
METHODS
published: 21 April 2020

doi: 10.3389/fgene.2020.00343

Frontiers in Genetics | www.frontiersin.org 1 April 2020 | Volume 11 | Article 343

Edited by:

Ling Kui,

Harvard Medical School,

United States

Reviewed by:

Juan Ye,

National Institutes of Health (NIH),

United States

Weiyu Chen,

Stanford University, United States

*Correspondence:

Lei Wang

wanglei@xtu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 12 February 2020

Accepted: 23 March 2020

Published: 21 April 2020

Citation:

Zhao B, Hu S, Liu X, Xiong H, Han X,

Zhang Z, Li X and Wang L (2020) A

Novel Computational Approach for

Identifying Essential Proteins From

Multiplex Biological Networks.

Front. Genet. 11:343.

doi: 10.3389/fgene.2020.00343

A Novel Computational Approach for
Identifying Essential Proteins From
Multiplex Biological Networks

Bihai Zhao 1,2,3†, Sai Hu 1†, Xiner Liu 1, Huijun Xiong 1, Xiao Han 1, Zhihong Zhang 1,2,

Xueyong Li 1 and Lei Wang 1,2*

1College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China, 2Hunan Provincial Key

Laboratory of Industrial Internet Technology and Security, Changsha University, Changsha, China, 3Hunan Provincial Key

Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha, China

The identification of essential proteins can help in understanding the minimum

requirements for cell survival and development. Ever-increasing amounts of

high-throughput data provide us with opportunities to detect essential proteins

from protein interaction networks (PINs). Existing network-based approaches are limited

by the poor quality of the underlying PIN data, which exhibits high rates of false positive

and false negative results. To overcome this problem, researchers have focused on the

prediction of essential proteins by combining PINs with other biological data, which has

led to the emergence of various interactions between proteins. It remains challenging,

however, to use aggregated multiplex interactions within a single analysis framework to

identify essential proteins. In this study, we created a multiplex biological network (MON)

by initially integrating PINs, protein domains, and gene expression profiles. Next, we

proposed a new approach to discover essential proteins by extending the random walk

with restart algorithm to the tensor, which provides a data model representation of the

MON. In contrast to existing approaches, the proposed MON approach considers for

the importance of nodes and the different types of interactions between proteins during

the iteration. MON was implemented to identify essential proteins within two yeast PINs.

Our comprehensive experimental results demonstrated that MON outperformed 11

other state-of-the-art approaches in terms of precision-recall curve, jackknife curve, and

other criteria.

Keywords: identification of essential proteins, protein interaction network, tensor, multiplex biological networks,

random walk, Markov chain, gene expression, yeast

INTRODUCTION

Essential proteins are necessary for the survival of living organisms. The identification of essential
proteins can help us to understand the basic requirements of living organisms, and it can also
play an important role in drug design (Dubach et al., 2017), genetic disease diagnosis (Zeng
et al., 2017), and drug synergy prediction in cancers (Li et al., 2018). Traditional experimental
approaches, such as gene knockouts (Narasimhan et al., 2016), RNA interference (Inouye, 2016),
and Knockout Sudoku (Baym et al., 2016), are time-consuming and costly. Over the last few
decades, high-throughput technologies have produced a tremendous amount of protein interaction
network (PIN) data that provide us with new opportunities to detect essential proteins through
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the use of computational approaches. A number of network
topology-based centrality approaches have been proposed to
predict essential proteins, and these approaches include Degree
Centrality (DC) (Hahn and Kern, 2004), Information Centrality
(IC) (Stephenson and Zelen, 1989), Closeness Centrality
(CC) (Wuchty and Stadler, 2003), Betweenness Centrality
(BC) (Joy et al., 2005), Subgraph Centrality (SC) (Estrada
and Rodriguez-Velazquez, 2005), and Neighbor Centrality
(NC) (Wang et al., 2011).

Unfortunately, these approaches are often plagued by noise
and errors, which can result in biases and low confidence in
protein–protein interaction (PPI) networks. To provide accurate
prediction results, the integration of different types of biological
data has become an important and popular strategy. A number
of approaches have been developed to facilitate the prediction of
essential proteins by combining PINs with multisource biological
data. For example, Gene Ontology (GO) annotations were
used as a bioinformatics tool to predict essential proteins in
several single-cell PINs, such as those from Escherichia coli,
Saccharomyces cerevisiae, and Drosophila melanogaster (Hsing
et al., 2008). A prediction model called integrating orthology
with PPI network (ION) (Peng et al., 2012) was proposed to
infer essential proteins by integrating orthologous information
and the topological characteristics of PINs. In the United
complex Centrality (UC) (Li et al., 2015) method, protein
complexes were also combined with the topological features of
PINs to detect essential genes. After analyzing the correlations
between domain characteristics and essential proteins, Peng et al.
(2015) designed an approach named unite domain and network
centrality (UDoNC) for the prediction of essential proteins in
yeast PINs. Li et al. (2012) and Zhang et al. (2013) developed two
types of prediction models called prediction of essential proteins
centrality (PeC) and co-expression weighted by clustering
coefficient method (CoEWC) to infer essential proteins by
fusing gene expressions and topological characteristics of PINs,
respectively. In our previous studies, we proposed a prediction
method called predictive model based on overlapping essential
modules (POEM) (Zhao et al., 2014) to measure the essentiality
of proteins by detecting overlapping essential modules based on
the modularity of essential proteins. Lei et al. (2018) designed a
method called AFSO_EP for the prediction of essential proteins
based on the artificial fish-swarm algorithm. In this method,
the network topology, gene expression, GO annotation, and
subcellular localization information were utilized. ZhangW. et al.
(2019) proposed a new method to discover essential proteins,
named predicting essential proteins by integrating network
topology, expression profile, GO annotation and subcellular
localization (TEGS), based on integrating network topology, gene
expression profiles, GO annotation information, and protein
subcellular localization information. In the fusing the dynamic
PPI networks (FDP) approach Zhang F. et al. (2019), active PINs
were constructed first and then they were fused into a final
network according to the networks’ similarities. Finally, a new
approach for identification of essential proteins was proposed by
considering orthologous property and topological properties in
the network.

