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Abstract The new coronavirus disease is still a major panic for people all over the world. The
world is grappling with the second wave of this new pandemic. Different approaches are taken
into consideration to tackle this deadly disease. These approaches were suggested in the form
of modeling, analysis of the data, controlling the disease spread and clinical perspectives.
In all these suggested approaches, the main aim was to eliminate or decrease the infection
of the coronavirus from the community. Here, in this paper, we focus on developing a new
mathematical model to understand its dynamics and possible control. We formulate the model
first in the integer order and then use the Atangana–Baleanu derivative concept with a non-
singular kernel for its generalization. We present some of the necessary mathematical aspects
of the fractional model. We use a nonlinear fractional Lyapunov function in order to present
the global asymptotical stability of the model at the disease-free equilibrium. In order to solve
the model numerically in the fractional case, we use an efficient modified Adams–Bashforth
scheme. The resulting iterative scheme is then used to demonstrate the detailed simulation
results of the ABC mathematical model to examine the importance of the memory index and
model parameters on the transmission and control of COVID-19 infection.

1 Introduction

The novel coronavirus disease is a viral infection caused by a newly discovered virus named
as a coronavirus (SARS-CoV-2). This virus belongs to the family of viruses known as Coro-
naviridae which makes the causes of COVID-19. The first outbreak of COVID-19 infection
is reported in Wuhan China at the end of 2019. This virus is highly contagious and due to
its fast spreading mostly the faced it in the form of infected cases, deaths and economic
loss [1]. The pandemic not only affects the humans population but also gives big loss to the
countries’ economic growth. A lot of people lost their jobs, and many industries and other
business hubs suffered a lot. The recent report of the World Health Organization (WHO)
reveals that a total of 10.27 million are tested positive and more than 1.52 million deaths
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have been reported till December 12, 2020 [2]. It can also be noted that the recovery rate
of this infection is greater than the mortality rate as 42.2 million of the confirmed infected
cases are completely recovered so far. Currently, there is no available licensed medication or
vaccine that protects or cures COVID-19. The medication given to infected people is mainly
supportive treatment that aims at reducing symptoms. A person infected with the coronavirus
may experience some of the common symptoms such as fever, fatigue, dry cough, shortness
of breath or shortness of breath. Less common symptoms include pain, chills, diarrhea, sore
throat, conjunctivitis, headache, skin eruptions, loss of taste or odor, discoloration, etc. [3,4].
The main intervention used for the minimization or eradication of COVID-19 infection in
world is non-pharmaceutical, i.e., stay at home, wear a mask, social distance, avoid infected
surfaces, frequent self-isolation, hand washing or sanitizing, lockdown, etc. Still the trans-
mission routes of this novel infectious disease are not identified, but the main routes of the
virus causing the COVID-19 infection are through droplets that can be produced during the
coughs, sneezes or exhales of infectious person. These droplets are much heavy to hang in
the air and then fall on surfaces or floors. The virus can be transferred to a person by touching
the contaminated surfaces and then his/her eyes, nose or mouth.

Mathematical models can be used as an efficient tool to explore the dynamics of transmis-
sion and, ultimately, to suggest appropriate strategies to eradicate or minimize an infectious
disease [5–12]. Recently, due to the COVID-19 pandemic, one of the challenges is that
without any specific treatment how to minimize the incidence of this disease with non-
pharmaceutical intervention in the whole world. Since the beginning of infection, a lot of
mathematical models addressing the corona virus infection in different parts of the world are
published. Most of the suggested mathematical models in this regard are formulated with
the help of ordinary, partial or stochastic differential equations. For instant, the impact and
role of non-pharmaceutical control measures on the COVID-19 incidence are studied in [13].
The authors in [13] further extend the work by providing optimal control strategies against
COVID-19. A similar study was conducted in [14]. Additionally, in [14] the authors consid-
ered the role of environmental viral load on the COVID-19 dynamics. The global stability
and the cost-effective analysis of a novel COVID-19 transmission model coupled with real
data of Ghana have been carried out in [15]. The numerical simulations of an SEIR COVID-
19 epidemic model utilizing the real data from Indonesia were presented in [16] and others
[17,18].

