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Changes in retinal microvasculature 
and retinal layer thickness 
in association with apolipoprotein 
E genotype in Alzheimer’s disease
Joo Youn Shin1, Eun Young Choi2, Min Kim2*, Hyung Keun Lee2 & Suk Ho Byeon1

Biomarker tests of Alzheimer’s disease (AD) are invasive and expensive. Recent developments in 
optical coherence tomography (OCT) and OCT angiography (OCTA) have enabled noninvasive, 
cost-effective characterization of retinal layer vasculature and thickness. Using OCTA and OCT, we 
characterized retinal microvascular changes in the mild cognitive impairment (MCI) stage of AD and 
assessed their correlation with structural changes in each retinal neuronal layer. We also evaluated 
the effect of the APOE-ε4 genotype on retinal microvasculature and layer thickness. Retinal layer 
thickness did not differ between MCI patients (40 eyes) and controls (37 eyes, all p > 0.05). MCI patients 
had lower vessel density (VD) (p = 0.003) of the superficial capillary plexus (SCP) and larger foveal 
avascular zone area (p = 0.01) of the deep capillary plexus (DCP) than those of controls. VD of the SCP 
correlated with the ganglion cell layer (r = 0.358, p = 0.03) and inner plexiform layer thickness (r = 0.437, 
p = 0.007) in MCI patients. APOE-ε4-carrying MCI patients had a lower VD of the DCP than non-carriers 
(p = 0.03). In conclusion, retinal microvasculature was reduced in patients with AD-associated MCI, but 
retinal thickness was not changed; these changes might be affected by the APOE genotype. OCTA of 
the retinal microvasculature may be useful to detect vascular changes in AD.

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by a gradual decline in mem-
ory and cognitive function. The main pathological features are the deposition of Aβ-peptide and hyperphos-
phorylation of tau protein; however, vascular factors are also considered to be involved in the pathophysiology 
of AD1. Although environmental factors may affect the risk of sporadic AD, studies in twins have suggested that 
genetic factors play a critical role in late-onset AD2. Among the many susceptibility genes for AD, the ε4 allele 
of apolipoprotein E (APOE-ε4) is the major genetic risk factor for both early- and late-onset AD3. APOE-ε4 carri-
ers were reported to have an increased risk of AD (3–15 times) in a gene dose-dependent manner4; these carriers 
showed different treatment responses to amyloid removal therapy and had more vasogenic edema5, suggesting 
a different mechanism of action of APOE-ε4 in the pathogenesis of AD.

Currently available treatments for AD aim to maximize the remaining activity of the neurons affected by the 
disease, although they cannot slow down its progression. Thus, there is a great interest in finding biomarkers 
to screen individuals in the earlier stage of the disease, including those with mild cognitive impairment (MCI) 
or early AD who would benefit from potential therapy. Current AD biomarker tests mainly include positron 
emission tomography (PET) or cerebrospinal fluid testing, which is highly invasive and expensive. Noninvasive, 
technically simple, and inexpensive biomarkers are needed for diagnosis or therapeutic monitoring of AD in the 
clinical setting or population-wide screening6.

The retina shares similar anatomical and physiological features with the brain; numerous studies have reported 
changes in the retina in patients with AD, suggesting that the retina can be a possible biomarker for diagnosing, 
screening, and managing AD in clinical practice7. The retina can be noninvasively assessed using high-resolution 
images obtained with optical coherence tomography (OCT). Thinning of the retinal nerve fiber layer (RNFL) and 
ganglion cell-inner plexiform layer (GC-IPL), and decreased macular volume have been reported to be associated 
with AD7,8. A recent study reported that a thinner RNFL at baseline indicates an increased risk of dementia and 
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AD over the follow-up period, suggesting that OCT measurements of the retina can help identify individuals at 
a high risk of very early cognitive changes and can help develop better clinical trials9,10.

Recent developments in OCT angiography (OCTA) have enabled the characterization of the vasculature in 
retinal layers at the micrometer level, providing a quantitative assessment of the microvascular structure in the 
retina. A few studies have reported changes in the microvasculature of AD patients using OCTA, suggesting 
the presence of retinal microvascular dysfunction11–15; however, little is known about the relationship between 
changes in the retinal microvasculature and retinal neuronal layers and the APOE-ε4 genotype. In the current 
study, we aimed to characterize retinal microvascular changes that occur in the MCI stage of AD using OCTA 
and assess their correlation with retinal structural changes in each retinal neuronal layer. In addition, we evalu-
ated the effect of the APOE-ε4 genotype on retinal microvasculature and retinal layer thickness.