A common characteristic and limitation of these approaches,
however, is that they complete the prediction of essential

proteins using only a single network of relationships between
proteins. Currently, PINs are not the only large-scale network
datasets, as protein–DNA interactions and signaling-regulatory
pathway interaction data are also stored in dedicated databases
(Valdeolivas et al., 2019). Additionally, other interactions such
as the co-expression network established from gene expression
profiles and the co-annotation network constructed from GO
annotations can be derived. Each interaction data source has
its own meaning or relevance and can play a different role in
the prediction of essential proteins. These approaches mentioned
above classically aggregated multiple interaction networks into
a single and unique network, which tends to dismiss the
topologies and features of the individual interaction networks.
The convention of representing different types of interactions
in a system with a single type of link is no longer a panacea
for network science (De Domenico et al., 2015). The multiplex
network offers us an alternative, in that it is a collection of
networks sharing the same nodes; however, the edges belong
to different categories or represent interactions of different
natures (Didier et al., 2015). More recently, various applied
studies have been adapted to multiplex networks. Valdeolivas
et al. (2019) extended the Random walk algorithm to multiplex
networks by building an nL × nL heterogeneous matrix in
which n and L represent the number of nodes and layers of the
multiplex network, respectively. Wang et al. (2018) compressed
the multiple networks into two feature matrices and performed
conserved functional modules detection by multi-view non-
negativematrix factorization. In a newly proposed link prediction
algorithm (Samei and Jalili, 2019) for multiplex networks,
both intra-layer information and inter-layer information are
combined based on layer relevance. In our previous work, we
constructed a multilayer protein network and applied it for the
detection of protein complexes (Li et al., 2016) and for the
prediction of protein functions (Zhao et al., 2016a). In this
study, we propose a tensorial framework to represent the newly
constructed multiplex biological network, and we aim to apply
it for the identification of essential proteins by extending the
random walk with restart algorithm. Our experimental results
demonstrated that our proposed MON approach outperformed
six types of centrality approaches, including DC (Hahn and
Kern, 2004), IC (Stephenson and Zelen, 1989), CC (Wuchty and
Stadler, 2003), BC (Joy et al., 2005), SC (Estrada and Rodriguez-
Velazquez, 2005), and NC (Wang et al., 2011) and five types of
network topological features and biological data sources fusion-
based approaches such as PeC (Li et al., 2012), CoEWC (Zhang
et al., 2013), POEM (Zhao et al., 2014), ION (Peng et al., 2012),
and FDP (Zhang F. et al., 2019).

MATERIALS

To estimate the performance of MON, we used it to identify
essential proteins in the PIN of Saccharomyces cerevisiae that
was derived from the database of interacting proteins (DIP)
(Xenarios et al., 2002) and Gavin datasets (Gavin et al., 2006).
The PINs from Saccharomyces cerevisiae, which have been well-
characterized by a number of studies, are the most complete and
comprehensive. After removing self-interactions and repeated
interactions, the DIP dataset finally obtained 5,093 proteins and
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TABLE 1 | Details of two yeast protein interaction networks.

Dataset Proteins Interactions Essential

proteins

Expressed

proteins

DIP 5,093 24,753 1,167 4,985

Gavin 1,855 7,669 714 1,927

24,743 interactions, and the Gavin dataset consisted of 1,855
proteins and 7,669 interactions. The domain data for building
the multiplex biological network was downloaded from the Pfam
database (Punta et al., 2011). The gene expression profile (Tu
et al., 2005) of the yeast was derived from GSE3431 in the GEO
(Gene Expression Omnibus) that contained the expression values
of 6,776 genes at 36 moments, where 4,985 and 1,827 of these
genes were located in the DIP and Gavin PINs, respectively. The
gene coverage rates of the two PINs in gene expression profile
were all >95% (DIP: 4,985/5,093 = 97.88%, Gavin: 1,827/1,855
= 98.49%). Information on orthologous proteins was obtained
from the InParanoid database (Östlund et al., 2009) (Version 7)
that consisted of a collection of pairwise comparisons between
100 whole genomes. A benchmark set of essential proteins from
Saccharomyces cerevisiae that consisted of 1,285 essential proteins
was derived from the MIPS (MIPS: analysis and annotation of
proteins from whole genomes in 2005) (Mewes et al., 2006),
saccharomyces genome database (SGD) (Cherry et al., 2011),
and database of essential genes (DEG) (Zhang and Lin, 2008)
databases. Among the 5,093 proteins in the DIP network, 1,167
proteins were essential and 3,526 proteins were non-essential.
In the Gavin dataset, the number of essential proteins and non-
essential proteins was 714 and 1,141, respectively.Table 1 lists the
details of the two yeast PINs.

