
ll
OPEN ACCESS
iScience

Article
Integrating spatially-and temporally-
heterogeneous data on river network dynamics
using graph theory
Nicola Durighetto,

Simone Noto,

Flavia Tauro,

Salvatore

Grimaldi, Gianluca

Botter

nicola.durighetto@unipd.it

Highlights
Non-perennial river

networks expand and

retract in a hierarchical

manner

Graph theory can be used

to reconstruct the

activation hierarchy of

stream reaches

The framework greatly

reduces the data required

to monitor the whole

active network

Data with different spatial

and temporal resolution

can be easily integrated

Durighetto et al., iScience 26,
107417
August 18, 2023 ª 2023 The
Author(s).

https://doi.org/10.1016/

j.isci.2023.107417

mailto:nicola.durighetto@unipd.it
https://doi.org/10.1016/j.isci.2023.107417
https://doi.org/10.1016/j.isci.2023.107417
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.107417&domain=pdf


iScience

Article

Integrating spatially-and temporally-heterogeneous
data on river network dynamics using graph theory

Nicola Durighetto,1,3,* Simone Noto,1 Flavia Tauro,2 Salvatore Grimaldi,2 and Gianluca Botter1

SUMMARY

The study of non-perennial streams requires extensive experimental data on the
temporal evolution of surface flow presence across different nodes of channel
networks. However, the consistency and homogeneity of available datasets is
threatened by the empirical burden required to map stream network expansions
and contractions. Here, we developed a data-driven, graph-theory framework
aimed at representing the hierarchical structuring of channel network dynamics
(i.e., the order of node activation/deactivation during network expansion/retrac-
tion) through a directed acyclic graph. The method enables the estimation of the
configuration of the active portion of the network based on a limited number of
observed nodes, and can be utilized to combine datasets with different temporal
resolutions and spatial coverage. A proof-of-concept application to a seasonally-
dry catchment in central Italy demonstrated the ability of the approach to reduce
the empirical effort required for monitoring network dynamics and efficiently
extrapolate experimental observations in space and time.

INTRODUCTION

Recent estimates suggest that over half of the global river network periodically ceases to flow,1,2 owing to

event-based and seasonal expansions and retractions of the wet channels. Non-perennial streams are

ubiquitous features of landscapes, as they can be found not only in arid regions3 but also in many humid

headwaters.4,5 The ceaseless switching between lentic, lotic, and terrestrial environmental conditions

such as encountered in temporary streams affects many hydrological, biochemical, and ecological pro-

cesses6,7 that bear a profound influence on water quantity, quality, and ecosystem functioning of non-

perennial river reaches and downstream water bodies.8,9 Therefore, understanding the inner functioning

of stream network dynamics proves to be crucial for describing the hydrological response of rivers and

has important implications for many related research areas (e.g., stream ecology and biogeochemistry).

The availability of empirical data on surface flow presence along the network is a fundamental prerequisite

for enhancing our understanding of the dynamics of temporary streams. However, channel network dy-

namics are usually very heterogeneous even at small spatial and temporal scales. Therefore, the empirical

burden associated to the field mapping of the active portion of a branching river network remains one of

the major bottlenecks in the study of non-perennial streams.10

In the literature of non-perennial streams, the most common monitoring technique consists in visual field

surveys of the active network performed on different dates, so as to get a set of active network maps that

refers to different hydrologic conditions.11–24 Even though this method generates extremely accurate data

(with associated errors usually smaller than a few meters), on-the-ground mapping proved to be highly

time-consuming, owing to the difficulties in surveying the entire riparian corridor.10 As such, visual inspec-

tion has usually been used to monitor monthly to seasonal dynamics in relatively small catchments–with a

few notable exceptions in which the spatial scale and/or the temporal frequency were increased.25–30

Field mapping can be effectively complemented by hi-tech instruments. For instance, remote sensing (e.g.,

satellite and drone imagery) has been often used for the monitoring of temporary streams over larger

areas.31–35 While these applications look promising, they present significant limitations and generate

several no-data. Field-deployed sensors have also been used several times to monitor the presence of sur-

face water in a predetermined set of nodes in the network. The most common type of sensors consists in

probes designed to measure either temperature36–38 or electrical resistance,39–50 although purpose-built
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sensors51 and trap cameras52–55 have also been successfully employed to reconstruct the presence of sur-

face flow at a pre-selected number of locations along the network. In the light of the fact that each moni-

toring system is characterized by its characteristic temporal resolution and spatial coverage, the creation of

empirical datasets that are able to describe both seasonal and event-based network dynamics in catch-

ments bigger than a few hectares might greatly benefit from the combined use of different techniques.53

