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Abstract: A transcriptome-wide analysis of human liver for demonstrating differences between
young and old humans has not yet been performed. However, identifying major age-related
alterations in hepatic gene expression may pinpoint ontogenetic shifts with important hepatic
and systemic consequences, provide novel pharmacogenetic information, offer clues to efficiently
counteract symptoms of old age, and improve the overarching understanding of individual de-
cline. Next-generation sequencing (NGS) data analyzed by the Mann–Whitney nonparametric test
and Ensemble Feature Selection (EFS) bioinformatics identified 44 transcripts among 60,617 total
and 19,986 protein-encoding transcripts that significantly (p = 0.0003 to 0.0464) and strikingly (EFS
score > 0.3:16 transcripts; EFS score > 0.2:28 transcripts) differ between young and old livers. Most
of these age-related transcripts were assigned to the categories ‘regulome’, ‘inflammaging’, ‘regen-
eration’, and ‘pharmacogenes’. NGS results were confirmed by quantitative real-time polymerase
chain reaction. Our results have important implications for the areas of ontogeny/aging and the
age-dependent increase in major liver diseases. Finally, we present a broadly substantiated and
testable hypothesis on a genetically governed ‘aging cascade’, wherein PPP1R10 acts as a putative
ontogenetic master regulator, prominently flanked by IGFALS and DUSP1. This transcriptome-wide
analysis of human liver offers potential clues towards developing safer and improved therapeutic in-
terventions against major liver diseases and increased insights into key mechanisms underlying aging.
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1. Introduction

According to present-day criteria, the script for the evolutionarily founded dramaturgy
of the individual lifetime of early Homo sapiens lacks a chapter for old age: The aver-
age life expectancy of Paleolithic hunter–gatherers from the appearance of Homo sapiens
~200,000 years ago was ~30 years [1]. While there was an increase in longevity in modern
humans of the Early Upper Paleolithic ~50,000 years ago [2], our species has only today
arrived at an average global life expectancy of 72.81 years (United Nations figure for 2021).
Centenarians are rare, and the longest confirmed lifespan among supercentenarians is 122
years [3]. In the distant past, an individual thus left the stage long before entering old age
as we understand it today. The genetic underpinnings of humans were therefore shaped
on the requirement to optimize and adapt biological functions for a phase of life nowa-
days considered as young. Current lifespans were out of reach and their needs, therefore,
biologically irrelevant. This bequeathed today’s humans with genetic hardware whose
regulation and copyediting in progressed age increasingly suffer from error and inaccuracy,
thus entailing age-related disease and premature demise. Our work joins previous efforts
to deal with this imperfect legacy.

With its well-known altruistic function, but also fending for itself, the liver stands
out as an organ of major systemic importance. This justifies the approach of a whole-
transcriptome analysis of the human liver, with the objective to reveal decisive differences
between young and old transcriptomes. Aiming to identify all functional elements in
the human genome [4], the ENCODE Project could in 2012 assign functions to ~80%
of the genome in particular outside of well-studied protein-coding regions, including
sequence variants linked to human disease [5]. Similarly, it was interesting for us to
see whether previously inapparent transcripts stand out prominently upon age-related
liver transcriptome analysis. We thus for the first time identified the most salient aging-
related differences in the liver transcriptome. Data relevance was validated by statistical
significance and a bioinformatics approach determining Ensemble Feature Selection (EFS)
scores [6].

Importantly, mRNA translation rates prognosticate associated protein levels with
median correlations of ~0.9 between predictions and measurements [7]. Doubts about the
soundness of this reasoning [8] were refuted convincingly [9]. Thus, our findings on the
liver transcriptome can serve for harnessing their inherent opportunities to better address
hepatological, pharmacological, and geriatric needs, as well as to gain further insight into
the overarching topic of aging. Data were assigned to distinct functional categories, where
most important age-dependent differences were found in the ‘regulome’ [10,11] category
and the ‘regulome–regeneration–inflammaging’ intersection. Certain genetic components
of the regulome thus are of major biological relevance with regard to individual aging. They
were harmonized with an ‘axis of aging’ characterized previously [12,13] to be expanded
into a regulatory ‘aging cascade’ in our present article.

2. Patients, Materials and Methods
2.1. Liver Tissue

The study protocol conformed to the revised 2008 Declaration of Helsinki and was
approved by the Ethics Committees of the University Hospitals Essen (file number: 12-
5232-BO; 6 December 2012) and Magdeburg (file number: 208/17; 8 January 2018). Liver
tissue samples were collected during the periods of 2013–2017 (Essen) or 2018–2019
(Magdeburg), respectively.

All patients were of Caucasian descent. They provided informed consent before
undergoing partial liver resections due to the underlying diseases specified in Table S1.
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This table also provides further demographic information and clinical characteristics,
including comorbidities and further information gathered from the patients’ files.

According to standard good practice, the major portions of resected tissue—including
both diseased as well as surrounding healthy tissue—were examined by the pathologist.
For the present study, we therefore only investigated liver tissue samples from the periphery
of resected tissue that, because of unimpaired appearance and structure, were considered
as ‘normal’. After quality inspection, liver tissue samples eventually underwent the
methodologic steps required for enabling transcriptome-wide analysis (see below).

2.2. RNA Preparation

Tissue was homogenized in 1 mL of Trizol using the QIAshredder equipment (Qiagen,
Hilden, Germany), and RNA was isolated as described before [14]. Pellets were resus-
pended in 100 µL of nuclease-free water and purified using the RNeasy Mini Kit (Qiagen).
RNA was eluted with 50 µL of nuclease-free water. Concentration and purity were deter-
mined with the NanoDrop One spectrophotometer (Thermo Fisher, Dreieich, Germany).
Samples were treated with DNAse (Turbo DNA-free kit (Ambion/Invitrogen, Thermo
Fisher)) at 37 ◦C for 60 min. RNA was precipitated overnight with ethanol containing
sodium acetate at −80 ◦C. Precipitates were collected by centrifugation (30 min, 17,000× g,
4 ◦C). Pellets were dried for 30 min at RT and resuspended in 50 µL nuclease-free water (or
30 µL in case that the amount of RNA measured before DNase digestion was <200 ng/µL)
according to the amount of RNA measured before DNase digestion. For confirmation or
correction, RNA concentrations and purities were determined again (cf. above). Samples
were stored at –80 ◦C until processing.

2.3. RNA Quality Assessment

Using 20 µL preparations, each, of DNA-free RNA from 37 patients, the RNA quality
number (RQN) for each RNA preparation was determined using the Qubit system (Thermo
Fisher) and by electrophoretic separation. While an RQN > 7 was considered suitable for
sequencing, slightly lower RQNs (minimum: 6.2) were considered sufficient in the absence
of degradation evidenced by chromatography. Subsequently, next-generation sequencing
was performed.