Results
Baseline characteristics and thickness of each retinal layer.  A total of 40 eyes from 24 patients with 
MCI owing to AD and 37 eyes from 31 control subjects were analyzed. All participants were Asians (Korean) 
and had a global Clinical Dementia Rating (CDR) score of 0.5 and a Mini-Mental State Examination (MMSE) 
score of > 24. The baseline characteristics of the MCI and control groups are shown in Table 1. There were no 
statistically significant differences in terms of age (p = 0.15), sex (p = 0.17), spherical equivalent (SE; p = 0.84), 
visual acuity (p = 0.28), and presence of diabetes mellitus (p = 0.30) and hypertension (p = 0.21) between the two 
groups. No significant differences were found in total retinal thickness (p = 0.87) and thickness of each retinal 
layer between the MCI and control groups.

Comparison of OCTA parameters between MCI patients and controls.  In the superficial capillary 
plexus (SCP), significantly lower vessel density (VD) was observed in the MCI group than in the control group 
(p = 0.003), whereas there was no significant difference in the foveal avascular zone (FAZ) area (p = 0.17). In the 
deep capillary plexus (DCP), there was no difference in VD (p = 0.80) between the MCI and control groups; 
however, a larger FAZ area was observed in the MCI group than in the control group (p = 0.011) (Table 2).

The comparison of VDs of the SCP in each subfield between the two groups revealed that the MCI group had 
a significantly lower density than the control group in the whole subfield, except for the nasal inner (p = 0.25) 
and outer subfields (p = 0.53) (Table 3).

Correlation of VD with the thickness of each retinal layer.  In the MCI group, the VD of the SCP was 
significantly correlated with ganglion cell layer (GCL) thickness (p = 0.03) and inner plexiform layer (IPL) thick-
ness (p = 0.007), whereas the VD of the DCP showed no correlation with the thickness of all retinal neuronal 
layers. Meanwhile, there was no significant correlation between VD and thickness of each retinal layer in both 
SCP and DCP in the control group (Table 4).

Comparison of OCT and OCTA parameters between APOE‑ε4 carriers and non‑carriers.  The 
APOE genotype was evaluated in 16 MCI patients, of whom six (10 eyes) were APOE-ε4 carriers, and 10 (18 

Table 1.   Demographic characteristics and retinal neuronal layer thickness of the participants. MCI = mild 
cognitive impairment, M = male, F = female, DM = diabetes mellitus, HTN = hypertension, SE = spherical 
equivalent, OD = right eye, OS = left eye, VA = visual acuity, logMAR = logarithm of the minimum angle of 
resolution, RNFL = retinal nerve fiber layer, GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner 
nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer, RPE = retinal pigment epithelium, 
SD = standard deviation. *p < 0.05.

MCI (n = 40) Controls (n = 37) p-value

Age, mean ± SD, years 72.8 ± 8.6 69.0 ± 10.4 0.15

Sex (M/F), (n/n) 25/15 17/20 0.17

DM (n) 3 6 0.30

HTN (n) 9 14 0.21

OD/OS (n/n) 20/20 19/18  > 0.999

SE, mean ± SD, Diopter −0.48 ± 2.1 −0.45 ± 1.8 0.84

VA, mean ± SD, logMAR 0.03 ± 0.05 0.04 ± 1.8 0.28

Retinal neuronal layer thickness, mean ± SD, μm

Total retina 315.1 ± 14.2 314.9 ± 14.4 0.87

RNFL 20.0 ± 2.4 19.9 ± 2.5 0.95

GCL 39.1 ± 3.8 38.3 ± 6.3 0.92

IPL 34.6 ± 2.1 33.9 ± 3.6 0.47

INL 37.2 ± 3.9 36.1 ± 3.3 0.20

OPL 33.7 ± 4.7 33.5 ± 5.1 0.83

ONL 67.5 ± 9.9 68.3 ± 8.5 0.96

RPE 15.3 ± 1.7 16.0 ± 1.9 0.25
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Table 2.   Comparison of optical coherence tomography angiography parameters between patients with mild 
cognitive impairment and controls. MCI = mild cognitive impairment, SCP = superficial capillary plexus, 
FAZ = foveal avascular zone, VD = vessel density, DCP = deep capillary plexus, SD = standard deviation. 
*p < 0.05.