METHODS

The outline for the entire MON approach includes (1)
establishing a multiplex biological network by integrating the
topology of PINs, protein domains, and gene expression profile,
(2) extending the random walk with restart algorithm to the
tensor model corresponding to the multiplex biological network,
and (3) sorting proteins in descending order, with the top K
of these proteins being exported. The flowchart for the MON
approach is provided in Figure 1.

Construction of Multiplex Biological
Networks
For our purpose, we consider a multiplex biological network G
= (G1, G2,. . . , GL), where Gi = (V, Ei) represents the network of
the layer of i. V = {v1, v2,..., vn} is a set of sharing proteins for all
layers in G, and Ei = {ei1, ei2,..., eim} is a set of interactions at i-th
layer in the multiplex biological network G.

In this study, we constructed a multiplex biological network
G = (G1, G2, G3) by integrating PINs, gene expression profiles,
and protein domain information. In the first layer, a co-neighbor
network (CN) was established through the analysis of the
topology characteristics of PINs, while in the second layer, a co-
structure network was constructed according to the correlation
analysis based on the protein domain information. In the third

layer, a co-expression network was related to the property of
co-expression derived from time course gene expression profiles.

Co-neighbor Network G1

The CN was established by exploring common neighbors
between pairs of proteins. Intuitively, the greater number of
common neighbors that the two proteins possess, the more
credible the interactions between these two proteins will be. If
two proteins pi and pjinteract with each other in PINs and share
at least one common neighbor, they will connect to each other
within the CN. The weight of interaction between pi and pj can
be calculated by the following formula:

e1(i, j) =

{

|Ni
⋂

Nj|
2

(|Ni|−1)×(|Nj|−1) , if |Ni
⋂

Nj| > 0

0 , otherwise
(1)

where Ni and Nj represent the direct neighbors set of pi and pj,
respectively, and Ni ∩ Nj denotes the common neighbors set for
protein pi and protein pj.

Co-structure Network G2

Domains are sequential and structural motifs that are found
independently in different proteins and act as the stable
functional blocks of proteins. Based on this, we created the co-
structure network based on data from protein domains. First,
we analyzed the importance of proteins relative to the domains
based on the association between proteins and domains. Given a
protein pi, its domain score P_D can be calculated as follows:

P_D(Pi) =
|D|
∑

j=1

1

NPj
× tij (2)

In Equation (2),D is a list of distinct categories of domains related
to all proteins. NPj is the number of proteins that contain the
domain dj. If the protein pi contains the domain dj, tij is assigned
the value of 1. Otherwise, tij is set to 0. Finally, the P_D score of
pi can be normalized and calculated as follows:

P_D(pi) =

P_D(pi)− min
1≤j≤|P|

(P_D(pj))

max
1≤j≤|P|

(P_D(pj))− min
1≤j≤|P|

(P_D(pj))
(3)

From the above equation, we can easily determine that the value
of P_D falls into the interval [0, 1]. From this perspective, the
P_D score of a protein can be interpreted as its probability
of becoming an essential protein. Moreover, previous studies
(Stephenson and Zelen, 1989) have indicated that essential
genes or proteins tend to form essential modules through their
interactions. We assumed that the essential probabilities of
proteins mentioned above were independent of each other. The
probability (or weight) of interaction between two proteins pi and
pj in the co-structure network can be calculated as follows.

e2(i, j) = P_D(pi)× P_D(pj) (4)
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FIGURE 1 | The flowchart of MON method. A multiplex biological network G = (G1, G2, G3) is constructed with integration of protein interaction networks (PINs), gene

expression profile, and protein domain information, firstly. And then, a restart vector is established according to orthologous proteins and module scores of proteins.

Based on these, the random walk with restart algorithm is applied to score and rank essential proteins.

Co-expression Network G3

The Pearson’s correlation coefficient (PCC) was adopted to
evaluate the co-expression probability of a pair of proteins based
on gene expression profiles. Let g(pi, j) denote the expression
value of the gene pi at the j-th time point, and then for a pair of
genes pi and pj, the correlation between them can be calculated
as follows:

PCC(pi , pj) =
n

∑

g(pi , k)g(pj , k)−
∑

g(pi , k)
∑

g(pj , k)
√

n
∑

g(pi , k)
2
− (

∑

g(pi , k))
2
√

n
∑

g(pj , k)
2
− (

∑

g(pj , k))
2

(5)

Two proteins were regarded as co-expressed if they
interacted with each other in the original PINs and their
correlation coefficient was not zero. The weight of interaction

between pi and pj in the co-expression network was
set to the absolute value of their correlation coefficient.
Specifically, e3 (i, j)= |PCC (pi, pj)|.