2.4. Next-Generation Sequencing (NGS)

RNA obtained from homogenized liver tissue samples was subjected to NGS. Samples
were assigned to Group I (Young; <49 years. (23–48, median: 34.3); 3 males, 6 females)
and Group II (Old: >74 years. (75–79, median: 78.6); 6 males, 2 females) (cf. Table S1).
Transcriptome-wide analysis revealed a total of 60,617 RNA transcripts. Counts ranged
from 1.156–1.865 × 107 (Group I) and 1.020–2.080 × 107 (Group II). In transcriptome pro-
filing by RNA sequencing, the number of mapped reads for a given gene depends on
its expression level, length, and sequencing depth. Thus, transcript expression levels are
normalized as transcripts per million (TPM), which represent the relative transcript abun-
dance among a population of sequenced transcripts [15]. We defined values of >50 TPM for
≥1/group as relevant for further investigation (see also the Results section).

2.5. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Remainders of the RNA preparations applied to NGS were adjusted to 125 ng/µL.
RNA at 1 µg per sample was transcribed to cDNA using the QuantiNova Reverse Tran-
scription Kit (Qiagen, Hilden, Germany) in a Mastercycler gradient (Eppendorf, Hamburg,
Germany) at 25 ◦C (3 min), 45 ◦C (12 min), 85 ◦C (5 min), and 20 ◦C (2 min). The reaction
volume of 20 µL was diluted to 10 ng/µL by adding 80 µL of nuclease-free water and stored
at −20 ◦C. Wet lab-validated primers from the QuantiNova LNR PCR assay (Qiagen) were
deployed for the following targets given in alphabetical order: AGO2, CFLAR, CYP3A43,
DUSP1, EGR1, FAH, FLNA, GATA4, HSD17B14, IGFALS, ITSN1, KIAA0040, LIPC, PALLD,
PPP1R10, and TFF3, as well as PPIA as a reference (for sequences, see Table S2). QRT-PCRs
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were performed in a LightCycler 480 (Roche Diagnostics, Rotkreuz, Switzerland) with the
QuantiNova SYBR Green PCR Kit (Qiagen) in reaction volumes of 18 µL/well containing
2 µL (20 ng) template, 2 µL probe assay (10× primer or reference), 9 µL QuantiNova probe
master mix, and 5 µL RNase-free water. Amplification was executed at 95 ◦C (2 min), with
45 cycles at 95 ◦C (5 s, each), 60 ◦C (10 s, each), and 70 ◦C (30 s), with the melting curve
from 70 ◦C to 95 ◦C in 50 cycles increasing by 0.5 ◦C/s per cycle. Differences in relative
gene expressions were calculated from the crossing point (Cp) values for Groups I and II:

Fold expression =
2Target Group I I − Re f erence Group I I

2Target Group I − Re f erence Group I

2.6. Data Analyses
2.6.1. Statistics

Statistical analyses were performed with Microsoft Office Excel 2019 (Microsoft, Red-
mond, WA, USA) and Graph Pad 8.0 (GraphPad Software, La Jolla, CA, USA). Differences
of gene expressions between Groups I and II were calculated in MS Excel by the Mann-
Whitney non-parametric test using the Real Statistics Resource Pack add-on, which is
available at http://www.real-statistics.com (accessed on 4 March 2021). Significant p-
values (<0.05) of 257 genes were confirmed with Graph Pad 8.0.

2.6.2. EFS

Feature selection methods are part of the development of classification strategies
within the supervised learning area of artificial intelligence. They are often used to address
the problem of identifying characteristic subsets of features present in large and complex
datasets by ranking features in order of importance, and by allowing for the elimination
of features irrelevant to the classification question, thus reducing the dimensionality and
complexity of the data [16]. EFS addresses limitations identified by the use of single feature
selection strategies often used in medical modeling (such as the Gini index), which have
been shown to produce unstable results [17] by the aggregation of multiple feature selection
methods. This strategy has been successfully applied to direct oncogene discovery from
cancer screening data [18], predict metastasis [19], and identify early sepsis molecular
signatures [20]. We here applied the EFS method as described in [6], where eight different
Single Feature selection methods are combined, with their outputs normalized to avoid
biases inherent to any single method. EFS software can be downloaded free of charge as an
R-package from the Comprehensive R Archive Network (CRAN) [6] or, alternatively, used
as a web application at http://EFS.heiderlab.de (accessed on 7 March 2021). ‘R’ stands for
the programming language, i.e., R ≥ 3.0.2.

2.7. Data Availability

All raw and processed sequencing data generated in this study have been submitted to
the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/, accessed
on 7 March 2021). The datasets and the computer code produced in this study are available
in the following databases: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1
83915 accessed on 7 March 2021.

3. Results and Discussion
3.1. Methodology and Strategy

Tumor-surrounding healthy areas of resected tissue from patients undergoing surgical
intervention for malignancy were processed for whole-transcriptome analysis to investigate
age-dependent differences between protein-encoding mRNAs. As detailed in the Patients
and Methods section, isolated and quality-assured RNA was subjected to next-generation
sequencing (NGS). Total transcripts were normalized to transcripts per million (TPM), and
protein-encoding transcripts were identified and narrowed down to transcripts of high

http://www.real-statistics.com
http://EFS.heiderlab.de
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183915
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183915
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age-dependent (Group I: <40 years; Group II: >74 years) relevance by applying both the
Mann–Whitney nonparametric test and EFS software generating EFS scores (Figure 1a).

Identification of total number of transcripts

Selection of individual transcripts with xTPM >1

Thereof, determination of protein-encoding transcripts

Thereof, selection of transcripts with TPM >50 in ≥1 patient per group

For Group I (<49 yrs.) vs. Group II (>74 yrs.): p <0.05

For Group I (<49 yrs.) vs. Group II (>74 yrs.): Ratio of xTPM >1.4

Application of Ensemble Feature Selection (EFS) software to 
determine EFS scores (statistical power) of (i) >0.2 and (ii) >0.3

Human liver tissue samples (n = 37): Group I: <49 yrs. vs. Grp. II: >74 yrs.

RNA isolation

Quality assurance: Determination of RNA quality number (RQN) 

Next-generation sequencing (NGS)

Passed (n = 17): Group I: <49 yrs. (n = 9) vs. Grp. II: >74 yrs. (n = 8)

Normalization to transcripts per million (TPM)

a Work Steps

Total Number
60504030201001020304050

Protein-encoding Nonencoding

60

b Work Step-dependent Transcript Ratios

No data for total
transcript numbers

For greater detail, 
cf. Table 1

lncRNA
s

22 different 
groups of 
other non-
encoding 
transcripts

17 different 
groups of 

pseudogene 
variants

3,818
(≙ 97.35 %)

257

89

EFS >0.2: 44 transcripts / EFS >0.3: 16 transcripts

60,617

15,470

3,922

16,828 8,56915,234

12,930
(≙ 83.58 %)

19,986
(≙ 32.97%)

Pr
oc

es
si

ng
: R

ed
uc

tio
n 

to
w

ar
ds

 H
ig

h 
R

el
ev

an
ce

Pr
oc

es
si

ng
: R

ed
uc

tio
n 

to
w

ar
ds

 H
ig

h 
R

el
ev

an
ce

c Transcriptome-wide Analysis of Human Liver Tissue: The 44 Most Relevant Age-related Transcript Differences