MCI (n = 40) Controls (n = 37) p-value

SCP, mean ± SD

FAZ (mm2) 0.31 ± 0.11 0.27 ± 0.09 0.17

VD (%) 14.0 ± 3.9 16.3 ± 2.5 0.003*

DCP, mean ± SD

FAZ (mm2) 0.95 ± 0.24 0.80 ± 0.20 0.011*

VD (%) 25.5 ± 1.9 25.6 ± 1.8 0.80

Table 3.   Comparison of the vessel densities of the superficial capillary plexus in each subfield between the 
groups. MCI = mild cognitive impairment, SD = standard deviation. *p < 0.05.

Subfield, mean ± SD MCI (n = 40) Controls (n = 37) Raw p-value Benjamini–Hochberg p-value

Central (%) 5.63 ± 3.9 7.8 ± 3.4 0.007* 0.013*

Inner superior (%) 14.2 ± 4.4 16.5 ± 3.3 0.012* 0.018*

Inner nasal (%) 14.1 ± 4.7 15.5 ± 3.8 0.22 0.248

Inner inferior (%) 14.2 ± 4.6 16.1 ± 3.9 0.032* 0.041*

Inner temporal (%) 14.2 ± 4.4 16.8 ± 3.1 0.002* 0.009*

Outer superior (%) 14.4 ± 4.4 17.0 ± 2.4 0.006* 0.013*

Outer nasal (%) 15.9 ± 4.7 16.9 ± 3.4 0.53 0.53

Outer inferior (%) 13.8 ± 4.4 16.5 ± 2.4 0.003* 0.009*

Outer temporal (%) 13.2 ± 4.4 16.7 ± 3.3  < 0.001*  < 0.001*

Table 4.   Correlation of vessel density with each retinal neuronal layer thickness in the two groups. MCI = mild 
cognitive impairment, VD = vessel density, SCP = superficial capillary plexus, RNFL = retinal nerve fiber layer, 
GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer plexiform layer, 
ONL = outer nuclear layer, RPE = retinal pigment epithelium, DCP = deep capillary plexus. *p < 0.05.

MCI Controls

Spearman’s correlation coefficient p-value Spearman’s correlation coefficient p-value

Correlation with VD of the SCP

Total retina 0.224 0.18 0.125 0.52

RNFL − 0.220 0.19 − 0.122 0.53

GCL 0.358 0.030* 0.120 0.54

IPL 0.437 0.007* 0.170 0.38

INL 0.089 0.60 − 0.073 0.71

OPL 0.133 0.43 − 0.379 0.053

ONL 0.051 0.76 0.335 0.076

RPE 0.141 0.40 0.167 0.39

Correlation with VD of the DCP

Total retina − 0.101 0.55 0.427 0.20

RNFL − 0.280 0.09 0.218 0.26

GCL 0.118 0.49 0.095 0.62

IPL − 0.131 0.44 0.223 0.24

INL − 0.234 0.16 0.382 0.40

OPL − 0.118 0.49 0.085 0.66

ONL 0.115 0.50 0.179 0.35

RPE 0.056 0.74 − 0.133 0.49
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eyes) were non-carriers (Table 5). There was no significant difference in terms of age (p = 0.27), sex (p = 0.41), 
MMSE scores (p = 0.56), and Seoul Neuropsychological Screening Battery (SNSB) scores (p = 0.58). There was no 
difference in the FAZ area of the SCP (p = 0.65) and the FAZ area of the DCP (p = 0.21) between the two groups. 
APOE-ε4 carriers had lower VD of the DCP than non-carriers (p = 0.03), whereas there was no difference in VD 
of the SCP (p = 0.83). In terms of retinal layer thickness, no significant difference was observed in each retinal 
layer with regard to APOE-ε4 status.

Discussion
In the current study, patients with MCI owing to AD had lower VD of the SCP compared with controls who 
showed no decrease in the thickness of each retinal layer. Furthermore, lower VD was correlated with thinner 
GCL and IPL in MCI patients, suggesting that changes in the retinal microvasculature occur in the earlier stages 
of AD, and these changes may precede the reduction of retinal thickness in patients with AD. In addition, we 
demonstrated differences in the retinal microvasculature under different APOE-ε4 statuses, indicating that the 
APOE genotype might also affect the changes in retinal microvasculature.