As an example, high-frequency data from a number of field-deployed sensors may be efficiently integrated

with visual field surveys in order to better capture the full spatial complexity of network dynamics in specific

areas of a catchment. While the integration of diverse techniques may allow both high spatial resolutions

and fine temporal frequencies to be achieved, it also generates heterogeneous datasets in which different

portions of the network may be observed with a different frequency and on different dates. This heteroge-

neity in the data complicates the direct use of empirical observations in many practical applications. As of

now, in fact, a robust and organic procedure to merge different data about network dynamics into a single,

coherent dataset is still missing.

In temporary streams, the wetting and drying of network nodes (and of the corresponding homogeneous

reaches associated to these nodes, see Figure 1A) has been shown to follow a strict hierarchical struc-

turing.56–58 According to this principle, during network expansion, nodes are always activated following

the same, fixed, sequence, and then they are deactivated in the reverse order when the flowing network

retracts. This sequence defines a unique hierarchical ordering of all the network nodes: while the number

of active nodes varies with time in response to climate variations, at any given time all the active nodes

belong to the first part of the hierarchy, whereas all the dry nodes are located in the last part of the hier-

archy. It must be noted that the order of the nodes in the hierarchy may not be related to their physical loca-

tion along the network. In this way, even though nodes are always activated sequentially from the first to the

last in the hierarchy, the corresponding active network may present a number of disconnections.57,58

This hierarchical mechanism is aligned with currently available conceptual models for network dynamics,

which relate the generation of surface flow in a given node to the local imbalance between catchment-scale

inflow and the longitudinal subsurface capacity.5,16,58 In this context, knowing the hierarchy that links all the

nodes of the river network can be very useful to link the total active length with the spatial configuration of

the active network, thereby facilitating the modeling of stream network dynamics in many settings.57,59,60 If

the local persistency of each node in the network (i.e., the fraction of time for which each node experiences

flowing water) is known, it follows naturally that the activation order indicated by the hierarchy goes from

the most persistent node (i.e., the first to wet up and last to dry down) to the least persistent one (i.e., the

last one to wet up and first to dry down).56 However, when only few surveys are available, or if different sub-

sets of nodes are observed with different frequencies and in different time periods, the relative number of

observations in which a node was active might not be a good proxy of the local persistency. Consequently,

evaluating the hierarchy among nodes only based on the ‘‘apparent’’ persistency as emerging from hetero-

geneous datasets might lead to strong biases, and a more robust procedure needs to be identified to

define the hierarchy among the nodes in the network.

Graph theory has proven to be a valuable tool in many research fields, including water science, as it can be

used to quantitatively analyze the topology and connectivity of fluvial systems. For example, graph theory

has been applied to study morphodynamics,61 sediment connectivity,62 hillslope hydrology,63 riverine

deltas,64 wet landscapes,65 and surface66,67 or subsurface68 hydrological connectivity. While graph theory

has also been employed for the description of non-perennial streams,56 it has never been used to charac-

terize the hierarchical behavior of non-perennial rivers.

On this basis, this paper addresses the following specific research questions:

(1) can graph theory be used to reconstruct and visualize the hierarchy of the nodes in a river network, in

a way that allows heterogeneous and incomplete observations to be merged coherently?

(2) how can the hierarchical structuring of network dynamics be exploited to predict the spatial config-

uration of the active network on the basis of sporadic observations pertaining to limited subsets of

nodes?

To answer these questions, in this paper we develop a robust mathematical framework based on the graph

theory, which is designed to reconstruct the hierarchical structure of the nodes starting from spatially and
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Figure 1. Schematic visualization of inner

functioning of the proposed framework, as

applied on an example three-nodes network

ðn = 3Þ
(A–H) Panel (A) reports maps of the available

observations, relative to 5 distinct time instants

ðnT = 5Þ. Note that the observed network is not

always hierarchical, as reach b in map A-4 is wet

even though reach a is dry. The available data are

summarized in matrix form in panel (B). Panels

(C)–(E) display the steps for the construction of

the hierarchy graph and reconstruction of node

states, as specified by Equations 1, 2, 3, and 4.