Random Walk With Restart on Multiplex
Biological Networks
To study the multiplex network systematically, it is
necessary to develop a precise mathematical model
and appropriate tools. In this paper, we represent the
newly constructed multiplex biological network G using
the tensor model and extend the random walk with
restart algorithm.
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Let T = (tijk) ∈ R
n×n×m denote the three-order adjacency

tensor corresponding to the multiplex biological network G =

(G1, G2, G3), where n and m are the number of proteins and
categories of interactions between proteins, respectively. Each
element of T is defined as follows:

tijk =

{

ek(i, j) , if (pi, pj) ∈ Ek

0 , otherwise
(6)

Here 1 ≤ i, j ≤ n, 1 ≤ k ≤ m (m = 3) and ek (i,
j) represents the weight of interaction between pi and pj
at the k-th layer. We can thus extend the random walk
with restart algorithm from a two-dimensional matrix to the
tensor for scoring proteins. Studies show that the structural
characteristics of different layers in multiplex networks are
indeed correlated to each other (Jalili et al., 2017). Based on
this, we propose that considering the importance of different
types of interactions can enhance the performance for the
discovery of essential proteins. Our statistics revealed mutually
reinforcing relationships between important or key nodes
with different types of links pointed to them in multiplex
biological networks. Let the vectors x = [x1, x2, . . . , xn]

T ∈

R
n and y = [y1, y2, . . . , yn]

T ∈ R
n denote important

scores of proteins and different categories of interactions
between proteins, respectively. We formally described the
relationships between x and y based on the tensor T using the
following equation:

x = f (T, x, y), y = g(T, x) (7)

The most critical task for us was to design reasonable functions
f and g and to calculate y and z, respectively. We now propose
the idea to define a higher-order Markov chain by normalizing
the tensor. This leads to two probability transition tensors T(1) =

(t(1)ijk) ∈ R
n×n×l andT(2) = (t(2)ijk) ∈ R

n×n×l that are calculated
as follows:

t
(1)
i,j,k =











ti,j,k
n
∑

i=1
ti,j,k

if
n
∑

i=1
ti,j,k > 0

1/n otherwise

(8)

t
(2)
i,j,k =











ti,j,k
m
∑

k=1
ti,j,k

if
m
∑

k=1
ti,j,k > 0

1/m otherwise

(9)

We can then easily obtain the following formulas:

0 ≤ t
(1)
i,j,k ≤ 1,

n
∑

i=1

t
(1)
i,j,k = 1 (10)

0 ≤ t
(2)
i,j,k ≤ 1,

m
∑

k=1

t
(2)
i,j,k = 1 (11)

Equations (8) and (9) can be interpreted as the transition
probabilities of two third-order Markov chains (Xt)t∈N and
(Yt)t∈N, respectively.

t
(1)
i,j,k = P[Xt = i|Xt−1 = j,Yt = k] (12)

t
(2)
i,j,k = P[Yt = k|Xt = i,Xt−1 = j] (13)

If the last state was the i-th node, then the next state is the j-th

node through the k-th type of interaction with probability t
(1)
i,j,k.

Similarly, t(2)
i,j,k can be considered as the probability of selecting the

k-th type of interaction from the j-th node to the i-th node. For
the calculation of the random variables X and Y, the above two
equations are deduced according to the total probability formula
as follows:

P[Xt = i] =
n

∑

j=1

m
∑

k=1

t
(1)
i,j,k × P[Xt−1 = j,Yt = k] (14)

P[Yt = k] =
n

∑

i=1

n
∑

j=1

t
(2)
i,j,k × P[Xt = i,Xt−1 = j] (15)

P[Xt−1 = j,Yt = k] represents the joint probability distribution
of Xt−1 and Yt , and P[Xt = i,Xt−1 = j] denotes the joint
probability distribution of Xt−1 and Xt . Considering the steady
state of the Markov chain, we can obtain the following formulas:

xi = lim
t→∞

P[Xt = i], (1 ≤ i ≤ n) (16)

yk = lim
t→∞

P[Yt = k], (1 ≤ k ≤ m) (17)

It is very difficult to calculate X and Y due to their coupling
to each other and the observation that they contain two joint
probability distributions in Equations (14) and (15). In this study,
we assumed that the random variables X and Y were completely
independent of each other. Thereafter, we could obtain these
following formulas:

P[Xt−1 = j,Yt = k]=P[Xt−1 = j]P[Yt = k] (18)

P[Xt = i,Xt−1 = j]=P[Xt = i]P[Xt−1 = j] (19)

Based on the above assumption and the fact that t continues to
infinity, Equations (16) and (17) could be deduced as:

xi =

n
∑

j=1

m
∑

k=1

t
(1)
i,j,kxjyk, i = 1, 2, . . . n (20)

yk =

n
∑

i=1

n
∑

j=1

t
(2)
i,j,kxixj, k = 1, 2, . . .m (21)

Based on this, we designed the proper solutions for the functions
f and g. Therefore, the random walk with restart algorithm in the
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multiplex biological network case could be described as follows:

Xt = α × T(1) × Xt−1Yt−1 + (1− α)× RV (22)

Yt = T(2) × Xt
2 (23)

The restart vector, RV, represents the initial probability
distribution. α is the restart probability. The overall framework
of randomwalk with restart onmultiplex biological networks can
be illustrated by Algorithm 1.

Algorithm 1 | Random walk with restart in multiplex biological networks

Input: A multiplex biological network G; Restart vector RV; Stopping threshold ∂

Output: A vector representing the score of nodes X

Step 1. Construct two transition probability tensors T (1) and T (2) using Equations

(8) and (9)

Step 2. Initialize X0 = 1/n, Y0 = 1/m

Step 3. Let t = 1

Step 4. Calculate Xt = α × T (1) × Xt−1 × Yt−1 + (1-α) × RV

Step 5. Calculate Yt = T (2) × Xt
2

Step 6. If ||Xt - Xt−1 || + ||Yt -Yt−1 || < ∂, then let X = Xt, Y = Yt and terminate the

algorithm. Otherwise, let t = t + 1, and then go to Step 4.