AD is pathologically characterized by amyloid deposits and neurofibrillary tangles. Furthermore, vascular 
dysfunction has been reported in patients with AD1, although it is unclear whether it precedes and contributes to 
neural death or whether it is an incidental effect of decreased metabolic demand. Cerebral vascular impairment 
was recognized as one of the earliest pathologic features in AD16, and histopathological studies have shown the 
presence of cerebral capillary degeneration1,17. Furthermore, the accumulation of amyloid-beta deposits in the 
internal vessel walls was suggested to cause the occlusion of vascular structures and decrease the blood flow13. 
The results of recent studies using OCTA show that these vascular changes occur not only in the cerebral vas-
culature, but also in the retinal microvasculature in patients with AD. Decreased retinal VD has been reported 
in patients with AD, MCI, and preclinical AD11–14. A progressive trend of retinal microvascular loss (both in the 
SCP and DCP) was observed because of MCI owing to AD, indicating retinal vascular impairment during disease 
progression, which may contribute to the potential conversion from MCI to AD11. Our results also showed lower 
VD of the SCP and larger FAZ area of the DCP in MCI patients than in controls.

Several studies have reported significant retinal thinning of the GC-IPL and a reduction in macular thickness 
and macular volume in the eyes of AD patients7,8. The proposed hypotheses include retrograde degeneration 
from loss of cortical neurons or inflammation, amyloid and neurofibrillary tangles disrupting normal retinal 
cell function, and reduced vascularization. The retinal thickness (peripapillary RNFL and macular GC-IPL) was 
reported to be generally lower in MCI patients than in controls; however, the magnitude failed to reach a statisti-
cal significance in a meta-analysis7. The lack of statistical significance may be partly owing to a small number of 
eligible studies. Moreover, it has been hypothesized that activation of Müller cells and swelling of neurons may 
occur in the early stages of neurodegeneration, resulting in an increase in macular thickness18. In this study, 
we compared the thickness of all the layers of the retina between MCI patients and controls using automated 
segmentation software and found no significant differences between the two groups. Our results showed that sig-
nificantly lower VD was observed in the MCI group than in the control group, although there was no significant 

Table 5.   Optical coherence tomography and optical coherence tomography angiography parameters of 
APOE-ε4 carriers and non-carriers. APOE = apolipoprotein E, M = male, F = female, FAZ = foveal avascular 
zone, SCP = superficial capillary plexus, DCP = deep capillary plexus, VD = vessel density, RNFL = retinal 
nerve fiber layer, GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer 
plexiform layer, ONL = outer nuclear layer, RPE = retinal pigment epithelium, SD = standard deviation. 
*p < 0.05.

APOE-ε4 +  APOE-ε4- p-value

n 10 18

Age, mean ± SD, years 71.1 ± 7.1 73.2 ± 6.5 0.27

Sex (M/F), (n/n) 5/5 13/5 0.41

Retinal microvasculature, mean ± SD

FAZ area (mm2)-SCP 0.32 ± 0.09 0.31 ± 0.10 0.65

FAZ area (mm2)-DCP 1.04 ± 0.24 0.91 ± 0.26 0.21

VD (%)—SCP 14.4 ± 3.8 14.4 ± 3.5 0.83

VD (%)—DCP 24.3 ± 1.8 26.0 ± 2.0 0.03*

Retinal layer thickness, mean ± SD, μm

Total retina 315.8 ± 14.2 316.2 ± 13.8 0.80

RNFL 21.0 ± 3.3 19.8 ± 1.8 0.45

GCL 39.7 ± 4.7 39.7 ± 3.3 0.60

IPL 35.6 ± 1.7 34.6 ± 1.9 0.15

INL 37.9 ± 3.5 36.6 ± 4.2 0.36

OPL 35.2 ± 4.9 32.2 ± 3.1 0.17

ONL 64.7 ± 9.1 69.3 ± 9.5 0.23

RPE 14.7 ± 1.7 15.7 ± 1.4 0.07



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1847  | https://doi.org/10.1038/s41598-020-80892-z

www.nature.com/scientificreports/

difference in the retinal neuronal thickness. This suggests that changes in the retinal microvasculature precede 
detectable changes in retinal neuronal thickness, and thus, they could be earlier biomarkers.