Note that loops are created in panels (C) and

(D) due to the observed map A-4, which

contradicts the reconstructed hierarchy. Panel

(F) reports the reconstructed hierarchy graph,

while (G) shows the matrix of reconstructed

states. Panel (H) shows maps of the active

network obtained combining the reconstructed

states with the starting available observations.

Note that, in all graphs, each node is associated

to a uniform stream reach embedding the

reference node (i.e., the status of the node

represents the status of the associated reach).

Likewise, each gray link describes statistical

connections between nodes (rather than

describing the stream reaches themselves).
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temporally heterogeneous datasets. The framework is then applied to a study catchment in central Italy to

demonstrate its potential.

RESULTS

A graph theory framework for representing and reconstructing hierarchical stream network

dynamics

In this subsection, we present an analytical formulation to represent and reconstruct the hierarchical mech-

anism of activation/deactivation of the stream network. Though being to some extent methodological, we

believe this part of the paper contains some key general results of our analysis, and thus well fits the results

section of the manuscript.

Throughout the whole paper, we define a node as a unique entity that allows a discrete description of a river

network. Specifically, a node represents the hydrological conditions observed in a given stream segment

with uniform characteristics and behavior (Figure 1A). This definition enables us to decompose the network

into a number of nodes and describe it via suitable graphs in which the edges represent statistical connec-

tions between pair of nodes (which could be far apart in a map). This implies that the statistical connections

do not necessarily describe the physical connectivity of the flowing network in a map (e.g., neighboring no-

des may not behave in a synchronous manner). Directed edges will in fact be used only to describe the or-

der of activation of network nodes, following the hierarchical principle, as reconstructed from the available

empirical data. The approach reported here was developed in order to deal with the case of a sparse data-

set in which sporadic observations about the hydrological conditions across different nodes of the network

are available. The empirical observations therefore consist in a non-homogeneous temporal sequence of

states (wet/dry) for the node of the network, as in the example reported in Figure 1A. These data are sum-

marized in two matrices, Xw and Xd, which contain, respectively, the time-series of wet and dry states expe-

rienced by each node (Figure 1B). Both matrices have dimension n3 nT , where n is the total number of no-

des in the network and nT is the number of times during which at least one node in the network was

observed. As such, the element ði; tÞ of Xw is set to 1 if node i was observed as wet at time t, and 0 otherwise

(i.e., if the node i was dry or was not observed at time t). Similarly, the element ði; tÞ of Xd is 1 if node i was

observed as dry at time t, and 0 otherwise (i.e., if the node i was wet or not observed at time t). The overall

observation matrix, O, can be computed from Xd and Xw as:

O = Xw$Xd
T (Equation 1)

where $ denotes matrix multiplication, and T denotes transposition. O is an n3n matrix, in which the

element ði; jÞ contains the number of observations in which node i was wet and node j was dry. This matrix

defines a directed graph, in which an edge from node i to j exists if and only if there is at least one date in

which node i was wet and node j was dry (Figure 1C). The weight associated to the edge is the number

of times nodes i and j were actually observed to be respectively wet and dry, as quantified by the value

of Oði; jÞ. In general, the graph associated to O may contain cycles if different observations (i.e., observa-

tions made in different dates) suggest the existence of contrasting hierarchies between at least two nodes.

This can be due to observation errors, or to errors in the hierarchical model, in turn induced by changes in

local morphology after intense events, heterogeneous rainfall fields, or local storage variations—see ref.57

In the second step of the proposed procedure, the observation matrix is normalized, so that the element

ði; jÞ of A contains the fraction of observations indicating that node i is more persistent than node j (i.e.,

number of observations in which node i was wet and node j was dry divided by all observations in which

nodes i and j had different states, as in the example of Figure 1D):

A =
O

O+OT (Equation 2)

Third, the graph is transformed to a directed acyclic graph (DAG) by breaking all the cycles (Figure 1E). A

new matrix representing the DAG of the hierarchy, H, is therefore created as follows:

H = fðAÞ; (Equation 3)

where f ðAÞ is a function used to break the cycles of matrix A while preserving its logical structure.69 This is

done by removing a specific subset of edges from A. In particular, edge removal is performed in a way that

minimizes the sum of the weights associated to the removed edges (i.e., the hierarchy is defined in a way

that minimizes the relative number of observations that are not in line with the inferred hierarchy, which
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correspond to the removed edges). The element ði; jÞ ofH is thus the fraction of available observations indi-

cating that node i is more persistent than node j. This matrix defines the DAG describing the hierarchy

among all the nodes in the network. In this DAG, a directed edge between nodes i and j exists if most

of the observations indicates that node i is located before j in the hierarchy. Therefore, the DAG can be

used to visualize and describe the order of node activation (deactivation) during network expansion

(contraction). It should be noted that H always includes all the nodes in the network. However, if not enough

information is available through empirical observations, one or more nodes may be completely isolated

from the rest of the DAG, suggesting that the ranking of the isolated node within the activation order

cannot be identified with the available data.