The mathematical modeling approach via the fractional differential equation is another
helping tool and gaining much interest in the recent years from the researchers point of view.
Due to some of the interesting properties of the fractional models such as the memory, the
heredity properties make it more powerful than the ordinary order mathematical models. It
is due to the fact that the fractional epidemic models have the ability by capturing the fading
memory and the crossover behavior that exhibits by the biological process. Moreover, the
most interesting is the data fitting that can be considered better with fractional order rather
than ordinary order, see, for more explanations, [19,20]. Some fractional operators that are
classified on its kernel as a singular or non-singular kernels are used effectively in modeling
of real-world problems, see [21,22]. The fractional operator introduced in [21] commonly
known as the Atangana–Baleanu–Caputo (ABC) derivative having its foundations on the
Mittag–Leffler kernel, and it is non-singular and non-local. Therefore, mathematical models
formulated via the ABC operator are more prominent and better explore the dynamics of
a disease. Presently, in the literature, many researchers formulated mathematical models in
fractional derivatives suggested as a best tool for the real-life problem solution. For example,
in [23] the authors studied the dynamical behavior of COVID-19 infection in the Wuhan
China with the help of fractional mathematical model based on ABC derivative. A similar
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study was conducted in [24], in which the authors analyzed the dynamical analysis of the
corona infection through fractional model studied using the exponential type kernel. A novel
coronavirus model has been recently introduced in [25] using the Caputo derivative. Recently,
in [26], the authors have presented a numerical investigation of fractional COVID-19 model in
fractional derivative. More recently, the authors have analyzed the dynamics of corona virus
infection through non-integer-order model in [27]. The dynamical analysis of the coronavirus
model considering KSA real data is studied in [28].

Keeping the above facts in mind, in the current study, we reformulate the COVID-19 model
[13] by applying the ABC fractional-order operator. We will analyze the model dynamics
with these new operators and its appropriateness to our proposed model. In order to formulate
the fractional COVID-19 model, we replace the ordinary derivative with the generalized ABC
fractional derivative. Moreover, we carried out a detailed theoretical and numerical aspects
of the proposed model in fractional derivative. Organizing the reaming work is as follows:
Sect. 2 presents the basics definitions relevant to the fractional-order derivatives that will
be used in the modeling considered. The model formulation in ABC fractional derivative
is discussed in Sect. 3. Section 4 presents some necessary mathematical properties of the
proposed model. The numerical solution and the resulting simulation results for memory
index and various parameters are shown in Sects. 5 and 6, respectively. The concluding
remarks relevant to the present investigation are summarized in Sect. 7.

2 Preliminary results

This section presents some important necessary concepts and basic definition regarding frac-
tional operators.

Definition 2.1 For the function denoted by y(t) ∈ Cn , the Caputo type derivative having
order ϑ in (n − 1, n] where n ∈ N is defined as [21]:

C Dϑ
t (y(t)) = 1

�(n − ϑ)

∫ t

0

yn(ζ )

(t − ζ )ϑ−n+1 dζ. (1)

Clearly C Dϑ
t (y(t)) approaches y′(t) as ϑ → 1.

Definition 2.2 The ABC fractional operator is defined as follows: [21]:

ABC
a Dϑ

t y(t) = AB(ϑ)

1 − ϑ

∫ t

a
y′(x)Eϑ

[−ϑ(t − x)ϑ

1 − ϑ

]
dx, (2)

where 0 ≤ ϑ ≤ 1, f ∈ C[a, b] and AB(ϑ) is the normalized function and AB(0) =
AB(1) = 1.

Definition 2.3 The associated integral to the fractional derivative with Mittag–Leffler kernel
is defined as follows [21]:

ABC
0 I ϑ

t y(t) = 1 − ϑ

AB(ϑ)
y(t) + ϑ

AB(ϑ)�(ϑ)

∫ t

0
y(x)(t − x)ϑ−1

]
dx . (3)

Consider the system of fractional differential equation in Atangana–Baleanu–Caputo sense
described as follows [29]:

(ABC
t0 Dϑ

t y)(t) = F(t, y), (4)

where F : D ⊂ R
n × R+ −→ R

n and ϑ ∈ (0, 1]. Then, the following result deals with the
globally asymptotic stability of fractional system (4).
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Theorem 2.1 [29] For the fractional system (4) with Atangana–Baleanu–Caputo derivative,
let V(t, y(t)) be positive definite and V(t) = V(t, y(t)) be a continuously differentiable
function. Further, ABC

t0 Dϑ
t V(t, y(t)) is negative definite for all ϑ ∈ (0, 1]. If there exists a

function say F of class K with V(y) = F(y) such that if V increase, then F increases, then
the equilibrium point y = 0 is asymptotically stable point at t = 0.