We also demonstrated a correlation between retinal microvasculature and the thickness of each retinal layer 
in the eyes of MCI patients. A previous study reported a correlation between loss of retinal microvasculature in 
the DCP and GC-IPL thinning in the AD group11, whereas our results showed that VD of the SCP was correlated 
with GCL and IPL thickness. Considering that GCL-IPL is mainly supplied by the SCP, our results suggest that 
these retinal changes, namely GCL and IPL thinning and reduction of retinal microvasculature, are related to 
each other instead of being independent occurrences. Further exploration of this association is needed to eluci-
date this relationship, and it may improve our understanding of the dynamics of AD pathology in the nervous 
system, which has important implications for determining AD risk.

The APOE-ε4 is the most common genetic risk factor for AD and is linked to other neurodegenerative condi-
tions that affect cognition. APOE is known to modulate multiple mechanistic pathways, including cholesterol/
lipid homeostasis, synaptic function, glucose metabolism, neurogenesis, tau phosphorylation, neuroinflamma-
tion, and aggregation of Aβ in the central nervous system. In addition, APOE genotypes differentially modulate 
the function of the cerebral vasculature, reduce cerebral blood flow, and increase blood–brain barrier leakage and 
cerebral amyloid angiopathy19. Reduced electroretinography responses and lower retinal and choroidal vascular 
endothelial growth factor were reported in APOE-ε4 mice20,21. In our study, we showed that APOE-ε4 carriers 
had decreased VD of the DCP compared with non-carriers, suggesting that the APOE genotype causes changes 
in the microvasculature. Subsequent studies with a larger number of patients are needed.

This study had some limitations. The major limitation was the relatively small sample size, and this may 
have resulted in a lack of significant findings in some analyses. In particular, since the comparison of OCT and 
OCTA parameters between APOE-ε4 genotypes was an explorative analysis including a small number of eyes, 
we did not apply multiple testing adjustments. Further investigations with a large sample size are required. We 
only analyzed a single ethnic group (Korean) thus our results may not be generalizable to other populations. 
Comparisons among various ethnic groups would be interesting topics for future studies. Although there were no 
statistically significant differences, older age in the MCI group could have possibly influenced OCTA results. In 
this study, we analyzed MCI patients who were easily accessible in our clinical practice, but further longitudinal 
studies including preclinical AD, MCI, and AD participants will be needed to determine whether the evaluation 
of the retinal microvasculature using OCTA has value as an early biomarker in AD.

In conclusion, retinal microvasculature changes in patients with MCI owing to AD were detected using 
OCTA, and lower VD of the SCP was correlated with thinner GCL and IPL in these patients. This suggests that 
changes in the retinal microvasculature precede the reduction in the thickness of the retinal layers in patients 
with MCI owing to AD. The APOE genotype may also affect changes in retinal microvasculature. Evaluation of 
the retinal microvasculature may be used as a potential biomarker to detect vascular changes in MCI owing to 
AD and could be a new imaging target for early diagnosis and management of AD.

Methods
This case–control study was approved by the institutional review board of Yonsei University College of Medicine 
(IRB approval number: 3–2018-0156) and was conducted in accordance with the tenets of the Declaration of 
Helsinki. All study participants provided informed consent. We recruited patients and controls from the Gang-
nam Severance Hospital between September 2017 and December 2018. Trained and qualified neurologists made 
the diagnosis of MCI owing to AD based on the National Institute on Aging-Alzheimer’s Association criteria22. 
All MCI subjects tested positive for Aβ deposition in the brain on18F‐florbetaben amyloid PET; brain magnetic 
resonance imaging and laboratory tests (e.g., thyroid function tests, serum vitamin B12, and folate levels) were 
performed to exclude other causes of cognitive decline. The MCI group underwent a neuropsychological test 
battery (MMSE, CDR, and SNSB23) for the assessment of global cognitive function. Genetic testing for APOE 
was performed only in patients who agreed to undergo the testing. The control group comprised of volunteers 
who were scheduled to undergo cataract surgery and who were clinically assessed as cognitively normal based 
on clinical interviews with patients and their caregivers. The control group subjects had no history of amnesia 
and no previous history of head trauma or neurological or psychiatric illness. We excluded subjects previously 
diagnosed with clinically apparent AD, uncontrolled hypertension, or uncontrolled diabetes.