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

50

100

150

200

250

300

350

400

PP
P1

R
10

, p
=0

.0
00

3
D

U
SP

1,
 p

=0
.0

05
5

H
SD

17
B1

4,
 p

=0
.0

01
AO

PE
P,

 p
=0

.0
01

IF
IT

1,
 p

=0
.0

36
KI

AA
00

40
, p

=0
.0

01
6

FL
N

A,
 p

=0
.0

01
6

C
FL

AR
, p

=0
.0

00
6

AB
C

B1
, p

=0
.0

20
6

FA
H

, p
=0

.0
11

1
R

BM
S1

, p
=0

.0
15

2
IG

FA
LS

, p
=0

.0
03

7
R

SR
P1

, p
=0

.0
27

4
AC

00
45

51
.1

, p
=0

.0
20

6
R

BM
S3

, p
=0

.0
05

5
TF

F3
, p

=0
.0

04
1

KD
M

5C
, p

=0
.0

11
1

U
TR

N
, p

=0
.0

01
M

YL
9,

 p
=0

.0
07

9
SM

TN
, p

=0
.0

15
2

R
G

S5
, p

=0
.0

15
2

C
D

H
R

2,
 p

=0
.0

11
1

TI
M

P3
, p

=0
.0

20
6

LI
PC

, p
=0

.0
38

2
TN

S2
, p

=0
.0

20
6

AR
M

C
6,

 p
=0

.0
46

4
G

R
AM

D
4,

 p
=0

.0
27

4
AR

FI
P2

, p
=0

.0
20

6
PC

D
H

9,
 p

=0
.0

27
4

G
G

T5
, p

=0
.0

46
4

N
IS

C
H

, p
=0

.0
20

6
EG

R
1,

 p
=0

.0
36

B3
G

AT
3,

 p
=0

.0
46

4
G

AT
A4

, p
=0

.0
27

4
AB

C
A9

, p
=0

.0
27

4
SD

C
C

AG
8,

 p
=0

.0
03

7
SY

N
E2

, p
=0

.0
27

4
H

P 
/8

0,
 p

=0
.0

36
C

C
N

L1
, p

=0
.0

27
4

AT
P2

B4
, p

=0
.0

46
4

AC
TA

2,
 p

=0
.0

05
5

C
XC

L1
3,

 p
=0

.0
36

ID
3,

 p
=0

.0
11

1
TC

IR
G

1,
 p

=0
.0

20
6

G
en

e 
Tr

an
sc

rip
tio

n 
R

at
e 

[T
PM

]

EF
S 

Sc
or

e

EFS >0.2EFS >0.3

Expressed Genes in Descending Order of Relevance by EFS Score

Mean TPM (Grp. I) Mean TPM (Grp. II) EFS Score

Figure 1. Methodology and strategy for transcriptome-wide analysis of human liver tissue, resulting protein-encoding and
non-encoding transcripts, and most relevant age-related transcript differences. (a) Flow diagram of the works steps from the
initial sampling of human liver tissue and the detection of a total of 60,617 hepatic RNA transcripts down to the eventual
EFS software-supported pinpointing of 16 gene transcripts of major interest related to their different expressions in age
Groups I and II. (b) Diagram depicting the ratios upon narrowing down the complete transcriptome of the human liver to
the most relevant age-related differences in hepatic gene expression, with Ensemble Feature Selection (EFS) scores of >0.2
or >0.3, respectively. Step-wise results are even-leveled with the respective work steps in panel (a) and are differentiated
between total transcripts (left) and protein-encoding vs. non-encoding RNAs (right). After selecting for >50 transcripts
per million (TPM) (cf. panel (a)), only protein-encoding transcripts were determined. Transcripts initially enumerated
comprised 19,986 protein-encoding and 40,631 nonencoding RNAs, with the latter differentiated as shown in panel (b) and
further broken down into their biotypes in Table 1. (c) Comparisons of the 44 mean gene transcription rates between Groups
I and II resulting from the final processing step in panel (b), aligned in sequence of descending EFS scores.



Pharmaceutics 2021, 13, 2009 6 of 22

Table 1. Biotypes 1 of initially detected transcripts. 2 (Abbreviation: TPM, transcripts per million.).

Biotype Number of Transcripts
Filter None Mean TPM > 1 Single TPM > 50 p < 0.05 Ratio > 1.4

None: All genes 60,617 15,470 3922 263 95
Protein-encoding 19,986 12,930 3818 257 89
Pseudogenes 22 - - - -
Processed pseudogenes 10,170 318 7 - -
Unprocessed pseudogenes 2626 62 4 - -
Polymorphic pseudogenes 42 5 4 - -
Unitary pseudogenes 97 2 - - -
Transcribed processed pseudogenes 491 48 - - -
Transcribed unprocessed pseudogenes 916 173 11 1 1
Transcribed unitary pseudogenes 129 23 - - -
Translated processed pseudogenes 2 - - - -
Translated unprocessed pseudogenes 2 - - - -
rRNA pseudogenes 499 3 - - -
IG pseudogene 1 - - - -
IG C pseudogenes 9 2 - - -
IG J pseudogenes 3 - - - -
IG V pseudogenes 188 - - - -
TR V pseudogenes 33 - - - -
TR J pseudogenes 4 - - - -
Mt rRNAs 2 2 2 - -
Mt tRNAs 22 1 - - -
miRNAs 1879 3 - - -
Misc RNAs 2220 12 - - -
rRNAs 58 - - - -
scRNA 1 - - - -
snRNAs 1910 8 - - -
snoRNAs 942 11 - - -
Ribozymes 8 - - - -
sRNAs 5 - - - -
scaRNAs 49 - - - -
vaultRNA 1 - - - -
IG C genes 14 12 10 - -
IG D genes 37 - - - -
IG J genes 18 - - - -
IG V genes 144 45 3 - -
TR C genes 6 4 - - -
TR D genes 4 - - - -
TR J genes 79 - - - -
TR V genes 106 1 - - -

lncRNAs 16,828 1693 63 5 5

TEC 3 1064 112 - - -
1 A biotype is defined as the genotype shared or its distinguishing peculiarity. 2 Sources: 1. https://www.gencodegenes.org/pages/
biotypes.html (accessed on 7 March 2021); 2. https://vega.archive.ensembl.org/info/about/gene_and_transcript_types.html (accessed on
7 March 2021). 3 TEC: To be experimentally confirmed [category used for non-spliced expressed sequence tag (EST) clusters with polyA
features originally created for the ENCODE Project [4,6] to highlight regions that could indicate the presence of protein-encoding genes that
require experimental validation by 5′ RACE or RT-PCR to extend the transcripts, or by confirming expression of the putatively encoded
peptides with specific antibodies].