Step 7. Output X

Identification of Essential Proteins
Thus far, the framework for assessing the importance of proteins
in multiplex biological networks has been established. Now,
we describe the MON approach that was designed for the
identification of essential proteins from multiplex biological
networks. Algorithm 2 details the MON approach.

Based on a user-specified output number of top-ranking
proteins, K, our approach first constructed the multiplex
biological network G by integrating PINs, gene expression,
and protein domains. Then, considering the conservative and
modular features of proteins, a vector DR = [dr1, dr2, . . . drn]

T

was initialized using the follow equation:

Algorithm 2 | MON

Input: A PIN network, protein domain, gene expression, ortholog data sets,

module scores of proteins, and parameter K

Output: Top K proteins sorted by pr in descending order

Step 1. Construct a multiplex biological network G according to Equations (1)–(5)

Step 2. Calculate initial vector DR

Step 3. pr = Algorithm1(G, dr, ǫ)

Step 4. Sort proteins by the value of pr in descending order

Step 5. Output top K of sorted proteins

FIGURE 2 | The analysis of parameters α and β on DIP dataset. The figure shows the effect of parameter α and β on the performance of MON on DIP dataset. Six

panels represent prediction accuracy of MON in each top percentage of ranked proteins by setting different values of α and β, ranging from 0 to 1. (A) Top 100, (B)

Top 200, (C) Top 300, (D) Top 400, (E) Top 500, (F) Top 600.
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FIGURE 3 | The analysis of parameters α and β on Gavin dataset. The figure shows the effect of parameter α and β on the performance of MON on Gavin dataset.

The optimum of α and β for Gavin dataset is 0.3 and 0.2, respectively. (A) Top 100, (B) Top 200, (C) Top 300, (D) Top 400, (E) Top 500, (F) Top 600.

dr(pi) = β × C_S(pi)+ (1− β)×M_S(pi) (24)

In the above equation, C_S(pi) and M_S(pi) represent
conservative score and modular score of the protein pi,
respectively. Conservative score of the protein pi is derived from
information from orthologous proteins and is defined as follows
(Zhao et al., 2016b):

C_S(pi) =
N(pi)

max
1≤j≤|V|

(N(pj))
(25)

where N(pi) denotes the number of homologous proteins that pi
contains in reference organisms. The modular scores of proteins
are output scores of the POEM approach with normalization
processing (Zhao et al., 2014). Next, we applied the random
walk with restart algorithm to the multiplex biological network
G and generated a score vector pr. Finally, proteins were sorted
in descending order according to pr, with the top K of them
being exported.

RESULTS AND DISCUSSION

To evaluate the essential nature of proteins in PINs, they were
ranked in descending order based on their ranking scores

that were computed by our MON model and by the 11
other competing essential protein prediction approaches, which
included DC (Hahn and Kern, 2004), IC (Stephenson and Zelen,
1989), CC (Wuchty and Stadler, 2003), BC (Joy et al., 2005),
SC (Estrada and Rodriguez-Velazquez, 2005), NC (Wang et al.,
2011), PeC (Li et al., 2012), CoEWC (Zhang et al., 2013), POEM
(Zhao et al., 2014), ION (Peng et al., 2012), and FDP (Zhang
F. et al., 2019). After this, the top 100, 200, 300, 400, 500, and
600 ranked proteins were selected as candidates for verification
as essential proteins. According to the set of known essential
proteins, the number of true essential proteins was determined
to assess the performance of each approach. Here, we represent
the results for the DIP dataset, in detail, and those for the Gavin
dataset, in brief.

Effects of Parameters α and β
In this study, we introduced two self-defined parameters as α and
β. The parameter α (0 < α < 1) was used to control the weight
of two scores at step 4 of Algorithm 1. The parameter β (0 <

β < 1) was adopted to adjust the contribution of conservative
scores and modular scores of proteins in Equation (24). To
study the effects of parameters α and β on the performance of
our MON approach, we evaluated the identification accuracy
by setting different values for α and β. Figures 2, 3 reveal the
comparative results in the DIP and Gavin datasets when the
parameters α and β possessed different values between 0 and
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FIGURE 4 | Comparison of the percentage of essential proteins detected by MON and 11 other previously proposed methods. The proteins in protein–protein

interaction (PPI) network are ranked in the descending order based on their ranking scores computed by MON, Degree Centrality (DC), Information Centrality (IC),

Closeness Centrality (CC), Betweenness Centrality (BC), Subgraph Centrality (SC), Neighbor Centrality (NC), PeC, CoEWC, POEM, ION, and FDP. Then, top 100, 200,

300, 400, 500, and 600 of the ranked proteins are selected as candidates for essential proteins. According to the list of known essential proteins, the percentage of

true essential proteins is used to judge the performance of each method. The figure shows the percentage of true essential proteins predicted by each method in each

top percentage of ranked proteins. The digits on bars denote the percentage of proteins predicted by each method.