Crucially, matrix H and the corresponding DAG can be used to estimate the status of non-observed nodes

starting from a limited number of observations (as in the case of a survey in which not all the network is

monitored): if a given node is observed as wet, all the previous nodes in the hierarchy must be wet too,

and if a given node is dry, all the subsequent nodes in the hierarchy must also be dry. Since node ranking

within the hierarchy is only related to the wetting/drying behavior and might not be related to the physical

location of the nodes along the network, the presented framework can be applied to heterogeneous

streams characterized by complex spatial patterns of wetting and drying, including dynamically frag-

mented stream networks. Mathematically, to estimate the status of non-observed nodes we first need to

define the reachability matrix R, which represents the transitive closure of H. Therefore, R represents a

new DAG, which is based on H, in which an edge between nodes i and j is present if an indirect path be-

tween i and j exists in H (Figure 1F). Note that the weight of the edges in R is always unitary.

Then, given the wet- and dry-node observations represented in the matrices Xw and Xd, the status of the

nodes that were not observed in any date in which at least one node was monitored can be estimated as:

Y = R$Xw � RT$Xd; (Equation 4)

where Y is a n3nT matrix in which the element ði; tÞ expresses the net number of nodes observed at time t

that are being used through the hierarchy to predict the status of node i (i.e., the number of observed wet

nodes that are located after i in the hierarchy, minus the number of observed dry nodes that precede i in the

hierarchy). Therefore, the element ði; tÞ is positive if node i is estimated to be wet at time t, negative if it is

estimated to be dry, or null if the available information is not sufficient to reconstruct the status of such

node (Figure 1G). The latter condition applies to cases in which the reconstructed hierarchy is not able

to connect node i to a wet observed node in the subsequent part of the hierarchical DAG, or to a dry

observed node in the previous part of the DAG. This definition of Y allows us to summarize all the estimated

node states in a single matrix, which could be easily compared to the analogous compound data matrix

X = Xw � Xd that summarizes the observed states of all the nodes in the network.

A proof-of-concept application to the Montecalvello catchment

To elucidate the potential of the theory developed above, the framework was applied to a representative

case study located in central Italy, the ‘‘Fosso di Montecalvello’’ creek.54,55 The flowing portion of the

stream network in the Montecalvello catchment was monitored from October 2019 to August 2022. A total

of 40 visual surveys were carried out on a biweekly to monthly base to monitor n = 58 nodes (or a subset of

them). On top of that, a total of 21 trap cameras were installed in selected locations along the network, to

enhance the temporal resolution of the observation of a subset of nodes to a daily timescale (Figure 2).

Combining the datasets obtained from visual surveys and trap cameras, network dynamics on the Monte-

calvello catchment were monitored for a total of nT = 466 days. These included 16 days in which only visual

surveys were carried out, 426 days in which only trap cameras were used, and 25 days in which both meth-

odologies were jointly used, as reported in Figure 3. The stream network was found to be highly dynamic,

with a flowing length ranging from 1.11 km to 5.28 km. The temporal dynamics of the active network fol-

lowed a clear seasonal pattern, with the shortest-flowing network that was observed during the summer.

The hierarchy among the nodes of the network was reconstructed by means of a DAG, using the procedure

detailed in the previous section. The idea underlying the procedure is that a new edge is added to the

graph whenever a pair of nodes with different states is observed. The new link is directed from the node

observed as wet to the one observed as dry. Such a link indicates that, in the hierarchy, the wet node

must precede the dry node. The hierarchy graph for the Montecalvello network is reported in Figure 4,

while the steps required to build such graph are reported in Figure S1, using a subset of 6 nodes for the
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sake of clarity. Nonetheless, the procedure can be applied regardless of the number of nodes involved.