3 The COVID-19 compartmental model

Initially, we present brief details of the classical integer-order compartmental model describ-
ing the dynamics of novel COVID-19 infection. The model under consideration has been
recently studied in [13]. The transmission model is formulated by sub-dividing the total pop-
ulation described by N (t) at time t , into mutually exclusive eight sub-population groups.
The respective sub-groups are the susceptible humans not yet infected but at risk to catch
the infection S(t), exposed to COVID-19 infection E(t), the symptomatic humans are those
infected individuals having clinical symptoms I (t), the asymptomatic infected humans are
those having no or mild clinical symptoms of COVID-19 IA(t), the quarantined humans Q(t),
the hospitalized (or in self-isolation) humans IH (t), the COVID-19 infected humans who are
in critical situation IC (t) and those individuals that are recovered from COVID-19 infection
are describing through the recovered class, R(t). In the considered model, it is considered
that the hospitalized class IH (t) can transmit the infection further. The biological description
and respective numerical values of the parameters involved in the model are described in
Table (1). The resulting COVID-19 mathematical model is formulated with the help of the
following nonlinear system of classical differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − β(I+βA IA+βH IH )

N S − dS,

dE

dt
= β(I+βA IA+βH IH )

N S − (κ + δ + d)E,

dI

dt
= rκ E − (r1 + d + d1 + γ ) I,

dIA

dt
= (1 − r) κ E − (r2 + d) IA,

dQ

dt
= δE − (μ + r3 + ζ ) Q,

dIH

dt
= γ I + ζ Q − (d + r4 + d2 + φ) IH ,

dIC

dt
= φ IH − (d + r5 + d3) IC ,

dR

dt
= r1 I + r2 IA + r3 Q + r4 IH + r5 IC − dR,

(5)

subjected to initial conditions (ICs):

{
S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I (0) = I0 ≥ 0, IA(0) = IA0 ≥ 0,

Q(0) = Q0 ≥ 0, IH (0) = IH 0 ≥ 0, IC (0) = IC 0 ≥ 0, R(0) = R0 ≥ 0.
(6)
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3.1 The COVID-19 model derivation using the non-singular operator

The fractional derivative in ABC sense is more generalized as the kernel involved in this oper-
ator is both non-local and non-singular. Moreover, this operator has the ability by capturing
the memory effect and the crossover behavior exists in the processes of biology models. Keep-
ing these facts in mind, in this section, we reformulate the COVID-19 mathematical model
(5) with the help of non-integer operator in ABC case with the order ϑ ∈ (0, 1]. The resulting
non-integer-order mathematical model shown below is obtained with the replacement of the
ordinary derivative by the fractional-order ABC operator:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC Dϑ
t S(t) = � − β(I+βA IA+βH IH )

N S − dS,

ABC Dϑ
t E(t) = β(I+βA IA+βH IH )

N S − (κ + δ + d)E,

ABC Dϑ
t I (t) = rκ E − (r1 + d + d1 + γ ) I,

ABC Dϑ
t IA(t) = (1 − r) κ E − (r2 + d) IA,

ABC Dϑ
t Q(t) = δE − (d + r3 + ζ ) Q,

ABC Dϑ
t IH (t) = γ I + ζ Q − (d + r4 + d2 + φ) IH ,

ABC Dϑ
t IC (t) = φ IH − (d + r5 + d3) IC ,

ABC Dϑ
t R(t) = r1 I + r2 IA + r3 Q + r4 IH + r5 IC − dR,

(7)

subjected to the nonnegative ICs (6). For simplicity, let us take

λ(t) = β(I + βA IA + βH IH )

N
,

and

m1 = (κ + δ + d), m2 = (r1 + d + d1 + γ ), m3 = (r2 + d), m4 = (d + r3 + ζ ),

m5 = (d + r4 + d2 + φ), m6 = (d + r5 + d3).

With the above suggestions, we can write the model in the following form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC Dϑ
t S(t) = � − λS − dS,

ABC Dϑ
t E(t) = λS − m1 E,

ABC Dϑ
t I (t) = rκ E − m2 I,

ABC Dϑ
t IA(t) = (1 − r)κ E − m3 IA,

ABC Dϑ
t Q(t) = δE − m4 Q,

ABC Dϑ
t IH (t) = γ I + ζ Q − m5 IH ,

ABC Dϑ
t IC (t) = φ IH − m6 IC ,

ABC Dϑ
t R(t) = r1 I + r2 IA + r3 Q + r4 IH + r5 IC − dR.

(8)

In the above COVID-19 compartmental model (8), the ABC Dϑ
t denotes the fractional operator

in ABC sense.