All subjects underwent corrected distance visual acuity (logMAR), intraocular pressure (mmHg), and spheri-
cal equivalent measurements. Detailed anterior segment and fundus examinations were performed, and wide-
field color fundus images were taken using a laser scanning ophthalmoscopy device (Optomap; Optos Plc., 
Dunfermline, UK). Examination of the microvasculature and retinal thickness of each layer of the macula was 
performed using two different devices, ZEISS OCTA and SPECTRALIS OCT, respectively, on the same day.

We performed OCTA (ZEISS HD-OCT Model 5000 instrument with AngioPlex, Carl Zeiss Meditec, Dublin, 
CA, USA) to examine the retinal microvasculature covering a macular area of 6 × 6 mm centered on the fovea for 
the SCP and DCP of the retina. The projection artifacts of the superficial layer were removed in the deep-layer 
images using built-in software. All images were exported into the Image J 1.50 software (National Institutes of 
Health, Bethesda, MD, USA) to measure the FAZ area and VD. We manually outlined the FAZ using the polygon 
selection tool24,25 and calculated the VD of the 6 × 6-mm macula, except the FAZ (central foveal 0.5-mm radius 
area), by image thresholding, binarization, and skeletonization according to the methods described in a previous 
study26. Two independent researchers (EYC and JYS) obtained and evaluated OCTA findings, and the average 
values were used for the statistical analysis. In the analysis of the FAZ and VD in Image J, and manual edits of 
OCTA segmentation, researchers were masked to participant characteristics to avoid bias.

To examine the thickness of each retinal layer, we used SPECTRALIS OCT (Spectralis HRA + OCT; Heidel-
berg Engineering, Franklin, MA, USA) to scan a macular area of 6 × 4 mm centered on the fovea. The retinal 
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segmentation software accompanying the device was used to identify each retinal neuronal layer and quantify its 
thickness; the software automatically calculated the average retinal thickness of each retinal layer. For the analysis, 
retinal layers were divided into RNFL, GCL, IPL, inner nuclear layer, outer plexiform layer, outer nuclear layer, 
and retinal pigment epithelium (RPE).

We reviewed all segmentation images of OCTA and OCT and manually modified significant segmentation 
errors. We excluded eyes with retinal diseases (e.g., age-related macular degeneration, diabetic retinopathy, 
epiretinal membrane, and macular hole), optic nerve diseases (e.g., glaucoma, and ischemic optic neuropathy), 
significant media opacity with poor quality (signal strength < 70 on OCTA and < 25 on OCT), or high refractive 
error over ± 6D from the analysis. Thus, eight eyes from the MCI group (two eyes with epiretinal membrane, 
five eyes with drusen or RPE changes, one eye with low signal strength) and 25 eyes of controls (three eyes with 
epiretinal membrane, seven eyes with drusen or RPE changes, 15 eyes with low signal strength) were excluded 
from the analysis.

When analyzing OCT and OCTA images, we used the average values of the standard retinal subfields, namely 
central, superior, temporal, inferior, and nasal quadrants of the inner and outer rings as defined in the Early 
Treatment Diabetic Retinopathy Study27. The diameters of the central, inner, and outer rings were 1, 3, and 
6 mm, respectively.

Statistical analysis.  For comparison of the baseline characteristics, the thickness of each retinal layer, and 
OCT parameters between the MCI group and controls, we used the Mann–Whitney test for continuous variables 
and Fisher’s exact test for categorical variables. In the comparison of the VD of the SCP in each subfield between 
the MCI and controls groups, the Benjamini–Hochberg method was used for multiple testing adjustment. To 
assess the relationship between VD and retinal layer thickness, Spearman’s correlation was used. Because the 
covered macular area differed in the two devices (6 × 6 mm in OCTA and 6 × 4 mm in OCT), we used the average 
values of VD and retinal layer thickness in the inner ring in the analysis. We categorized the APOE genotype into 
APOE-ε4 carriers (10 eyes from 6 patients) and non-carriers (18 eyes from 10 patients) because of the low preva-
lence of APOE-ε4 homozygotes. We compared OCT and OCTA parameters between APOE-ε4 carriers and non-
carriers using the Mann–Whitney test for continuous variables and Fisher’s exact test for categorical variables. 
Statistical analysis was performed using SPSS software 21 (SPSS, Inc., Chicago, IL, USA), and p-values < 0.05 
were considered statistically significant.
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