Given that the edges among nodes in the graph mean to describe statistical connections rather than

the hydraulic connectivity of nodes along the network, the hierarchy graph H cannot be reconstructed

from a single map, but requires multiple empirical observations. As the amount of information on the hy-

drological conditions in the nodes of the network increased significantly in 2021 and 2022 (Figure 3), the

structure of the hierarchy became clearer as new empirical data were available. At the end of the summer

of 2022, most of the hierarchical structure was unveiled, particularly in its last part (which comprises the less

persistent nodes, color-coded in light orange in Figure 4). The order of activation of the most persistent

nodes (color-coded in dark blue), instead, has not been fully observed, thus generating a graph with a

more complicated structure in the first part of the hierarchy, which in fact does not resemble a chain. None-

theless, the available data provided a good description of the dynamics of the stream network, and the ac-

curacy of the reconstructed hierarchy was about 99.6%, suggesting that less than 0.4% of all the empirical

observations were not in accordance with the identified hierarchy. Such observations are attributed to the

Figure 2. Map of the Montecalvello catchment

The blue-orange color scheme of the network (see figure legend) reflects the color gradient along the hierarchy, as

reported in Figure 4. Map generated with ESRI ArcGIS Pro.

Figure 3. Number of observed nodes for each date, as a function of the monitoring method employed
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effect of local hydrological processes observed in certain parts of the network that possibly generate a non-

univocal activation/deactivation order of the nodes. This includes any unpredictable change in the pattern

of local water input in some nodes during a few rain events and temporal changes in the river bed perme-

ability. Non-hierarchical behaviors could be also generated by the unavoidable uncertainty in the collected

data (e.g., image interpretation and processing).

The hierarchy shown in Figure 4 was to estimate the status of the nodes whenever node observations were

not available (no-data). These no-data here refer mainly to nodes that were not observed continuously by

the trap cameras, or periods during which a trap camera was not active for maintenance purposes. The pro-

posed application represents a good example of how different monitoring techniques can be integrated in

a robust manner to generate a comprehensive dataset that minimizes the amount of missing information.

The estimation of the nodes’ states was done by applying Equation 4, which is based on the hierarchical

structuring of network dynamics: if a given node in the hierarchy is observed as wet, all the previous

DAG nodes must be wet too, and if a given node is dry, all the subsequent nodes in the DAG must be

dry. The hierarchical method employed for estimating the status of unmonitored network nodes is shown

in detail in Figure 5, in which 4 different configurations of the active network are reported (from very dry to

almost completely wet). For each date, the hierarchical graph and the observations were used to determine

the position of the transition between the wet and dry nodes in the DAG. Afterward, the status of the nodes

which were not observed was reconstructed based on their position in the chain, as per Equation 4. The

spatial distribution of the active and dry nodes was also reported in the right panels of Figure 5, which indi-

cate that the observed flowing networks emerging in hierarchical rivers can be highly fragmented. In some

cases, the status of some nodes could not be reconstructed (gray nodes in Figure 5), because the empirical

information available on a given date was insufficient (the precise position of the transition between wet

and dry nodes in the DAG was not known).

The same procedurewas repeated for all the dates in which at least one nodewasmonitored, and the results are

summarized in Figure 6, in which the observed (or estimated) status of each node is shown as a function of time

using a suitable color-coding. In line with Figure 5, the applied procedure did not allow the estimation of the

status of the nodes that, in the hierarchy, fell between the last observed wet node and the first observed dry

node. Therefore, a limited amount of no-data values was indicated in gray in Figure 6. In spite of this limitation,

inmany cases the observation of a very limited number of nodeswas sufficient to estimate the status of thewhole

network based on the hierarchical DAG. On average, the empirical monitoring of a mean active network length

Figure 4. Graph representing the activation hierarchy of the nodes within the stream network

Network nodes with similar properties have been merged together to simplify visualization. Node size is proportional to

the associated length in the river network. The color gradient from blue to orange indicates the direction of the hierarchy.

The numbers identify each single node. Edges are used to characterize the statistical properties of node activation, and

may not reflect the connectivity between nodes along the river network, which are reported in Figure 2.
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of 2.24 kmallowed the estimation of the status of 5.56 kmof river network during each survey. Figure 6 also dem-

onstrates the high accuracy of the proposed method: in our application only 0.37% of the observed network

length was misclassified as wet (False Positives = 0.24%) or dry (False Negatives = 0.13%), with a total accuracy

of the hierarchical model of about 99.6% (see STAR Methods).

