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Simple Summary: The immune system represents an important link for tumor development, tumor
control and tumor progression. The tumor immunogenic balance, determined by the prevalently
immuno-inhibitory tumor- and conventional radiation-related effects is shifted negatively towards
immunosuppression, which can worsen treatment outcome and prognosis. Emerging evidence
suggest that those suppressive effects might be converted to an immunostimulative environment
that can improve the therapeutic ratio with uses of newer conventional radiotherapy approaches
combined with emerging immunotherapy agents.

Abstract: The overall prognosis and survival of non-small cell lung cancer (NSCLC) patients remain
poor. The immune system plays an integral role in driving tumor control, tumor progression,
and overall survival of NSCLC patients. While the tumor cells possess many ways to escape the
immune system, conventional radiotherapy (RT) approaches, which are directly cytotoxic to tumors,
can further add additional immune suppression to the tumor microenvironment by destroying
many of the lymphocytes that circulate within the irradiated tumor environment. Thus, the current
immunogenic balance, determined by the tumor- and radiation-inhibitory effects is significantly
shifted towards immunosuppression, leading to poor clinical outcomes. However, newer emerging
evidence suggests that tumor immunosuppression is an “elastic process” that can be manipulated and
converted back into an immunostimulant environment that can actually improve patient outcome.
In this review we will discuss the natural immunosuppressive effects of NSCLC cells and conventional
RT approaches, and then shift the focus on immunomodulation through novel, emerging immuno-
and RT approaches that promise to generate immunostimulatory effects to enhance tumor control
and patient outcome. We further describe some of the mechanisms by which these newer approaches
are thought to be working and set the stage for future trials and additional preclinical work.

Keywords: non-small cell lung cancer; immunosuppression; immunostimulation; immunotherapy;
radiotherapy; abscopal effect; bystander effect

1. Introduction

The World Health Organization (WHO) estimated 1.76 million deaths caused by non-
small cell lung cancer (NSCLC) in 2018. Lung cancer represents the leading cause of deaths
worldwide with NSCLC representing approximately 85% of all lung malignancies [1].
Despite substantial improvements in therapy, 5-year overall survival (OS) for NSCLC
does not exceed 25% [2,3]. Prognosis and survival of patients affected by NSCLC are
correlated to disease stage, with OS being prognostically favorable by earlier diagnosis and
treatment [4,5]. Nevertheless, a significant percent of patients are diagnosed in advanced
stage with little chance to be cured.
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Chronic inflammation plays a key role in tumorigenesis of NSCLC [6]. Inflammatory
factors like cigarette smoking are associated with chronic bronchitis and emphysema,
which lead to the development of lung cancer [7]. The process of cellular malignant trans-
formation consists of many steps over long time periods, ranging from pre-carcinogenic
chronic inflammation, progressing, if not treated, towards the development of invasive
carcinoma and systemic disease [8–10]. Some chronically inflamed pre-carcinogenic en-
vironments will never result in malignant cell transformation, while others exposed to
the same carcinogen will undergo tumorigenesis. This uncertainty of initiating tumori-
genesis events highlights the malignant “modulating” role of genetic predisposition in
cancer [11] and underscores that inflammation may assist in this process. The profile
and status of the inflammatory-changed environment following the chronic carcinogen(s)
exposure is exceedingly variable, and its potential for malignant transformation is related
to polymorphic immune response genes affected by a diversity of anti-oxidant and DNA
repair associated genes [11]. The immune system, in its cell-mediated and humoral form,
is deeply involved in generation of an inflammatory environment and is considered to be
the first step of tumorigenesis. Chronic exposure of normal cells to carcinogen(s) leads to
initiation of immune cell activation with subsequent upregulation of the pro-inflammatory
cytokines like Interleukin-1 alpha (IL-1α) and IL-1-β, and production of Cyclooxygenase
(COX)-1 and COX-2 immune-regulatory enzymes in epithelial and mesenchymal. This
activation of the inflammatory pathways is associated with the development of malignant
disease [12–15]. Additionally, the induction of COX-2 favors increased angiogenesis in an
inflammatory environment and helps pave the way for hyper-vascularization needed for
tumor development and progression [16–18].