Parameter estimations

The estimation of model parameters is essential and realistic approach to predict and explore
the dynamics of a disease. In this part of the paper, we utilized the well-known least square

123



  168 Page 6 of 20 Eur. Phys. J. Plus         (2021) 136:168 

Table 1 Models parameters and its estimated values

Parameter Description Value/day Source

� Recruitment rate μ ∗ N (0) Estimated

d Death rate naturally 1
(365×67.7)

[2]

d1 The death rate due to symptomatic infection 0.0100 Fitted

βA Transmissible coefficient rate related to IA 0.5932 Fitted

κ Incubation period 0.3233 Fitted

r Proportion of the symptomatic infection 0.4760 Fitted

γ Hospitalized rate for the symptomatic people 0.3738 Fitted

d2 Death of the people in the hospitalization class 0.0131 Fitted

d3 Death of the people critical-infected class 0.039 Fitted

r1 Recovery due to I 0.4368 Fitted

r2 Recovery due to IA 0.2550 Fitted

r3 Rate of recover of quarantined individuals 0.2562 Fitted

r4 Rate of recover of hospitalized individuals 0.1010 Fitted

r5 Rate of recover of critically infected individuals 0.0261 Fitted

δ Rate of quarantined for exposed individuals 0.4818 Fitted

β Transmission coefficient that generate the infection 0.6349 Fitted

ζ The rate by which the quarantined are hospitalized 0.5435 Fitted

βH Transmissible coefficient relative to IH 0.6312 Fitted

φ The individuals movement from IH to IC 0.1950 Fitted

curve fitting statistical technique in order to get the realistic parameters values for the con-
firmed COVID-19 infected cases reported in Pakistan from March 1 to 31 August 2020.
Some of the demographic parameters such as the birth � and natural mortality rate d are
estimated through literature and given in Table 1. The reasonable fitted model predicted curve
is depicted in Fig. 1. The updated estimated value of the basic reproductive number evaluated
via the fitted parameters is R0 ≈ 1.32. The initial values of model variables are assumed
as S(0) = 220870336, E(0) = 20000, I (0) = 4, IA(0) = 3000, Q(0) = 0, IH (0) = 0,
IC (0) = 0, and R(0) = 0.

4 Basic properties of the ABC COVID-19 model

The following feasible region is well posed and invariant for the ABC fractional model (8),
where its dynamics can be analyzed:


 ⊂ R
8+,

such that

� =
{(

S(t), E(t), I (t), IA(t), Q(t), IH (t), IC (t), R(t)

)
∈ R

8+ : S(t) + E(t)

+I (t) + IA(t) + Q(t) + IH (t) + IC (t) + R(t) ≤ �/d

}
.
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Fig. 1 Comparison of model with real cases: circle denotes real cases, while bold line is the model solution.
The data considered here from March 1 to August 31, 2020

The dynamics of the total population is obtained by adding all equations of the model (8);

ABC Dϑ
t N (t) = ABC Dϑ

t S(t) + ABC Dϑ
t E(t) + ABC Dϑ

t I (t) + ABC Dϑ
t IA(t) + ABC Dϑ

t Q(t)

+ABC Dϑ
t IH (t) + ABC Dϑ

t IC (t) + ABC Dϑ
t R(t).

Hence;

ABC Dϑ
t N (t) = � − d N (t) − d1 I (t) − d2 IH (t) − d3 IC (t) ≤ � − dN (t).

We have then,

ABC Dϑ
t N (t) + dN (t) ≤ �.

The application of Laplace transform gives the following:

lim
t→∞ N (t) ≤ �/d.

Thus, N (t) approaches �/d whenever t approaches ∞ and ∀ t > 0, all the solutions possess-
ing by the system with its appropriate initial values of the model variables in � will remain
in �. So, the region � is said to be positive invariant and will attract all the solutions in R

8+.

4.1 Equilibria of the ABC COVID-19 model

The obtaining of the equilibrium points is the important concept in dynamical system, by
which the stability of the system can be analyzed through that equilibrium point. Typically,
in most of the biological models formulated for humans dynamics possess two equilibrium
points , that is, the disease-free and the endemic. In order to get the disease-free equilibrium
DFE of the model (8), we show it by

D∗∗
0 = (S0, E0, I 0, I 0

A, Q0, I 0
H , I 0

C , R0),
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and obtained is as follows:

D∗∗
0 =

(
�

d
, 0, 0, 0, 0, 0, 0, 0

)
. (9)

Another important concept in the disease epidemiology is the computation of the basic
reproduction number. It is also called a threshold quantity that characterized the disease
whether it can be controlled or not. The value of the basic production number less or greater
decides the disease-free and endemicity, respectively, in the population. There are many
methods to compute the basic reproduction for the biological models but the one that using
the researchers mostly in their work is the next-generation technique [30]. Commonly, the
basic reproduction number is denoted by R0. So, by using the method, by letting, x =
(E, I, IA, Q, IH , IC )T , then, we have

dx

dt
= F − V,

where

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

β(I+βA IA+βH IH )S
N
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 E

m2 I − rκ E

m3 IA − (1 − r)κ IA

m4 Q − δE

m5 IH − γ I − ζ Q

m6 IC − φ IH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The basic reproduction number R0 at the DFE can be achieved using ρ(FV−1) for our
considered model (8):

R0 = β[m2m3δζβH + m4κ(m3r(m5 + βH γ ) + m2m5βA(1 − r))]
m1m2m3m4m5

. (10)

The stability of the model will be analyzed through the basic reproduction number R0.