DISCUSSION

In this study, we developed a new graph theory framework that enables the identification of the hierarchical

structuring of the nodes in a river network using empirical data on surface water presence characterized by

heterogeneous temporal frequencies and spatial resolution. As a proof-of-concept, the graph theory

framework presented in this paper has been successfully applied to the Montecalvello catchment, where

it was used to integrate sporadic and incomplete visual surveys with data gathered through 21 camera traps

located at a subset of nodes of the network.

The main advantage of the proposed mathematical setup lies in its flexibility, as the method can exploit

information derived from non-homogeneous surveys andmonitoring techniques, in which different subsets

of nodes are observed with diverse temporal frequencies. In particular, the framework provides an objec-

tive procedure to integrate the high temporal frequency typical of remote sensing tools with the higher

spatial coverage typical of traditional on-the-ground monitoring techniques.18,30,48 The approach is a

purely data-driven method, which is particularly useful in settings where more advanced physically-based

models (that are typically data-demanding) cannot be applied.24,70,71

The hierarchical chain (or graph) can be updated incrementally, by adding new edges between pairs of

disconnected nodes as long as new empirical data becomes available, thereby facilitating the planning

of forthcoming surveys. As an example, given the hierarchy depicted in Figure 4, one could foresee an addi-

tional field survey during a dry period, in order to observe the network in a relatively contracted state and

gather additional information about the structure of the first part of the DAG, which is not still resolved. In

fact, while the nodes in the second part of the hierarchy are arranged in a nearly-continuous chain, the first

part of the DAG is characterized by a more complicated structure, suggesting that the order of node acti-

vation/deactivation of these nodes (and therefore the spatial configurations of the active network when the

flowing length is short) has not been fully identified yet. Owing to the transitive property of DAGs, the struc-

ture ofH also allows the hierarchy between pairs of nodes that have never been simultaneously observed to

be inferred. This could facilitate the monitoring of network dynamics in relatively large catchments (with a

catchment area of, say, some tens of km2), which can hardly be monitored as a whole with appropriate

spatial and temporal resolution using currently available technologies.58 To reconstruct the hierarchy, in

fact, different (yet overlapping) subsets of nodes could be surveyed in different dates, and these observa-

tions could be subsequently combined together in the hierarchy DAG using the proposed theory.

Thanks to the hierarchical principle, if the river network is properly fragmented into segments/nodes such as the

internal heterogeneity of surface flow patterns is properly captured, and the hierarchy among the nodes has

been reconstructed with a sufficient amount of surveys (say, 8–10), the observation of a limited number of nodes

(again, 8– 10 nodes) couldbe sufficient to reconstruct thewhole spatial distribution of flowing anddry channels in

the network (spatial extrapolation). In the case study presented in this paper, the application of the method

made it possible to reconstruct, on average, the temporal dynamics of 3.3 km of non-observed streams (corre-

sponding toabout 56%of thegeomorphic network). Thefieldmappingof the status of the nodeswhichwerenot

observed in this campaign would otherwise have required significant efforts (several tens of hours of additional

fieldwork), demonstrating how the proposed framework can greatly facilitate monitoring activities. Notably, the

more the hierarchy graph is unveiled by empirical data, the more the operational advantages during the moni-

toring of network dynamics. As an example, given the Montecalvello hierarchy depicted in Figure 4, if node 1 is

observed as dry we can expect all the subsequent nodes in the hierarchy to be dry too. This would save us from

surveying the part of network that contains such nodes. An analogous reasoning can bedonewhen a given node

is observed as wet (i.e., all the preceding nodes in the DAG/chain could be predicted as wet). Therefore, in the

Figure 5. Application of the hierarchical framework on the Montecalvello catchment

Hierarchy graphs of the stream for 4 selected dates (panels A, B, C, and D) and the corresponding active networks (panels

E, F, G, and H). True positives (TP) and true negatives (TN) refer to nodes correctly identified by the model as wet or dry,

respectively. False negatives (FN), instead, highlight model errors. Positives (P) and negatives (N) show node states

estimated by the model, for which there are no corresponding empirical observations. N/A identifies no-data. False

positives (FP) are not present in the selected dates.
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most favorable scenario only two nodes need tobeobserved: the two nodeswhere the transition fromwet todry

takes place along the hierarchy.