3.2. Limitation of Gene Expression to Exceptional Age-Dependent Differences

Initially, a total number of 60,617 hepatic transcripts was identified, which included
19,986 protein-encoding transcripts. Employing the step-wise procedure sketched in
Figure 1a, this number was narrowed down to 44 transcripts of high (EFS scores > 0.2)
and 16 transcripts of outstanding relevance (EFS scores > 0.3) as to their age-dependent
differences between Groups I (Young) and II (Old) (Figure 1b; Table S3). Note that after
selecting for >50 TPM, only protein-encoding transcripts were determined. Table 1 details
the biotypes of the initially detected transcripts.

https://www.gencodegenes.org/pages/biotypes.html
https://www.gencodegenes.org/pages/biotypes.html
https://vega.archive.ensembl.org/info/about/gene_and_transcript_types.html
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3.3. Identification of Transcripts Displaying High Age-Dependent Differences

Identified RNAs are aligned in sequence of descending EFS scores, further mentioning
the p values of the transcripts’ age-dependent differences (Figure 1c; the genes highlighted
therein will be referred to below). For the complete set of associated data, see Table S3.
Further accompanying information is presented in Table S4. As detailed therein, ≥3 of the
high-relevance transcripts, each, accumulated on chromosomes 1, 3, 5, 11, and 22; these
associations may spur further research as to whether certain genes or groups of genes
might be transcriptionally co-regulated.

3.4. Functional Categorization of Selected Transcripts

Because to their functional profiles, 25 of the 44 protein-encoding transcripts displayed
in Figure 1c were assigned to the categories ‘regulome’, ‘regeneration’, ‘inflammaging’,
‘pharmacogenes’, and ‘miscellaneous’ (Figures 2 and 3) and to the prominent intersections
‘regulome-regeneration’ and ‘regulome-inflammaging’ (Figure 3). These categories are
the basis for expanding below on the general age-related implications, disease-specific
associations, and overarching ontogenetic importance of these hepatic transcripts.

3.5. Confirmation of NGS Results by qRT-PCR

In order to confirm/verify the whole-transcriptome data of human liver, we performed
qRT-PCR analyses employing a selection of transcripts from the high-relevance RNAs,
plus a set of control transcripts. As a result, the transcript ratios obtained by NGS for
the high-relevance RNAs were generally confirmed by the ‘fold-change’ data determined
via qRT-PCR. Only the control transcripts of the genes encoding for fumarylacetoacetate
hydrolase (FAH) and for lipase C (LIPC) revealed contrary results (Table 2).

Table 2. Confirmation of next-generation sequencing (NGS) results of select transcripts of relevance by qRT-PCR. Hepatic
transcript expressions are listed in the order of relevance. The transcript ratios obtained by NGS were generally confirmed
by fold-change via qRT-PCR. Only the transcripts of the genes FAH and LIPC revealed contrary results. (Abbreviations: CV,
coefficient of variation; Cp, crossing point; Grp., Group).

qRT-PCR NGS
Gene ID 1 Fold Change Ratio Mean Cp Mean Cp % CV % CV

Grp. I
Grp. II Grp. I Grp. II Grp. I Grp. II

PPP1R10 1.701 1.580 34.90 34.24 2.98 1.78
DUSP1 3.095 1.762 26.00 26.21 5.14 3.55

HSD17B14 8.508 3.854 30.13 31.80 3.06 3.56
FAH 1.175 0.668 27.55 26.37 2.79 1.28

PALLD 1.116 1.719 37.73 36.47 3.94 0.95
AGO2 1.376 1.496 38.55 37.85 2.50 3.20
TFF3 94.403 63.814 31.46 36.86 14.87 4.13

KIAA0040 2.680 1.842 34.24 34.51 4.24 2.86
CFLAR 1.803 1.427 26.37 25.91 3.25 1.74
ITSN1 3.151 1.427 37.20 37.55 3.54 4.90
FLNA 1.768 1.692 33.17 32.84 2.55 1.60
LIPC 1.585 0.686 25.53 25.03 2.08 1.85

IGFALS 2.707 1.977 33.65 33.78 3.68 3.68
CYP3A43 3.213 2.473 25.78 26.16 4.14 3.09

GATA4 2.980 3.405 32.38 32.64 4.59 2.65
EGR1 8.313 2.121 31.26 33.01 7.46 12.18

1 Gene acronyms: AGO2, argonaute RISC catalytic component 2; CFLAR, CASP8- and FADD-like apoptosis regulator; CYP3A43, cytochrome
P450 family 3 subfamily A member 43; DUSP1, dual-specificity phosphatase 1; EGR1, early growth response 1; FAH, fumarylacetoacetate
hydrolase; FLNA, filamin A; GATA4, GATA-binding protein 4; HSD17B14, hydroxysteroid 17-β dehydrogenase 14; IGFALS, insulin-like
growth factor-binding protein acid-labile subunit; ITSN1, intersectin 1; KIAA0040, uncharacterized protein KIAA0040; LIPC, lipase C,
hepatic type; PALLD, palladin, cytoskeletal associated protein; PPP1R10, protein phosphatase 1 regulatory subunit 10; TFF3, trefoil factor 3.
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Figure 2. Age-related differences of transcripts assigned to regulome, inflammaging, liver regeneration, and pharmacogenes,
as well as non-assigned hepatic transcripts. In each category, data are depicted in sequence of their relevance determined by
Ensemble Feature Selection (EFS). Each graph compares Group I/Young (left) to Group II/Old (right). Where ratios between
Groups I and II differ by at least a factor of × 2, data are depicted in red; all other data are shown in blue (cf. Table S3). Results