4.2 Lyapunov stability of DFE case

We present here the global dynamics of the fractional model (8) at the DFED∗∗
0 by construct-

ing the Lyapunov function.

Theorem 4.1 If R0 < 1, then the model (8) at D∗∗
0 is globally asymptotically stable.

Proof We take the following suitable Lyapunov function in consideration to prove the desired
result:

L(t) =
(R0m5

ββH

)
E +

(m5 + βH γ

m2βH

)
I +

( m5βA

m3βH

)
IA +

( ζ

m4

)
Q + IH .
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The time fractional derivative of L(t) in ABC sense along the solution of model (8) is as
follows:

ABC Dϑ
t L(t) =

(R0m5

ββH

)
ABC Dϑ

t E +
(m5 + βH γ

m2βH

)
ABC Dϑ

t I +
( m5βA

m3βH

)
ABC Dϑ

t Ia

+
( ζ

m4

)
ABC Dϑ

t Q + ABC Dϑ
t IH ,

= R0m5

ββH

[βS(I + βA IA + βH IH )

N
− m1 E

]
+

(m5 + βH γ

m2βH

)
(rκ E − m2 I )

+
( m5βA

m3βH

)(
(1 − r)κ E − m3 IA

) +
( ζ

m4

)
(δE − m4 Q) + γ I

+ζ Q − m5 IH ,

≤ R0m5

ββH

[
β(I + βA IA + βH IH ) − m1 E

]
+

(m5 + βH γ

m2βH

)
(rκ E − m2 I )

+
( m5βA

m3βH

)
((1 − r)κ E − m3 IA) +

( ζ

m4

)
(δE − m4 Q) + γ I

+ζ Q − m5 IH , S/N ≤ 1.

=
(R0m5

βH
I − m5

βH
I
)

+
(R0m5

βH
βA IA − m5

βH
βA IA

)
+

(
R0m5 IH − m5 IH

)

+
(δζ

m4
− R0m5m1

ββH
E + (

m5 + βH γ

m2βH
)rκ E + βAm5

m3βH
(1 − r)κ E

)
,

= m5

βH

(
R0 − 1

)
I + m5

βH

(
R0 − 1

)
βA IA + m5

(
R0 − 1

)
IH ,

≤ m5

βH

(
R0 − 1

)
(I + βA IA + βH IH ),

≤ 0.

It is clear that if R0 < 1, then ABC Dϑ
t L(t) is negative. Thus, following the results stated in

Theorem 2.1, it is concluded that the DFE D∗∗
0 is GAS in �. �


4.3 Existence and uniqueness of the solution

In this part of the manuscript, we present the important feature of the ABC COVID-19
epidemic model known as the existence and uniqueness (EU) as described in (8). For the
desired EU result, the fixed-point theory is utilized. Initially, the COVID-19 epidemic model
(8) is reformulated via the following initial value problem:

{
ABC Dϑ

t y(t) = G(t,y(t)),

y(0) = y0, 0 < t < T < ∞.
(11)

In the above problem (11), the vector shown by y = (S, E, I, IA, Q, IH , IC , R)

denotes the corresponding state variables and the vector y0 = (S(0), E(0), I (0), IA(0),

Q(0), IH (0), IC (0), R(0)) shows the corresponding ICs. Furthermore, G describes a contin-
uous vector function as given below:
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G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1

G2

G3

G4

G5

G6

G7

G8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� − λS − dS

λS − m1 E

rκ E − m2 I

(1 − r)κ E − m3 IA

δE − m4 Q

γ I + ζ Q − m5 IH

φ IH − m6 IC

r1 I + r2 IA + r3 Q + r4 IH + r5 IC − dR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In addition, the function defined as above G fulfills the Lipschitz criteria shown as follows:

‖G(t,y1(t)) − G(t,y2(t))‖ ≤ D‖y1(t) − y2(t)‖, D > 0. (12)

Further, the following theorem deals with the required EU result.