In conclusion, we propose that reconstructing the hierarchy among the network nodes using a DAG is a

fundamental step in the analysis of channel network dynamics, as it allows for an optimized use of empirical

data on network expansion and contraction—a feature that distinguishes the method presented in this pa-

per from other commonly used techniques.

Limitations of the study

The mathematical framework proposed here is quite general and applies to any kind of river network that ex-

periences expansion/retraction cycles in response to climate variations. A crucial assumption of themethod is

the hierarchical structuring of channel network dynamics, which is functional to transform the original graph of

the nodes in a DAG (or a chain) and enables one to extrapolate in space the empirical information on the sta-

tus (wet/dry) of some nodes. The hierarchical behavior of network dynamics, however, has been observed

Figure 6. Observed and estimated states of network nodes as a function of time in the period from June 6th, 2021

to August 30th, 2022

True positives (TP) and true negatives (TN) refer to nodes correctly identified by the model as wet or dry, respectively.

False positives (FP) and false negatives (FN), instead, highlight model errors. Positives (P) and negatives (N) show node

states estimated by the model, for which there are no corresponding empirical observations. N/A identifies no-data.
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ubiquitously across a broad range of climatic and geomorphic conditions.56,57 Therefore, even though the sin-

gle benchmark application presented here does not enable a comprehensive evaluation of the proposed

mathematical framework under a broad range of settings, we believe that the method is well suited to be

applied to all the case studies where the hierarchical structuring of stream dynamics has been proved valid.

Another limitation of the study is related to the data-driven nature of the method, which cannot be effectively

used for predictive purposes in catchments where empirical data about the dynamics of the river network is

unavailable. In fact, when too few observations on the status of the network nodes are available (i.e., when

most of the elements of the observationmatrix are null), many nodes will be either lumped together or discon-

nected in the hierarchical graph, meaning that their relative position in the DAG will not be defined. This hin-

ders the ability to estimate the activation order of all the nodes in the network and reconstruct the status of

one node on the basis of the observation of other reaches. For this reason, we suggest that about 8–10 empir-

ical observations of the whole active network (or any subset of it) is the minimum requirement to get a basic

version of the DAG and enable the application of the proposed method for reconstructing the temporal dy-

namics of the state of unmonitored nodes. These empirical observations should be best carried out under

different climatic conditions (i.e., for different configurations of the active network), since new edges are

generated in the DAGonly between pair of nodes that are observed in a different state (one wet and the other

dry). Therefore, the hierarchy between a couple of nodes that has always been observed as wet (or dry) cannot

be identified, thereby limiting the capabilities of extrapolating empirical information in space and time.

Furthermore, even though currently available conceptual models for network dynamics suggest that the

spatial variability of local persistency could be related to measurable physiographic properties such as

contributing area and slope,5,16,58 incorporating this type of morphometric predictors in our data-driven

framework may not necessarily improve the underlying model accuracy, due to the pronounced spatial het-

erogeneity of local persistency in non-perennial stream networks,57 and the observed limited correlation be-

tween the physical position of a node along the network and its ranking in the hierarchy. In spite of these lim-

itations, the mathematical framework outlined here is quite general, and widely applicable in hydrological

studies that analyze the intermittent nature of rivers and streams.

Conclusion

In this paper, we propose a graph-theory approach to describe hierarchical channel network dynamics in

temporary streams. The hierarchical structure of the nodes in the network, which drives the activation

(deactivation) order of the nodes when the wet channel length increases (decreases), was represented

here by a DAG. Direct knowledge on the hierarchy of the nodes provides important information on the

spatial and temporal dynamics of the active portion of the network, and it can be used to reconstruct

the spatial configuration of the entire active length on the basis of the observation of a limited subset of

nodes. The approach, therefore, provides a mathematical framework to merge heterogeneous datasets

characterized by different temporal frequency and spatial coverage, an instance that applies to all the

cases in which different techniques are combined (e.g., visual surveys, on-site sensors, and remote

sensing). The theory was successfully applied to predict the stream network dynamics in the Montecalvello

catchment (Central Italy). The results demonstrated the ability of themethod to integrate data collected via

visual surveys and trap cameras, and predict the status of unmonitored nodes. The proposed approach en-

ables an optimized use of available empirical data on stream network dynamics, and thus facilitates the

planning and execution of monitoring campaigns in non-perennial rivers.
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Data and code availability

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in

the key resources table.