1, respectively. We selected top 100, top 200, top 300, top
400, top 500, and top 600 candidate proteins as detected by
MON, respectively. The identification accuracy was evaluated by

the percentage of true essential proteins in the top candidates.
Figure 2 indicates that MON achieves the highest prediction
accuracy when α is 0.3 and β is 0.5. Figure 3 shows that the
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FIGURE 5 | Precision-recall (PR) curves of MON and 11 other existing centrality methods. The proteins ranked in top K (cutoff value) by each method (MON, DC, IC,

SC, BC, CC, NC, PeC, CoEWC, POEM, ION, and FDP) are selected as candidate essential proteins (positive data set), and the remaining proteins in PPI network are

regarded as candidate non-essential proteins (negative data set). With different values of K selected, the values of precision and recall are computed for each method.

The values of precision and recall are plotted in PR curves with different cutoff values. (A) Shows the PR curves of MON, DC, IC, SC, BC, CC, and NC. (B) Shows the

PR curves of MON and other five methods: PeC, CoEWC, POEM, ION, and FDP.

FIGURE 6 | Jackknife curves of the 12 methods. The x-axis represents the proteins in protein–protein interaction (PPI) network ranked by MON and 11 other

methods, ranked from left to right as strongest to weakest identification of essentiality. The Y-axis is the percentage of essential proteins encountered moving left to

right through the ranked. The areas under the curve for MON and the 11 other methods are used to compare their prediction performance. In addition, the 10 random

assortments are also plotted for comparison. (A) Shows the comparison results of MON, DC, IC, SC, and DC. (B) Represents the comparison results of MON, BC,

CC, and NC. (C) Illustrates the comparison results of MON and other five methods: PeC, CoEWC, POEM, ION, and FDP.

optimum values for α and β for the Gavin dataset are 0.3 and
0.2, respectively.

Comparison With 11 Other Approaches
To validate the performance of our MON approach, we made
comprehensive comparisons of MON to the 11 other competing
essential protein identification approaches. Proteins were ranked
in descending order according to their scores obtained from
each approach. Several of the top predicted proteins were viewed
as essential proteins. Then, by comparing to the benchmark

set, we determined how many of these candidate proteins
were true essential proteins. Figure 4 reveals the percentage of
essential proteins detected by MON and the 11 other prediction
approaches within the yeast PIN.

As shown in Figure 4, it is clear that MON allows for a
higher predictive performance than that of the other competitive
centrality methods. For the top 100 candidate proteins and the
top 200 candidate proteins, the prediction accuracy of the MON
approach was >86%. MON exhibited improvements of 70.91,
38.10, 31.87, 25.65, 21.51, and 26.45% compared to the values
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achieved by NC, which possessed the highest prediction accuracy
among the six network topology-based centrality methods (DC,
IC, BC, CC, SC, and NC) when selecting from the top 100

Table 2 | Common and different proteins predicted by MON and other competing

methods ranked in top 100 proteins.

Methods

(Mi)

|MON∩Mi| Non-essential

proteins

in {Mi – MON}

Percentage of non-essential

proteins in {Mi – MON}with low

MON (%)

DC 8 54 88.89

IC 8 56 89.28

SC 8 63 92.06

BC 4 56 87.5

CC 7 59 89.83

NC 25 42 92.96

PeC 56 22 81.82

CoEWC 54 24 83.33

POEM 62 14 92.96

ION 54 19 52.63

FDP 48 8 75

The table shows the common and the difference between MON and 11 other competing

methods (DC, IC, SC, BC, CC, NC, PeC, CoEWC, POEM, ION, and FDP) when predicting

top 100 proteins. |MON∩Mi | denotes the number of proteins predicted by both MON and

one of the 11 other methods Mi. {Mi – MON} represents the set of proteins detected by

Mi while ignored by MON. |Mi – MON| is the number of proteins in set {Mi – MON}. The

last column describes the percentages of different non-essential proteins with low MON

score (<0.45) in top 100 proteins.

to top 600 proteins. In particular, when selecting the top 200
proteins, the accuracy of MON in predicting essential proteins
was still close to 90%, and this was higher than that of DC,
IC, BC, CC, SC, NC, CoEWC, PeC, POEM, and ION for
predicting the top 100 proteins. Compared to FDP, which
obtained the best prediction accuracy of all 11 competitive
approaches, the performance of MON was improved by 5.62,
6.10, 7.62, 3.21, 2.73, and 6.52% from the top 100 to top 600
proteins, respectively.

Validated by Precision-Recall Curves
Additionally, the precision-recall (PR) curve was adopted to
evaluate the overall performance of MON and the other 11
approaches. First, the proteins in PINs were ranked in a
descending order based on the scores obtained from each
approach. Next, the top K proteins were selected and placed into
the positive set (candidate essential proteins), while the rest of the
proteins were stored in the negative set (candidate non-essential
proteins). The cutoff parameter of K ranged from 1 to 5,093.
Based on different selected values ofK, the values of precision and
recall were calculated by each approach. Finally, the PR curves
were plotted according to values of precision and recall when K
changed from 1 to 5,093. Figure 5A shows the PR curves ofMON
and six topology-based centrality methods (DC, IC, BC, CC, SC,
and NC). Figure 5B illustrates the PR curves for MON and the
other five approaches (PeC, CoEWC, POEM, ION, and FDP).
Figure 5 indicates that the PR of MON is clearly higher than that
of all competing approaches.