Theorem 4.2 A unique solution of the proposed COVID-19 epidemic ABC mathematical
model (11) will exists if the condition describe below holds:

ψ1(ϑ)D + ψ2(ϑ)T ϑ
maxD < 1. (13)

where,

ψ1(ϑ) = (1 − ϑ)

ABC(ϑ)
, and ψ2(ϑ) = ϑ

ABC(ϑ)�(ϑ)

Proof Taking the integral in ABC sense upon the problem (11), we leads to the following
nonlinear Volterra integral equation:

y = v0 + ψ1(ϑ)G(t,y) + ψ2(ϑ)

∫ t

0
(t − ς)ϑ−1G(ς, v(ς))dς. (14)

To move further, we define J = (0, T ) and the corresponding operator G : C(J ,R8) →
C(J ,R8) stated as

G[y] = v0 + ψ1(ϑ)G(t,y) + ψ2(ϑ)

∫ t

0
(t − ς)ϑ−1G(ς, v(ς))dς. (15)

In a result, Eq. (14) takes the following form:

y = G[y]. (16)

We denote the supremum norm upon J by ‖.‖J defines as follows:

‖y‖J = sup
t∈J

‖y‖, y ∈ C. (17)

C(J ,R8) along with the norm shown by ‖.‖J constructed a Banach space. Moreover, the
following inequality can be easily shown:∥∥∥∥

∫ t

0
G(t, ς)y(ς)dς

∥∥∥∥ ≤ T ‖G(t, ς)‖J ‖y‖J , (18)

with y ∈ C(J ,R8), G(t, ς) ∈ C(J 2,R) such that

‖G(t, ς)‖J = sup
t,ς∈J

|G(t, ς)|. (19)
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Utilizing Eq. (16), we lead to the following result

‖G[y1(t)] − G[y2(t)]‖J ≤
∥∥∥∥ψ1(ϑ)(G(t,y1(t)) − G(t,y2(t))) + ψ2(ϑ) ×
∫ t

0
(t − ς)ϑ−1(G(ς,y1(ς)) − G(ς,y2(ς)))dς

∥∥∥∥J . (20)

Further, making use of Eqs. (12), (18) as well as the triangular inequality, Eq. (20) gets the
following form:

‖G[y1(t)] − G[y2(t)]‖J ≤
(

ψ1(ϑ)D + ψ2(ϑ)DT ϑ
max

)
‖y1(t) − y2(t)‖J . (21)

Finally, we obtain

‖G[y1(t)] − G[y2(t)]‖J ≤ M‖y1(t) − y2(t)‖J , (22)

where,

M = ψ1(ϑ)D + ψ2(ϑ)DT ϑ
max.

The operator G will be a contraction if it holds the condition in Eq. (13). Hence, the system
(11) has a unique solution. �


5 Numerical solution of fractional COVID-19 model

In this section, we investigate the iterative scheme of the COVID-19 epidemic model (8) with
ABC operator in order to present the graphical impact of various parameters and memory
index on the disease incidence. An efficient numerical scheme based on the two-step Lagrange
polynomial approximation [31] is used for this purpose. Firstly, a brief derivation of the
iterative scheme is presented for the general Cauchy problem described in (11) and then it is
implemented for the fractional COVID-19 model (8) in consideration.

Applying the integral operator in ABC sense as defined in (3) on both sides of Cauchy
problem (11). In a result, we lead to the following integral equation:

y(t) − y(0) = ψ1(ϑ)G(t,y) + ψ2(ϑ)

∫ t

0
G(x,y(x)(t − x)ϑ−1dx, (23)

where ψ1(ϑ) and ψ2(ϑ) are defined as in previous section. Further, at t = tk+1 = (k+ 1)h,
we have

y(tk+1) − y(0) = ψ1(ϑ)G(tk,y(tk)) + ψ2(ϑ)

∫ tk+1

0
G(x, v(x))(tm+1 − x)ϑ−1dx,

= 1 − ϑ

AB(ϑ)
G(tk,y(tk))

+ ϑ

AB(ϑ) × �(ϑ)

k∑
j=0

∫ t j+1

t j

G(x,y(x))(tk+1 − x)ϑ−1dx . (24)

Now, with the help of polynomial interpolation approach, the vector function G(x,y(x))

is approximated using two-step Lagrange polynomial upon the interval [tl , tl+1]. Thus, we
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Fig. 2 Dynamics of suspectable individuals for various values of ϑ

Fig. 3 Dynamics of exposed individuals for various values of ϑ

proceed as follows:

G(x,y(x)) ∼= Pk(x) = G(tl ,y(tl))

h
(x − tl−1) − G(tl−1,y(tl−1))

h
(x − tl). (25)
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Fig. 4 Dynamics of symptomatic individuals for various values of ϑ

Fig. 5 Dynamics of asymptomatic individuals for various values of ϑ

So, Eq. (24) becomes:

y(tk+1) = y(0) + 1 − ϑ

AB(ϑ)
G(tk,y(tk))

+ ϑ

AB(ϑ) × �(ϑ)

k∑
l=0

(G(tl ,y(tl))

h

∫ tl+1

tl
(x − tl−1)(tk+1 − x)ϑ−1dx

−G(tl−1,y(tl−1))

h

∫ tl+1

tl
(x − tl)(tk+1 − x)ϑ−1dx

)
. (26)
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Fig. 6 Dynamics of quarantine individuals for various values of ϑ