Pharmaceutics 2021, 13, 2009 9 of 22

are expressed as means ± standard deviation (SD) in the form of box and whisker plots. Significances between Group I vs.
II transcript expressions range from p = 0.0464 to p = 0.0006 (i.e., *, **, or ***, respectively). If relevant, graphs are represented
in different categories. (a) Regulome: CASP8- and FADD-like apoptosis regulator (CFLAR); RNA-binding motif single-
stranded interacting protein 1 (RBMS1); RNA-binding motif single-stranded interacting protein 3 (RBMS3); and regulator of
G protein signaling 5 (RGS5). (b) Regeneration: insulin-like growth factor-binding protein acid-labile subunit (IGFALS),
trefoil factor 3 (TFF3), early growth response 1 (EGR1), and cyclin L1 (CCNL1). (c) Inflammaging: interferon-induced
protein with tetratricopeptide repeats 1 (IFIT1); tissue inhibitor of metalloproteinase 3 (TIMP3); GATA-binding protein 4
(GATA4); C-X-C motif chemokine ligand 13 (CXCL13); and T-cell immune regulator 1, ATPase H+ transporting V0 subunit
a3 (TCIRG1). (d) Pharmacogenes (we not only include enzymes, but also systemic and cellular drug transporters into the
definition of this term): ATP-binding cassette subfamily B member 1 (ABCB1); β-1,3-glucuronyltransferase 3 (B3GAT3);
ATP-binding cassette subfamily A member 9 (ABCA9); and haptoglobin (HP). (e) Miscellaneous: The unknown protein
KIAA0040 (KIAA0040); and γ-glutamyltransferase 5 (GGT5). For an integrated systematic representation and classification
of the findings, see Figure 3. For additional information, we encircled datapoints (black) denoting extremes or outliers
potentially associated with certain treatment regimens or comorbidities, respectively. Abbreviations (orange lettering) for
preoperative treatments in context with the indications requiring partial liver resection or for diseases in addition to those
indications: CP/PT, carboplatin + paclitaxel; F4-Fibr, fibrosis grade 4; FOLFOX, folinic acid + fluorouracil + oxaliplatin; IS-S,
in-situ split (preoperatively); BEP, bleomycin + etoposide + cisplatin; NASH, non-alcoholic steatohepatitis; T1DM, type 1
diabetes mellitus; T2DM, type 2 diabetes mellitus.
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Figure 3. Integrated systematic representation and classification of the age-dependent expression of the liver transcriptome.
Transcripts assigned to the categories ‘regulome’, ‘inflammaging’, ‘liver regeneration’, ‘pharmacogenes’, and ‘miscellaneous’
are depicted as overlapping sets. In each set, transcribed genes are listed in sequence of their EFS scores. The singular
‘regulome’ category and the ‘regulome–liver regeneration–inflammaging’ intersection include the genes IGFALS as well as
PPP1R10 and DUSP1, respectively, which are proposed as key elements of an ‘aging cascade’ discussed below and depicted
in Figure 4. According to age-related differences, transcripts are either most relevant (EFS > 0.3; black font), display broader
variances in Group I (cf. Figure 2) (EFS > 0.2; blue), or are other relevant transcripts (EFS > 0.2; white). Transcript changes in
Group II vs. Group I are indicated as downregulated (↓) or upregulated (↑), and the most important consequences in aged
individuals are characterized as downregulated/decreased (↓), upregulated/increased (↑), or process/consequence (→) (see
text for greater detail). For gene abbreviations, cf. legend to Figure 2. Further abbreviations: AD, alcohol dependence; APC,
antigen-presenting cell; dsRNA, double-stranded RNA; ECM, extracellular matrix; ER, endoplasmic reticulum; HSC, hepatic
stellate cell; IFN, interferon; M1, M2, pro- and anti-inflammatory MΦ polarization states; MMP, matrix metalloproteinases;
MΦ, macrophage; T2DM, type-2 diabetes mellitus; TNF-α, tumor necrosis factor α; TRAIL, TNF-related apoptosis-inducing
ligand (a death receptor).
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3.6. Interpretations and Implications Related to Functional Gene/Transcript Categories

To our knowledge, this is the first whole-transcriptome analysis of human liver aiming
at identifying major age-dependent differences in gene expression. However, due to the
liver’s overarching role and importance, hepatic gene expressions must also be viewed in
the systemic context. Here, the regulome comes into play, which comprises all regulatory
components in health and disease [10,11,21,22]. Discussing the major implications of our
findings concerning liver regeneration, inflammaging, pharmacogenes, and certain diseases
clearly highlights the overall importance of distinct ‘regulome’-assigned transcripts.

3.6.1. ‘Regeneration’-Assigned Transcripts

In humans, the liver is the only solid organ using self-regenerative mechanisms
enabled by hepatocytes and cholangiocytes that can transdifferentiate into each other
as facultative stem cells [23]. We assigned the transcripts of the genes protein phos-
phatase 1 regulatory subunit 10 (PPP1R10) (also known as phosphatase 1 nuclear tar-
geting subunit (PNUTS)), dual specificity phosphatase 1 (DUSP1) (also known as map
kinase phosphatase-1), and TIMP metallopeptidase inhibitor 3 (TIMP3) to the ‘regulome–
regeneration’ intersection (Figure 3). While no studies have been performed on the con-
tribution of PPP1R10 to liver regeneration, its central function in this category is obvious
from its key role as a master regulator of mitosis [24–27]. DUSP1, an immediate-early
growth response gene, is activated in liver regeneration [28] and upregulated 1–2 h after
liver injury [29]. As for TIMP3, liver regeneration requires the restoration of cellular mass
and extracellular matrix (ECM) remodeling: Matrix metalloproteinases (MMPs) and their
TIMP inhibitors regulate ECM turnover as well as growth factor and cytokine processing.
TIMP3 is significantly induced during liver regeneration [30]; its complete loss in age thus
entails increased ECM degradation. Hepatic expression of trefoil factor 3 (TFF3) by biliary
epithelial cells contributes to their migration and proliferation in wound healing [31,32].
Approximately 50% of the individuals in Group I showed different degrees of upregulated
TFF3 expression demonstrating ongoing regeneration, while complete downregulation in
Group II indicates that hepatic regeneration requirements are underserved in age. More-
over, unfolded protein accumulation in the endoplasmic reticulum (ER) causes ER stress.
Complete TFF3 silencing linked to impaired ER function is prominent in early type-2 dia-
betes mellitus (T2DM) and hepatic steatosis [33]. TFF3 modulation might thus be a future
option for antagonizing ER stress and support liver regeneration in older people with non-
alcoholic fatty liver disease (NAFLD). Collectively, significant downregulation of certain
‘regeneration’-assigned transcripts indicates a considerably impaired liver-regenerative
capacity in age.

3.6.2. ‘Inflammaging’-Assigned Transcripts

Inflammaging [34] entails greater disease susceptibility, increased morbidity/mortality [34,35],
and frailty [36]. Significantly increased IL-6, TNF-α, and the acute-phase pentraxin, CRP
(exclusively produced by hepatocytes [37]) are associated with frailty [35]. The transcripts
assigned to the categories ‘regulome–inflammaging’ and ‘inflammaging’ (Figure 3) are a
rich source for novel insight into inflammaging: In human macrophages (MΦs), the SCN5A
and SCN10A splice variant products of a voltage-gated Na+ channel gene sense viral
dsRNA, which upregulates the expression of type-I interferons. The channel prevents cyto-
toxicity via increased PPP1R10 expression, which polarizes MΦs to an anti-inflammatory
phenotype [38]. In age, upregulated inflammation in certain viral infections due to strongly
reduced PPP1R10 expression thus may contribute to inflammaging. The DUSP1 protein is
a central regulator of both innate and adaptive immunity, and altered DUSP1 expression is
implicated in chronic inflammation [39–41]. Profoundly downregulated DUSP1 expression
in age thus suggests a prominent role in inflammaging. TIMP3 expression is intimately con-
nected with the release of TNF-α and IL-6: Specifically, rapid and powerful anti-infectious
immunity is, inter alia, enabled by the shedding of preformed membrane-bound TNF-
α [42], which is inhibited by TIMP3. Loss of TIMP3 leads to hepatic lymphocyte infiltration
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and necrosis [43]. In TIMP3−/− mice, enhanced TNF-α signaling is indicated by elevated
serum IL-6 [42]. Therefore, age-dependently reduced TIMP3 expression may underly the
significant increase in TNF-α and IL-6 in inflammaging and frailty [35]. Finally, evidence
supports a key role of increased IFIT1 expression in inflammaging: Proinflammatory pro-
teins induced in M1 MΦs prominently include gene products transcriptionally controlled
by interferon regulatory factor 1, which strongly upregulates IFIT1/-2/-3 expression [44].
Indeed, both M1 and M2 MΦ numbers increase in the aged liver [45]. IFIT1 also strongly
interferes with viral mRNA translation, propagation, and pathogenicity [46–48]. While
increased IFIT1 expression in age thus might suggest improved antiviral immunity, overall
anti-infective immunity actually erodes in aging [49,50], which entails more frequent and
severe viral infections [51]. However, as age-related deteriorated antiviral immunity is due
to defective T cell responsivity [52], increased IFIT1 expression might be a compensatory
mechanism. The fact that inflammaging in (super)centenarians is always counteracted by
anti-inflammaging mechanisms may be one of the secrets underlying longevity [53].