In addition to assisting tumorigenesis, the immune system also plays a fundamental
role in the defense against cancer by surveillance and identification of foreign or “non-self”
from self and assisting with elimination of DNA-damaged cancer cells from the body.
However, tumor cells can escape by suppressing the immune system. Furthermore, ther-
apies, especially if they cause immune-suppression, may further aid the escape of the
tumor cells from the immune system. Most patients with NSCLC will eventually require
radiotherapy (RT) alone (especially those that are medically inoperable) or in combina-
tion with systemic therapy (especially those with advanced stage disease). Regardless,
there are many reports that show that conventional RT induces an immunosuppression,
and thereby can negatively affect the overall survival [19–22]. Thus, the current immuno-
genic balance, determined by the inhibitory effects caused by tumor cells themselves and
radiation therapy can lead to poor clinical outcomes. There is newer emerging evidence
suggesting that immunosuppression is an “elastic process” that can be transformed into
an immune-stimulating environment by “correcting” many manipulable components of
this triangle radiation, tumor, and immune cells by using combination approaches that
change the way RT, chemotherapy, and immunotherapy are used. Significant efforts are
being deployed in the development of novel treatment strategies and protocols aimed to
convert radiation- and tumor-induced immunosuppression into a predominant immunos-
timulation by means of immunotherapy, unconventional RT and the combination of these
modalities in order to improve the outcomes of NSCLC patients. The aim of the present
review is, therefore, to highlight the natural interplay between the NSCLC cells, tumor
immune microenvironment and radiation that routinely results in immunosuppression,
and how those immunosuppression-related factors could be manipulated for generation of
prevalently immunostimulatory effects to improve NSCLC patient’s outcome.

The following two sections will focus on evidence indicating the tumor- and radiation-
related immunosuppressive effects, followed by discussions about novel strategies for
overcoming and converting these effects into immunostimulative effects.

2. Tumor-Related Immune Suppression in NSCLC

The interplay between the tumor and immune cells is the subject of an extended and
ongoing research. Table 1 represents latest evidence on tumor-related immunosuppressive
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effects [23–56]. Tumor cells escape immune surveillance by downregulation of HLA and co-
stimulatory molecules, or by production of immunosuppressive factors and upregulation
of immune cell apoptosis inducing molecules [23–26]. As a consequence, the immune
system will “ignore and tolerate” tumor cell proliferation and progression. The presence
of tumor-infiltrating lymphocytes (TIL) in cancer cell nests is an independent prognostic
factor of survival in various types of cancers including NSCLC [57], and if used properly,
could be used to help convert immune cells to fight against cancer. The inefficiency of
the immune response against tumor is inversely proportional to tumor growth, being
weaker in larger tumors and stronger in smaller tumors [58]. There is a gap in the current
knowledge and understanding of the mechanisms behind the immune response against
NSCLC, and additional attention to these mechanisms are needed if we are to improve the
outcome of patients in the future.

Table 1. Tumor-related immunosuppressive effects.

Tumor-Related Effect Consequences

Production of immunosuppressive factors and upregulation of
immune cell apoptosis inducing molecules [23,24]. Escape from immune surveillance.

Downregulation of HLA and co-stimulatory molecules [25,26]. Escape from immune surveillance.
Tumor-related secretion of soluble molecules VEGF, PGE2,

TGF-β, IL-10 [39–41]. Immune editing, escape from immune control.

Release of anti-inflammatory mediators such as IL-10 and
TGF-β [39–41]. Inhibition of dendritic cells and T-cells.

Tumor-associated antigens overexpression in NSCLC [42,43]. Immune system tolerance and less responsiveness to immune
checkpoint blockade.

Tumor specific (neo) antigens present on MHC molecules, often
downregulated in NSCLC [44,45]. Tumor cells evasion of immune destruction.

Lung cancer cells overexpress the immunosuppressive protein,
PD-L1 [46,47].

Inhibitory effects on signaling pathways involved in T-cell
activation and cytokine secretion.

Tumor cells mediate a checkpoint/“brake” on T-cell activation
and thus anti-tumor immunity, by expressing CTLA-4, a B7

ligand and an inhibitory homolog of CD28 [48,49].
Tumor cells evasion of immune destruction.