Fig. 7 Dynamics of hospitalized or self-isolated individuals for various values of ϑ

On further simplification of the integrals in (26), the approximate solution for the problem
in consideration is as follows:

y(tk+1) = y(t0) + 1 − ϑ

AB(ϑ)
G(tk,y(tk)) + ϑ

AB(ϑ)

k∑
l=0(hϑG(tl ,y(tl))

�(ϑ + 2)

{
(k − l + 1)ϑ (k − l + 2 + ϑ) − (k − l)ϑ (k − l + 2 + 2ϑ)

}

−hϑG(tl−1,y(tl−1))

�(ϑ + 2)

{
(k − l + 1)ϑ+1 − (k − l)ϑ (k − l + 1 + ϑ)

})
. (27)
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Fig. 8 Dynamics of critically infected individuals for various values of ϑ

Fig. 9 Dynamics of recovered individuals for various values of ϑ

Thus, the following recursive expressions are obtained for the ABC fractional COVID-19
epidemic model described in (8):

S(tk+1) = S(t0) + 1 − ϑ

AB(ϑ)
G1(tk,y(tk)) + ϑ

AB(ϑ)

k∑
l=0(hϑG1(tl ,y(tl))

�(ϑ + 2)

{
(k + 1 − l)ϑ (k + 2 − l + ϑ) − (k − l)ϑ (k + 2 − l + 2ϑ)

}

−hϑG1(tl−1,y(tl−1))

�(ϑ + 2)

{
(k − l + 1)ϑ+1 − (k − l)ϑ (k − l + 1 + ϑ)

})
,
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(a) (b)

(d)(c)

Fig. 10 The effect of δ (quarantine rate) on the symptomatically infected people for a ϑ = 1, b ϑ = 0.95, c
ϑ = 0.90, d ϑ = 0.85

E(tk+1) = E(t0) + 1 − ϑ

AB(ϑ)
G2(tk,y(tk)) + ϑ

AB(ϑ)

k∑
l=0(hϑG2(tl ,y(tl))

�(ϑ + 2)

{
(k + 1 − l)ϑ (k + 2 − l + ϑ) − (k − l)ϑ (k + 2 − l + 2ϑ)

}

−hϑG2(tl−1,y(tl−1))

�(ϑ + 2)

{
(k + 1 − l)ϑ+1 − (k − l)ϑ (k − l + 1 + ϑ)

})
,

I (tk+1) = I (t0) + 1 − ϑ

B(ϑ)
G3(tk,y(tk)) + ϑ

AB(ϑ)

k∑
l=0(hϑG3(tl ,y(tl))

�(ϑ + 2)

{
(k + 1 − l)ϑ (k + 2 − l + ϑ) − (k − l)ϑ (k + 2 − l + 2ϑ)

}

−hϑG3(tl−1,y(tl−1))

�(ϑ + 2)

{
(k + 1 − l)ϑ+1 − (k − l)ϑ (k − l + 1 + ϑ)

})
,

IA(tk+1) = IA(t0) + 1 − ϑ

AB(ϑ)
G4(tk,y(tk)) + ϑ

AB(ϑ)

k∑
l=0(hϑG4(tl ,y(tl))

�(ϑ + 2)

{
(k + 1 − l)ϑ (k + 2 − l + ϑ) − (k − l)ϑ (k + 2 − l + 2ϑ)

}
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(a) (b)

(d)(c)

Fig. 11 The effect δ (quarantine rate) on the asymptomatically infected people for a ϑ = 1, b ϑ = 0.95, c
ϑ = 0.90, d ϑ = 0.85

−hϑG4(tl−1,y(tl−1))

�(ϑ + 2)

{
(k + 1 − l)ϑ+1 − (k − l)ϑ (k − l + 1 + ϑ)

})
,

Q(tk+1) = Q(t0) + 1 − ϑ

AB(ϑ)
G5(tk,y(tk)) + ϑ

AB(ϑ)

k∑
l=0(hϑG5(tl ,y(tl))

�(ϑ + 2)

{
(k + 1 − l)ϑ (k + 2 − l + ϑ) − (k − l)ϑ (k + 2 − l + 2ϑ)

}

−hϑG5(tl−1,y(tl−1))

�(ϑ + 2)

{
(k + 1 − l)ϑ+1 − (k − l)ϑ (k − l + 1 + ϑ)

})
,

IH (tk+1) = IH (t0) + 1 − ϑ

AB(ϑ)
G6(tk,y(tk)) + ϑ

AB(ϑ)

k∑
l=0(hϑG6(tl ,y(tl))