3.6.3. ‘Pharmacogene’-Assigned Transcripts

The Pharmacogenomics Knowledgebase (PharmGKB): https://www.pharmgkb.org
(accessed on 20 August 2021) comprises a set of ‘very important pharmacogenes’ (VIPs) [54].
However, its underlying data have been determined in young adults, while age-dependent
changes profoundly influence VIP expressions and, therefore, the efficacy and biotrans-
formation of pharmaceuticals. Striking differences vs. adults were demonstrated in fe-
tuses [55], children, and adolescents [56], so that alterations are expected to occur through-
out individual development, including in old age. For example, drug-induced liver injury
in age is most likely caused by antibiotics and cardiovascular drugs [57]. Moreover, phar-
macogenes are not limited to the PharmGKB’s current VIP set: We show that the differences
in the transcription of PPP1R10, IGFALS, and DUSP1 between Groups I and II are among
the most striking detected for all hepatic transcripts (Figure 1c: orange). However, while
generally listed by the PharmGKB, no clinical or variant annotations are mentioned in there
on PPP1R10 (https://www.pharmgkb.org/gene/PA33612, accessed on 7 March 2021), IG-
FALS is completely absent from this database (https://www.pharmgkb.org/gene/PA29702,
accessed on 7 March 2021), and for DUSP1, the PharmGKB provides clinical (https:
//www.pharmgkb.org/clinicalAnnotation/1447961329, accessed on 7 March 2021) and
variant annotations (https://www.pharmgkb.org/gene/PA27519/variantAnnotation, ac-
cessed on 7 March 2021) only for salbutamol, a β2-sympathomimetic asthma drug. In
stark contrast, the University of Santa Cruz’s genome browser (https://genome.ucsc.edu,
accessed on 7 March 2021) lists dozens of pharmaceuticals that interact with PPP1R10,
IGFALs, and DUSP1. Both the high-level biological roles of these genes as well as their ex-
tremely high age-dependent transcription differences strongly imply that such interactions
may be of utmost importance for age-appropriate drug administration and should be duly
acknowledged as VIPs. In addition, we identified ABCB1 and ABCA9 (integral membrane
transporters of the ATP-binding cassette (ABC) superfamily [58,59]) as potential pharmaco-
genes (Figure 3). Already listed as a VIP (https://www.pharmgkb.org/vip/PA166170352,
accessed on 7 March 2021) and known to be involved in multidrug resistance [60], upregu-
lated ABCB1 expression in Group II now suggests its contribution to increased multidrug
resistance in old age [61]. ABCA9 transcription is induced in monocytes during MΦ differ-
entiation and is suppressed by cholesterol import [62]. The ABCA9 gene might therefore
play a role in inflammaging, but its expression in Kupffer cells has not yet been determined.

Medawar’s mutation accumulation hypothesis suggested aging to be a consequence
of the gradually declining force of natural selection [63]. Turan and colleagues con-
firmed its prediction that highly expressed genes in old adults are under a weaker se-
lection pressure. They identified an age-related decrease in hepatic transcriptome con-
servation, which included genes for responses to age-associated tissue damage [64]. In
long-lived individuals however, the expression of inflammaging- and senescence-related
genes in human blood and skin cells (liver cells were not examined) was most strictly

https://www.pharmgkb.org
https://www.pharmgkb.org/gene/PA33612
https://www.pharmgkb.org/gene/PA29702
https://www.pharmgkb.org/clinicalAnnotation/1447961329
https://www.pharmgkb.org/clinicalAnnotation/1447961329
https://www.pharmgkb.org/gene/PA27519/variantAnnotation
https://genome.ucsc.edu
https://www.pharmgkb.org/vip/PA166170352
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controlled when compared with mature and old individuals [65]. Consequently, an
integrated view of the results of both studies suggests that, in older patients, hepatic
pharmacogenes should be tested for their expression stability to arrive at individualized
pharmacologic treatment recommendations.

3.6.4. Transcripts Assigned to the Category ‘Miscellaneous’

The category ‘miscellaneous’ holds the genes/transcripts KIAA0040 (encoding a pro-
tein of unknown function) and γ-glutamyltransferase 5 (GGT5) (Figure 3). KIAA0040 is
highly significantly associated with alcohol dependence, which let the authors conclude
that this gene might harbor a causal variant for this disorder [66]. Having found a promi-
nent young-vs.-old transcript discrepancy for KIAA0040 (Figure 2e), we thus cautiously
assume that aged individuals might be less prone for developing alcohol dependence,
but this conjecture must be critically scrutinized in view of numerous other genetic risk
factors [67]. GGT5, which encodes a leukotriene C4→D4-converting enzyme, is expressed
by hepatic Kupffer cells [68]. Presently, the lack of evidence does not justify assigning GGT5
to the ‘inflammaging’ category. However, the highly relevant difference in its expression
between Groups I and II may stimulate further clarifying research in this direction.

3.7. Implications for Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma

Non-alcoholic fatty liver disease (NAFLD) with its sub-entities non-alcoholic fatty
liver (NAFL) and non-alcoholic steatohepatitis (NASH) as well as hepatocellular carcinoma
(HCC) are among the liver diseases with the highest global prevalences and incidences,
and they are constantly on the rise [69]. However, and in stark contrast to the consequential
urgent and obvious medical needs, current treatments are limited. Therefore, the prospect
for any novel therapy options offering improvements in safety and efficacy is highly wel-
come. Our results suggest such options: As detailed hereafter, prominent age-dependent
differences in the expression of especially three hepatic genes demonstrably entail an
increased risk for and occurrence of liver disease that might be specifically counteracted:

(i). The CASP8- and FADD-like apoptosis regulator (CFLAR)-encoded protein blocks
apoptosis by inhibiting procaspase-8 [70,71]. Expression of the ‘regulome’-assigned
CFLAR gene is strongly downregulated in age (Figure 2a), which increases death
receptor-mediated hepatocyte apoptosis [70,72]. Cholestatic liver injury characterized
by rapid increases in intrahepatic proinflammatory parameters, hepatocyte death,
hepatic stellate cell (HSC) activation, and fibrogenesis in mice exhibiting CFLAR–/–

hepatocytes [73] suggests an increased risk of cholestasis upon drastically reduced
CFLAR expression in age. By targeting MAP3K5 kinase (thus blocking downstream
signaling), CFLAR also suppresses NASH [74], which indicates that reduced CFLAR
expression increases the likelihood for NASH development.