All original code has been deposited on Zenodo and is publicly available as of the date of publication. Links

are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

Study catchment and data collection

TheMontecalvello catchment (Figure 2) is located in central Italy, about 75 km north of Rome, and covers an

area of 3.73 km2 with elevation ranging from 130 to 340 m a.s.l.. In the hillslopes, the land cover is domi-

nated by olive groves, vineyards and other crops, while a broad-leaved forest is mainly found in the riparian

areas. The site has a typical Mediterranean climate, characterized by arid summers with sparse rainfall

events and mild, rainy winters. The potential stream network, defined by the presence of permanent chan-

nelization signs and/or flowing water, is about 5.9 km long. Channel widths range from about 10 cm tomore

than a meter. The riverbed is mainly composed of silt and clay, but gravel and conglomerates can also be

found in the riparian zone.

The presence/absence of flowing water along the network was monitored by combining observations from

field surveys with a number of trap cameras. Field surveys were carried out on a biweekly to monthly time

frequency, from October 2019 to August 2022. Each survey consisted in walking along the whole network

and collecting the GPS coordinates of the points were surface flow starts or stops, thus allowing the moni-

toring of the active portion of the stream network regardless of its connectivity to the outlet. At total of 40

visual surveys of the active network was carried out. Based on the observations, the network was described

by a total of n = 58 nodes with an average length of about 100 m. The actual network length associated to

each node varied from 18 to 450m, and was defined by ensuring that each node described a uniform reach.

Therefore, shorter nodes were placed in locations where network dynamics were more heterogeneous, in

order to provide a more precise description of the active network.

To enhance the temporal resolution of the surveys, 21 trap cameras were installed along the network, with a

mean distance of 280 m. The specific location of each camera was chosen on the basis of the first few sur-

veys, in order to deploy only one camera per each uniform stretch of network, therefore limiting the total

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Monitored network dynamics of the Montecalvello

catchment

Authors Research Data Unipd: https://doi.org/10.25430/

researchdata.cab.unipd.it.00000831

Software and algorithms

Code to reproduce the results of this study Authors Zenodo: https://doi.org/10.5281/zenodo.7956623
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number of installed instruments. The specific locations of the cameras also corresponded to nodes iden-

tified by the visual surveys, in order to ease the merging of the two datasets. Each trap camera collected

one image every 20 minutes; the pictures were then manually classified as wet (i.e. flowing water) or dry.

The data was then aggregated at the daily time scale: a node was considered as active if at least one picture

suggested flowing water during the day. This allowed us to properly take sub-daily dynamics into account.

The cameras were active for a total of 451 days, in the period from June 6th, 2021, to August 30th, 2022. How-

ever, some cameras were operational for slightly shorter time periods due to malfunctions.

Numerical implementation

Starting from the collected empirical data, ESRI ArcGIS was used to create a shapefile describing the ge-

ometry of the geomorphic network. The attribute table associated with the shapefile was composed of two

main sections: the first section reported the main morphological properties of the nodes (length, average

slope, strahler order), while the second section stored the empirical data collected from visual surveys (one

column per date, reporting the wet/dry/NA status of each node). The same structure was also employed to

build an excel table reporting the status data derived from trap cameras. The theoretical framework pro-

posed in this paper was then implemented via a MATLAB script. The numerical computations strictly fol-

lowed the equations reported in Section ‘‘a graph theory framework for representing and reconstructing

hierarchical stream network dynamics’’. The Graph and Network Algorithms built into MATLAB was used

to generate the hierarchy DAG starting from matrix H.

QUANTIFICATION AND STATISTICAL ANALYSIS

Accuracy of the hierarchy

The need for cycles to be broken by removing edges suggests that the inferred hierarchy may not agree

with all the available empirical observations. The degree of agreement between the hierarchy and the

empirical data can be quantified through the accuracy. Without loss of generality, let’s assume that nodes

are reordered in order of hierarchy (this can be achieved with a topological sort starting from H). In such

case, H and R are upper triangular. More interestingly, the upper triangle of O contains the observations

favorable to the estimated hierarchy, while the lower triangle contains the observations against. As such,

the accuracy of the hierarchy can be calculated as

acch =
X

Ou
.X

O (Equation 5)

whereOu is the upper component of the LDU decomposition ofO (i.e. the upper triangle), and
P

denotes

the summation of all the elements in the matrix.
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