FIGURE 7 | Comparison of the percentage of essential proteins out of all the different proteins between MON and 11 other methods. Different proteins between two

prediction methods are the proteins predicted by one method while neglected by the other method. The figure shows how many of the different proteins between MON

and 11 other previously proposed methods: DC, IC, SC, BC, CC, NC, PeC, CoEWC, POEM, ION, and FDP are essential. The red dash line represents the percentage

of essential proteins detected by MON while ignored by Mi, and the blue solid line denotes the percentage of essential proteins predicted by Mi and not by MON.
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Validated by Jackknife Methodology
A further comparison between the novel approach MON and
the 11 other competing approaches (DC, BC, CC, SC, IC, NC,
UDoNC, PeC, CoEWC, POEM, ION, and FDP) was performed
by adopting the jackknife methodology (Holman et al., 2009).
The areas under the jackknife curve for each approach were
used to evaluate their accuracy in identifying essential proteins.
Additionally, 10 random assortments were also depicted for
this comparison. Figure 6 illustrates the comparison results
where the horizontal axis represents the proteins ranked in
descending order according to their scores calculated by each
approach and the vertical axis is the percentage of essential
proteins related to ranked proteins. Figure 6A shows the
comparison results between MON and three topology-based
centrality methods (DC, IC, and SC). Figure 6B represents
the comparison results between MON and three centrality
methods (BC, CC, and NC). Figure 6C indicates the comparison
results between MON and the remaining five approaches (PeC,
CoEWC, POEM, ION, and FDP). As shown in Figure 6, it
is clear that the jackknife curve for MON is evidently better
than that of the 11 previously proposed approaches. Moreover,
MON and the 11 other competing approaches had all achieved
improved identification performance compared to that of
randomized sorting.

Analysis of the Differences Between MON
and Other Approaches
To analyze why and how MON obtains high performance
for the identification of essential proteins, we investigated
the relationship and differences between MON and the
11 other competitive approaches by detecting a small
fraction of proteins. For each approach, the top 100
proteins were selected and compared. The number of top
100 identified proteins ranked by each approach is listed
in Table 2.

First, we compared MON to DC, BC, CC, SC, IC,
NC, PeC, CoEWC, POEM, ION, and FDP by statistically
analyzing the number of proteins that were commonly
detected by MON and any of the 11 other competitive
approaches. The number of common and different proteins
between MON and any of the other competing approaches
is shown in Table 2. In Table 2, |MON

⋂

Mi| represents
the number of overlapping proteins identified by MON and
by a centrality measure Mi. {Mi – MON} denotes the set
of proteins predicted by Mi and not by MON, and |Mi–
MON| is the number of proteins predicted by Mi and not
by MON.

As illustrated in Table 2, among the top 100 proteins, the
proportions of overlapping proteins identified by both MON and
DC, BC, CC, SC, and IC are all <10%, while the proportions of
overlapping proteins detected by both MON and NC and FDP
are not more than 50%. The proportion of common proteins
predicted by both MON and PeC, CoEWC, POEM, and ION
is <65%. Such a small overlap between proteins identified by
MON and the 11 other approaches indicates that MON provides
a special approach that is different from that of the other

Table 3 | Functional annotations of top 10 predicted essential proteins by MON.

Proteins Essentiality Go Term Categories

YDL147W True GO:0006511 BP

GO:0008541, GO:0034515 CC

YFR004W True GO:0016579, GO:0043161 BP

GO:0004843 MF

GO:0005829, GO:0008541,

GO:0034515

CC

YPR108W True GO:0006511 BP

GO:0005198 MF

GO:0008541 CC

YDL097C True GO:0043248, GO:0006511 BP

GO:0005198 MF

GO:0008541, GO:0034515 BP

YER012W True GO:0010499, GO:0043161 BP

GO:0005789, GO:0034515 CC

YKL145W True GO:0006511, GO:0045899 BP

GO:0016887 MF

GO:0008540 CC

YFR052W True GO:0006511 BP

GO:0008541, GO:0034515 CC

YHR200W False GO:0006511 BP

GO:0005198 MF

GO:0008540 CC

YOR261C True GO:0006511 BP

GO:0008541, GO:0034515 CC

YGR232W False GO:0006508 BP

GO:0005829 CC

The Table shows results of functional annotation for top 10 proteins predicted by the MON

approach. BP, MF, and CC denote biological process, molecular function, and cellular

component, respectively.

Table 4 | Percentage of essential proteins identified by MON and 11 other

competitive methods based on Gavin dataset.

Methods Top

100 (%)

Top

200 (%)

Top

300 (%)

Top

400 (%)

Top

500 (%)

Top

600 (%)

DC 46.00 41.00 38.33 39.50 40.20 41.83

IC 44.00 40.00 39.33 40.25 41.40 41.83

SC 37.00 38.50 39.67 39.50 38.40 36.83

BC 44.00 38.50 37.33 36.25 35.40 36.67

CC 41.00 39.50 39.00 38.25 37.80 38.00

NC 55.00 63.00 60.67 57.50 55.80 51.67

PeC 73.00 72.00 67.67 64.00 59.40 56.83

CoEWC 74.00 69.50 66.67 63.00 58.20 54.67

POEM 81.00 75.50 69.33 66.75 62.00 58.83

ION 77.00 77.00 73.67 70.50 65.80 62.83

FDP 89.00 81.50 75.67 70.25 67.00 63.17

MON 90.00 80.00 74.67 71.25 66.80 62.67

This table shows the comparison of the percentage of essential proteins predicted by

MON and 11 other competitive methods (DC, IC, SC, BC, CC, NC, PeC, CoEWC, POEM,

ION, and FDP) based on protein–protein interaction data from Gavin. Since the total

number of ranked proteins in Gavin is 1,855.
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approaches. The third column in Table 2 denotes the number
of non-essential proteins among different proteins predicted by
Mi but not by MON. We further analyzed these non-essential
proteins that were identified by the 11 other approaches, and we
found that more than 87% of these non-essential genes that were
predicted by six network topology-based centrality measures
(DC, IC, BC, CC, SC, and NC) possessed very low MON ranking
scores (<0.45). Similarly, more than 50% of the non-essential
proteins predicted by PeC, CoEWC, POEM, and ION possessed
very low MON ranking scores (<0.45).