PD-1’s arrangement with self-ligand PD-L1, found on lung
tumor cells dampens the apoptotic pathway [49,50] Induction of anergy and T-cell depletion.

Tumor cells expand a local immunosuppressive
microenvironment, induce dysfunctional T-cell signaling, and

upregulate inhibitory immune checkpoints [51].
Evasion of host immune-mediated surveillance and destruction.

Tumor cells express ligands for PD-1 interacting in that way
with surface molecules on CD8+ T-cells; influence the
microenvironment via orchestration by cytokines [52].

Apoptosis of CD8+ T-cells; immune tolerance.

Tumor cells do not express many neoantigens, and some of
those even if expressed might be low immunogenic eliciting

only a mild reaction with low affinity antibodies [53].

Cytotoxic lymphocytes unable to recognize tumor cells,
inhibited combined cytotoxic reaction together with T-cells.

Release of soluble amino acids tryptophan and arginine within
the tumor microenvironment [54,55]. Inhibition of T-cells and NK function, tumor immune tolerance.

Tumor cells express ectonucleotidases CD73 and CD38 which
create adenosine from ATP via ADP-AMP [56]. Induction of immunotolerance in cytotoxic lymphocytes.

Abbreviations: Non-small cell lung cancer (NSCLC), Major Histocompatibility Complex (MHC), Cytotoxic T-Lymphocyte-associated
Protein-4 (CTLA-4), Programmed Death-Ligand 1 (PD-L1), Vascular Endothelial Growth Factor (VEGF), Prostaglandin E2 (PGE2), Tu-
mor Growth Factor beta (TGF-β), Interleukin-10 (IL-10), Adenosine triphosphate (ATP), Adenosine diphosphate (ADP), Adenosine
monophosphate (AMP).

The currently available data comes from peripheral blood or surgically removed
NSCLC tumor tissue, with the latter being limited to less than a third of operable NSCLC
patients. The vast majority of the patients have an unresectable disease or are inoperable
and undergo radio/chemotherapy, and therefore NSCLC tumor tissue in these advanced
stage patients is typically unavailable for detailed immunological analysis. However,
based on the limited histological and immunological analysis obtained from the available
tissue, the main components of a tumor-directed immune response are represented by
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a complex interaction between various immune cells operating a composite cytokine
network that is supported by the surrounding mesenchymal, epithelial and endothelial cells.
The immune cells are a large, highly cooperative family consisting of tumor infiltrating
lymphocytes (TILs), the tumor associated macrophages (TAMs), the tumor associated
neutrophils (TANs), tissue eosinophilia, and T-cell lymphocytes [59–64]. The lung anti-
tumor immune response is imitated by activation of the pulmonary antigen presenting
cells (APCs), represented by macrophages and dendritic cells [65]. This is a fundamental
step towards the beginning of an effective anti-tumor immune response. Following tumor
antigen(s) recognition and distinguishing “self” from “non-self”, the APCs migrate to the
regional lymph nodes and activate the effector immune cells that aid in destruction of
tumor cells. These effector immune cells, also known as cytotoxic lymphocytes, include
the CD4+ lymphocytes, natural killers, natural killer T-cells, CD8+ lymphocytes and
B lymphocytes [66–68]. The activation of these cells are enhanced by the secretion of
inflammatory cytokines such as IL-12 and Interferon gamma (IFN-γ). These cytokines are
released by the activated macrophages, growing tumor cells, and stromal cells surrounding
the tumor. Additionally, membrane-receptor induction of programmed death by the
cytotoxic lymphocytes also aids cytokine release and apoptosis of tumor cells [69], as the
final coordinate anti-tumor response.