(ii). Expression of the ‘regulome’-assigned regulator of G-protein signaling 5 (RGS5) is
downregulated in age. While RGS5 protects from NAFL/NASH development [75],
reduced RGS5 expression increases obesity, hepatic steatosis, inflammation, and
insulin resistance [76,77]. Therefore, RGS5 might serve as a target for NAFL/NASH-
preventive approaches in progressed age. Moreover, RGS5 downregulation induces
HSC-driven liver fibrosis [78], so that therapeutic induction of RGS5 in older individ-
uals might also serve as an approach for tackling liver fibrosis.

(iii). Aging goes along with downregulated expression of GATA4, the developmental mas-
ter regulator of liver sinusoidal endothelial cells (LSECs). GATA4 deficiency in murine
LSECs causes perisinusoidal liver fibrosis, hepatopathy, and impaired liver regenera-
tion, and GATA4+ LSEC numbers are reduced in human cirrhotic livers. Targeting
GATA4 thus may be promising to prevent/treat liver fibrosis for reducing cirrhosis,
liver failure, and/or the development of fibrosis/cirrhosis-dependent HCC [79].

Evidence thus indicates that the increase in NAFLD, liver fibrosis/cirrhosis, and HCC
in progressed age [80] are promoted by downregulated CFLAR, RGS5, and/or GATA4
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expression. This understanding may offer clues for developing more potent therapeutics
in the face of the insidious NAFLD pandemic and the increasing incidence of HCC [81].

3.8. Evidence for a Genetically Governed ‘Aging Cascade’: A Testable Hypothesis

Based on the role of the liver as an organ of major systemic relevance; highly significant
age-related differences in the expression of PPP1R10, IGFALS, and DUSP1; and ample evi-
dence on the action of their protein products on central aging-associated downstream pro-
cesses, we now present a broadly substantiated hypothesis on a PPP1R10/IGFALS/DUSP1-
governed ‘aging cascade’. Using a mouse model of aging, Sahin et al. earlier elegantly
combined progressive DNA damage and mitochondrial decline via p53 as an ‘axis of
aging’. This axis implicates a chain reaction leading from telomere dysfunction to the
induction of p53, and the resultant repression of PPARγ coactivators 1α and 1β, which
detrimentally affects key cellular mechanisms, hence propelling the process of aging [12].
Our hierarchically arranged hypothesis embraces and extends this model: Therein, three
‘regulome’-assigned genes assume paramount positions (Figure 4).

The PPP1R10 transcript displayed by far the most significant and striking age-related
difference among all protein-encoding hepatic transcripts (Figures 1c and 2a). This dif-
ference, together with the essential functions of PPP1R10, clearly underscores its domi-
nance as an ontogenetic master regulator. The PPP1R10-encoded enzyme harnesses the
protein kinase A-regulated serine/threonine protein phosphatase 1 (PP1) to establish a
PPP1R10:PP1 holoenzyme [82] that comprehensively acts on the upstream DNA and RNA
levels and—via the established ‘axis of aging’—the downstream levels of energy man-
agement (Figure 4). At the DNA/RNA levels, this gene acts as the master regulator of
mitosis/proliferation/apoptosis [24–27], influences the DNA damage response [83,84], con-
trols RNA processing [25,83], and negatively regulates the RNA transcription speed [85].
Dwindling transcription in aging thus lets PPP1R10 gradually lose its grip on these fun-
damental processes. Element #1 of the ‘axis of aging’—telomere shortening/genomic
instability—results from reduced nuclear concentrations of PPP1R10:PP1 [86–88]. In aging,
the loss of control by PPP1R10 over RNA processing and transcription speed creates a neg-
ative feedback loop on the transcription of PPP1R10, IGAFLS, and DUSP1, which further
accelerates the aging process. Next, PPP1R10 usually plays an important role in controlling
cell death in response to cellular stresses by post-translational p53 modification [89]. Thus,
p53—i.e., element #2 of the ‘axis of aging’—escapes PPP1R10 control once its expression
drops. Moreover, the induction and regulation of DUSP1 transcription by p53 [90,91]
is further undermined by the impaired PPP1R10-dependent RNA maintenance in age
(Figure 4: Dashed arrow).

Hierarchically subordinate to PPP1R10, IGFALS, and DUSP1 (cf. Figures 1c and 2a)
act on the downstream aspects of aging only. First, the gene for insulin-like growth factor-
binding protein acid-labile subunit (IGFALS) significantly contributes to an individual’s
lifetime. As an essential component of the GH/IGF axis with its proven role in longevity, it
prolongs the half-life of insulin-like growth factor (IGF)-I and IGF-II [92]. In contrast, seri-
ous developmental harm or disease result from IGFALS defects [93–95], mutations [96], or
IGFALS protein deficiency [97,98]. The same axis regulates mitochondrial processes whose
decline upon reduced IGFALS concentrations are hallmarks of aging [99] (Figure 4). Second,
downregulated transcription of the dual specificity phosphatase 1 (DUSP1) gene impairs
the immediate-early growth response and entails dysregulated cell growth [28,29], which
fundamentally weakens the body’s regenerative capacities. Concerted PPP1R10/IGFALS/
DUSP1 action funnels into the aging-associated functional decline of post-mitotic tissues
and stem cells. Therefore, a hierarchically arranged network emerges whose main compo-
nents connect as an ‘aging cascade’ (Figure 4).
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Figure 4. Concept of a genetically anchored regulatory ‘aging cascade’. This hierarchical top-down structure embraces the
telomere–p53–PGC ‘axis of aging’ proposed earlier by Sahin and colleagues to cause the functional decline of post-mitotic
tissues and stem cells [12,13]. The first hierarchical level comprises PPP1R10, IGFALS, and DUSP1 whose transcripts were
among the group of 16 mRNAs displaying the most relevant old-vs.-young differences in terms of p and EFS score, being
led by PPP1R10 and DUSP1 (cf. Figure 1b). We propose that these three ‘Regulome’-assigned genes govern the process of
aging. PPP1R10 acts as the master regulator of the second hierarchical level comprising the key tasks of DNA and RNA
Maintenance. Downregulation of PPP1R10 transcription in age substantially reduces fundamental DNA-associated cellular
processes and, conversely, increases telomere shortening and genomic instability. The latter were the top aspects of the
earlier proposed ‘axis of aging’, leading to induction of p53 and the resultant repression of PPARγ coactivators 1α and
1β (PGC-1α; PGC-1β), which detrimentally affect the third hierarchical level comprising Energy Management I and II.
Downregulation of the PPP1R10 transcript also negatively impinges upon RNA Maintenance at the second hierarchical
level, which, in a negative feedback loop, further impairs the transcription of PPP1R10, IGFALS, and DUSP1 (as well as,
obviously, other transcripts in progressed age). Next, downregulation of IGFALS transcription/translation, via impairing the
essential growth hormone/insulin-like growth factor (GH/IGF) axis, causes substantial mitochondrial decline and aging.
Finally, downregulated DUSP1 transcription/translation acts to the detriment of the immediate-early growth response and
causes dysregulated cell growth, which entails serious cellular impairment and aging. Besides belonging to the ‘regulome’
category, PPP1R10 and IGFALS intersect with the ‘regeneration’ and ‘inflammaging” categories (Figure 3), which further
enhances their impact upon downregulated expression in age. The proposed ‘aging cascade’ is visualized by a light orange
ring connecting the three hierarchical levels and the consequence of aging. (Abbreviation: ROS, reactive oxygen species.)
Background image: clipartstation.com (modified).

