family pre-
sents the highest level of sensitivity but the lowest positive
predictive value. It is noteworthy that some causal genes
were detected by more than one approach. On the other
hand, several causal genes (AKT3, BCL2L11, NRAS,

PIK3C3, PRKCB1, and RRAS) were not detected using any
of the explored methods (Table 3).
Biological information is progressively being added to

regression models, allowing researchers to capture mean-
ingful genetic information [15]. This premise was tested
by the sole use of nonsynonymous variants information
but was not successful endeavor (Table 2, columns A and
B).. Although the use of pathway annotation databases
has solid biological premises, it is seriously compromised
by our limited knowledge. Only a third of the genes had
entries in the KEGG database, and, consequently, any
kind of annotation would have neglected a significant
proportion of information. Gene-based association tests
that use population-specific haplotypic substructure will
probably be less affected by an isolated false-positive sig-
nal. This was not effective in our analysis because most
of the rare variants present in the GAW17 data set are
not cataloged in the HapMap database. With the comple-
tion of the 1000 Genomes Project, an impressive amount
of rare variants will be detected and cataloged, making
the approach more realistic. Information from rare var-
iants is promising but requires a new generation of data-
bases and tools to effectively to be mined in the next
generation of genetic epidemiological projects.

Conclusions
GWAS are the leading tool for identification of genetic
markers that underlie phenotypes of interest. This infor-
mation should be combined with rare variants identified
by deep-sequencing projects. In this study, we serially
tested different ways to deal with the information pro-
vided by rare genetic variants, and none was found to be
especially superior to another. Our results could be ser-
iously jeopardized by how the data were simulated or the
limitation of the SOLAR package to deal with binary
traits. But, based on our results, it is possible to pinpoint
the necessity of new and more customized methods to
deal with rare variants, especially in a family study design.
In the next few years, we will be flooded with the data
generated by deep-sequencing platforms, and these new
methods will play a central role.
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