�(ϑ + 2)

{
(k + 1 − l)ϑ (k + 2 − l + ϑ) − (k − l)ϑ (k + 2 − l + 2ϑ)

}

−hϑG6(tl−1,y(tl−1))

�(ϑ + 2)

{
(k + 1 − l)ϑ+1 − (k − l)ϑ (k − l + 1 + ϑ)

})
,
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IC (tk+1) = IC (t0) + 1 − ϑ

AB(ϑ)
G7(tk,y(tk)) + ϑ

AB(ϑ)

k∑
l=0(hϑG7(tl ,y(tl))

�(ϑ + 2)

{
(k + 1 − l)ϑ (k + 2 − l + ϑ) − (k − l)ϑ (k + 2 − l + 2ϑ)

}

−hϑG7(tl−1,y(tl−1))

�(ϑ + 2)

{
(k + 1 − l)ϑ+1 − (k − l)ϑ (k − l + 1 + ϑ)

})
,

R(tk+1) = R(t0) + 1 − ϑ

AB(ϑ)
G8(tk,y(tk)) + ϑ

AB(ϑ)

k∑
l=0(hϑG8(tl ,y(tl))

�(ϑ + 2)

{
(k + 1 − l)ϑ (k + 2 − l + ϑ) − (k − l)ϑ (k + 2 − l + 2ϑ)

}

−hϑG8(tl−1,y(tl−1))

�(ϑ + 2)

{
(k + 1 − l)ϑ+1 − (k − l)ϑ (k − l + 1 + ϑ)

})
. (28)

6 Numerical results and discussion

In this section, we present the simulation results of the fractional COVID-19 epidemic model
in the ABC sense (8). For this purpose, we utilize the iterative scheme developed in the
previous section and values of the parameters are given in Table 1. The time level taken
into consideration in simulations is 300 days. The initial conditions are taken from [13].
Initially, we demonstrate the impact of memory index (the order of ABC operator ϑ) on
the dynamics of different population classes in the model (8). The dynamical behavior of
susceptible individuals is described in Fig. 2. We observed that for smaller values ϑ the
susceptible population initially increased until becoming stable after 250 days. Similarly, the
influence of various values of the fractional order ϑ on the dynamics of exposed, symptomatic,
asymptomatic infected people and quarantine, hospitalized and critically infected COVID-
19 individuals is described in Figs. 3, 4, 5, 6, 7 and 8, respectively. The same behavior is
observed for all population compartments as can be seen in 3, 4, 5, 6, 7 and 8. The simulation
results describing the dynamics of the recovered individuals for different memory index ϑ are
shown in Fig. 9. The recovered population decreases for smaller values of ϑ and then finally
became stable after 250 days. Moreover, to analyze the impacts of quarantine rate δ on the
dynamics of cumulative symptomatic and asymptomatic COVID-19 infective individuals we
vary this parameter with different rates and depict the simulations. The resulting graphical
interpretations are carried out for four values of ϑ . From Fig. 10, one can observe that the
symptomatic infected population is decreased significantly as we increase the quarantine rate
δ to its baseline value. This interpretation is carried out for different values of ϑ as can be
seen in Fig. 10(a)–(d). Finally, the importance of variation in δ is analyzed in Fig. 11.

7 Conclusion

The epidemic models formulated using the non-integer-order operators provide compara-
tively deeper insights into the disease transmission dynamics. In addition, the fractional
derivative based on generalized Mittag–Leffler-type kernel is capable of capturing the
crossover features found in the various biological problems. In this study, we explored the

123



Eur. Phys. J. Plus         (2021) 136:168 Page 19 of 20   168 

transmission dynamics of the novel COVID-19 pandemic using a fractional-order mathemat-
ical model in Atangana–Baleanu–Caputo sense. Initially, we briefly reviewed the classical
integer-order mathematical model for the COVID-19 dynamics. The classical model is then
extended to fractional environment with the help of ABC operator. In order to obtain the
fractional model, we replaced the classical derivative with the ABC operator in the model.
Some of the basic mathematical properties of the ABC COVID-19 epidemic model are car-
ried out. An efficient modified Adams–Bashforth is applied to obtain an iterative scheme of
the proposed fractional model. Moreover, detailed simulation results of the ABC mathemat-
ical model are presented to demonstrate the importance of the memory index ϑ and model
parameters on the transmission and control of COVID-19 infection. Thus, from the interpre-
tation presented in this study, we conclude that the models constructed in non-integer orders
exhibit many characteristics that cannot be observed in integer order and more interesting
results can be obtained. The studied will be extended in the near future to obtain its solutions
using other operators in fractional derivatives.
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