Second, we analyzed the essentiality of different proteins
detected by MON and by other competing approaches. Figure 7
shows the percentage of essential proteins in all of the various
predicted proteins that were detected by MON and the 11
other competitive approaches. In Figure 7, the red dash line
represents the percentage of essential proteins detected by MON
while ignored by Mi, and blue solid line denotes the percentage
of essential proteins predicted by Mi and not by MON. The
experimental results shown in Figure 7 illustrate that among
these different proteins, the proportion of essential proteins
identified by the MON approach is significantly higher than
that predicted by the other approaches. In this study, we chose
two representative approaches (BC and POEM) as examples to
analyze. The former exhibited the largest number of protein
differences compared to our MON approach, and the POEM
approach possessed the smallest difference compared to the
MON approach. Compared to BC, for all of the top 100 predicted
proteins, there were 96 different proteins identified by our MON
approach. Among these 96 different proteins identified by MON,
93.75% were essential, while only 41.67% proteins predicted by
BC were essential. As another example, there were 22 different
proteins detected by either MON or by POEM. Among these
different proteins, MON could predict more than 95% of the

essential proteins, while POEM only discovered <64% of the
essential proteins. The comparable results between MON and
the other competitive approaches (DC, CC, SC, IC, NC, PeC,
CoEWC, and ION) indicate that the proposed MON approach
can identify more essential proteins than the other approaches.

Additionally, we selected top 10 identified candidate proteins
by our approach as examples to analyze their functional
annotations. To this purpose, GO Term (Ashburner et al., 2000)
was adopted to characterize these candidate essential proteins,
including molecular function (MF), biological process (BP), and
cellular component (CC). Table 3 shows the results of functional
annotation for these 10 proteins. Out of all the 10 candidate
proteins, eight proteins were true essential proteins. And all
proteins were annotated in terms of BP, MC, and CC.

Prediction Performance of MON Based on
the Gavin Dataset
To further test the performance of the proposed approach, we
also performed discovery for essential proteins using the Gavin
dataset. The ranking scores for proteins were computed using
MON (α = 0.3, β = 0.2) and 11 other existing competitive
approaches (DC, BC, CC, SC, IC, NC, PeC, CoEWC, POEM,
ION, and FDP). The percentage of essential proteins in the
top 100, 200, 300, 400, 500, and 600 proteins ranked by these
approaches are listed in Table 4. The jackknife curves of each
approach are illustrated in Figure 8. All of these experimental
results indicate that MON still outperforms the 11 other
competitive approaches, using the Gavin dataset. Specifically,
when selecting the top 100 ranked proteins, MON resulted in
95.65, 104.55, 143.24, 104.55, 119.51, 63.64, 23.29, 21.62, 11.11,
16.88, and 1.12% improvements compared to the results obtained
from DC, IC, CC, BC, SC, NC, PeC, CoEWC, POEM, ION, and
FDP, respectively.

FIGURE 8 | Jackknife curves of MON and 11 other competitive methods based on Gavin dataset. The prediction performance of MON and 11 other existing

competitive methods (DC, BC, CC, SC, IC, NC, PeC, CoEWC, POEM, ION, and FDP) based on protein–protein interaction data from Gavin are validated by the

jackknife method. (A) Shows the Jackknife curves of MON, DC, IC, SC and BC. (B) Shows the Jackknife curves of MON, CoEWC, ION, NC and CC. (C) Shows the

Jackknife curves of MON, PeC, POEM and FDP.
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CONCLUSION

The detection of essential proteins is helpful for understanding
the minimum requirements for cell survival and development.
Many computational approaches have been proposed that
integrate PINs and multi-omics data, and this has led to the
identification of multiple interactions or links between proteins.
Despite the advances in these approaches, designing efficient
algorithms to fuse these multisource biological data remains
challenging. A simple strategy is to aggregate a collection of
heterogeneous data into a single network; however, this strategy
can result in substantial information loss. Studies indicate that
different types of biological data sources that possess inherent
structural characteristics are correlated to each other. Moreover,
high-throughput multi-omics biological data exhibit different
degrees of quality and can play various roles in the prediction
of essential proteins. The multiplex biological network provides
an alternative means to address these problems. In this study, we
constructed a multiplex biological network by combining PINs
with multi-source biological information, and proposed a new
essential proteins prediction approach named MON. In MON,
we express the multiplex biological network in the tensor model
and extend the randomwalk with restart algorithm by simulating
a higher-order Markov chain. Additionally, the conservative
and modular features of essential proteins are both taken into
account to improve the performance of MON. The experimental
results from two yeast PINs demonstrate that MON performs
better than 11 other state-of-the-art approaches for predicting
essential proteins.
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