To address the question of whether the proposed governance by PPP1R10, IGFALS,
and DUSP1 can be generalized from the hepatic transcriptome to an entire organism, we
selected respective data from the Genotype-Tissue Expression (GTEx) project obtained
from 53 tissues of 570 donors (Figure 5). For a complete overview of the GTEx project’s
tissue and sample statistics, we refer to the respective condensed information provided on
its portal: https://www.gtexportal.org/home/tissueSummaryPage (accessed on 7 March
2021). According to the GTEx data, (i) the expression of PPP1R10 as a global master
regulator is ubiquitous and tightly regulated; (ii) the expression of IGFALS is essentially
confined to the liver, but by serving as a transporter for IGF-I/IGF-II its protein product is
crucial for the functionality of the systemic GH/IGF axis whereby assuming a key role in
steering an individual’s development and lifespan; and (iii) the expression of DUSP1 as a

https://www.gtexportal.org/home/tissueSummaryPage
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gene implicated in immediate-early and overall cell growth is regulated locally depending
on a tissues’ specific growth requirements. Therefore, the findings/ interpretations for the
liver transcriptome on these genes can, at least in principle, be generalized to the individual.
All data, supportive information, and derivations thus justify postulating a genetically
anchored regulatory ‘aging cascade’.

If confirmed experimentally, further research will, inter alia, need to clarify the following:

(i). The potential existence and role of ethnic differences;
(ii). Whether the expressions of the individually specific MHC I proteins and PPP1R10 are

jointly regulated, as PPP1R10 is intriguingly encoded on chromosome 6 within the MHC
I region: https://www.pharmgkb.org/gene/PA33612 (accessed on 7 March 2021);

(iii). In which way PPP1R10 is interconnected with the organism’s central clock located in
the suprachiasmatic nucleus and its regulation of melatonin secretion (with resultant
pro- and anti-inflammatory effects, among others) [100,101] as well as the recently
identified inflammatory aging clock [102], and with the age-dependent reprogram-
ming of the circadian transcriptome discovered in the murine liver [103]; and

(iv). Especially from a clinician’s point of view, whether pharmaceuticals modifying the tran-
scription of PPP1R10, IGFALS, and DUSP1 (Table S5) may affect an individual’s lifetime.

In addition, potential modulatory effects of age-dependent differences in other RNA
species—e.g., the long non-coding RNAs (lncRNAs) (cf. Table 1)—still largely remain
to be analyzed in humans. Indeed, results by White and colleagues in the aging mouse
liver point in exactly this direction by showing upregulation of distinct lncRNAs in the
aging liver whereby suggesting a putative regulatory hotspot locus in aging liver, as well
as discrete roles of certain lncRNAs within interaction networks that, for instance, are
implicated in inflammaging and regeneration [104].

If key issues such as these can be resolved, one might theoretically envision measures
to counteract the gradual loss in PPP1R10 expression, which is supposed to chiefly time an
individual’s biological decline. However, interfering with this presumptive ontogenetic
master regulator would promise to be a most critical and potentially highly perilous
undertaking, and it will inevitably be burdened by profound ethical considerations.

https://www.pharmgkb.org/gene/PA33612
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RNA-Seq expression data on PPP1R10, IGFALS, and DUSP1 selected 
from the GTEx project. The project investigated 53 tissues from a total 
of 570 donors. Specifically, liver tissue was obtained from 226 donors.
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Figure 5. Systemic expressions of (a) PPP1R10, (b) IGFALS, and (c) DUSP1. Expressions were determined by the GTEx
project in a total of 53 tissues. For inter-tissue comparison, the expressions of PPP1R10, IGFALS, and DUSP1 in the liver
are highlighted.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13122009/s1, Table S1. Patients’ age and gender in order of increasing age.
(Abbreviations: m, male; f, female.), Table S2. Human target transcripts for qRT-PCR. The list starts
with the reference gene, followed by genes of the transcripts investigated in alphabetical order,
Table S3. Gene expressions of interest identified by applying EFS software. Transcripts are listed from
most relevant to least relevant according to their EFS scores (>0.3: 16 transcripts/>0.2: 28 further
transcripts). For full names of protein products, cf. Table 2. Increases in EFS scores indicate increasing
relevance when comparing young and old patients. Ratios between Group (Grp.) I and Group
II differing by a factor of at least × 2 (i.e., ≤0.5 or ≥2.0) are boxed (red data in Figure 2), while
ratios between >0.5 and <2.0 are underlined (blue data in Figure 2). Data for all 44 transcripts are at
least statistically significant (p < 0.05). (Abbreviations: Grp., Group; TPM, transcripts per million.),
Table S4. Specifications for gene transcripts identified by EFS software. Genes related to the 44 hepatic
transcripts matching the EFS score cutoff of >0.2 are tabulated according to their chromosome
(Chr) location, wherein listed alphabetically according their gene designations. Especially high
ortholog/paralog1 ratios (with ≤9 paralogs) are boxed. As summarized in the bottom section,
gene transcripts of relevance were expressed from all human chromosomes, except for Chr 18 and
Chr Y. Hence, no statistically significant age-dependent transcript differences were attributable
to the male sex chromosome. Transcript numbers (##) with relevant age-dependent differences
were six for Chr 1; four for Chr 22; three for Chr 3, 5, and 11; two for Chr 2, 6, 10, 12, 15, 16, 19,
and X; and one for Chr 4, 7, 8, 9, 13, 14, 17, 20, and 21, respectively. Information was compiled
from https://www.ensembl.org/Homo_sapiens/Info/Index (accessed on 16 April 2021), Table S5.
Pharmaceuticals modifying the mRNA expression of select regulome-assigned hepatic genes that
display highly significant age-dependent differences in expression. Active pharmaceutical ingredients
(APIs) that affect (A), decrease (↓), or increase (↑) the transcription of PPP1R10, IGFALS, or DUSP1
are listed in alphabetical order. The term, ‘affects’, indicates that the respective studies referred to in
the Comparative Toxicogenomics Database generated ambiguous results. APIs interfering with the
expression of ≥2 of the three regulome-assigned genes are boxed.
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