For the purpose of effective antigen presentation, a critical role is played by interaction
between co-stimulating molecules on antigen-presenting cells and corresponding recep-
tors on cytotoxic lymphocyte [70]. One mechanisms of immune suppression that tumor
cells use, are to block this antigen/cytotoxic lymphocyte interaction and prevent the cyto-
toxic lymphocytes from getting activated against the tumor (Table 1). Several additional
tumor-related factors and mechanisms that result in immune suppression have also been
described. One of those involved is alterations in signal transduction molecules on effector
T-cells leading to the lack of tumor antigen recognition and missing anti-tumor immune
response [71]. In this case, increased tumor-related anti-inflammatory humoral factors like
IL-10 or Tumor Growth Factor-beta (TGF-β) induce the loss of signal transducer CD3-ε
chain (CD3-ε) in TIL. With that, the signaling pathway for T-cell activation is inhibited, the
immune response cannot be initiated and results in immunosuppression.

Alteration of CD3-ε, which is involved in tumor-induced T-cell apoptosis, leads to
tumor induced caspase-dependent apoptosis in high proportion of tumor infiltrating
T-lymphocytes [72,73]. Further, tumor escapes immune control through the process of
immune editing, having as the target the loco-regional tumor microenvironment (TME).
Several different tumor-related soluble molecules are involved in this form of immuno-
suppression: Vascular Endothelial Growth Factor (VEGF), Prostaglandin E2, TGF-β, IL-10,
soluble phosphatidylserine, MICA Fas and FasL100 [27–34]. Their immunosuppressive
effects include inactivation of dendritic cells and T-cells, inhibition of Fas-mediated and
NKG2D-mediated killing of immune cells, and release of anti-inflammatory mediators
such as IL-10 and TGF-β that inhibit dendritic cells and T-cells [35–38]. All those effects
promote metastatic spread and progression in NSCLC patients [74,75].

Finally, the stromal cells from the TME also exhibit an important immunosuppressive
role through modulation and binding of tumor antigens. By binding tumor antigens, these
cells compete with the antigen-presenting cells so that many tumor antigens will be down-
regulated, resulting in immunosuppression and tumor progression [76–78]. By increasing
interstitial fluid pressure in the tumor, stromal cells will make significant quantity of tumor
antigens to be unavailable and therefore, ignored by T-cells [79]. Besides the tumor and the
TME causing immune-suppression, therapies such as convention RT and chemotherapy
can also lead to additional immune suppression.

3. Radiation-Related Immune Suppression in NSCLC

The wide use of RT in the management of NSCLC, especially for locally-advanced,
high-volume disease, is associated with radiation-induced lymphopenia. The radiation-
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induced lymphopenia has been correlated with poor oncologic outcomes. Table 2 summa-
rizes the many radiation-induced immunosuppressive effects.

Table 2. Radiation-related immunosuppressive effects.

Radiation-Induced Effect Consequences

Radiation-induced lymphopenia [19–22]. Immunosuppression.
Cytotoxic effects on the circulating immune

component [80]. Immune depletion.

Direct damage of dendritic cells as professional
antigen-presenting cells (responsible for priming

of naive T-cells) [81].

Negative impact on T-cell activation
leading to immune tolerance.

Radiation-induced lymphocyte depletion
following RT for NSCLC [19].

Systemic immunosuppression leading to
poor oncologic outcome.

Higher radiation doses to the immune system
following RT for stage III NSCLC [82].

Systemic immunosuppression leading to
increased tumor progression and death.

Radiation-induced depletion of total
lymphocytes [83,84].

Reduces tumor control and survival in
patients with stage III NSCLC.

Upregulation of the transcription of HIF-1α [85]. Multiple immunosuppressive effects.
Accumulation of immunosuppressive myeloid

cells (N2 neutrophils, M2 macrophages, MDSCs)
secondary to the increase of CSF-1, SDF-1, CCL2

induced by radiation [86].

Immunosuppression.

Upregulation of adenosine [87]. Multiple immunosuppressive effects.
Accumulation of regulatory T-cells (related to

intrinsic higher radio-resistance and increase of
immunosuppressive mediators and cytokines

induced by radiation) [87,88].

Immunosuppression.

Killing of tumor-infiltrating immune cells (e.g.,
lymphocytes, APCs) [89]. Immunosuppression.

Upregulation of PD-L1 on cancer cells [90,91]. Inhibition of CTL-mediated tumor killing.
Induction of TGF-β secretion [90,91]. Multiple immunosuppressive effects.

Abbreviations: Antigen Presenting Cells (APCs), Programmed Death-Ligand 1 (PD-L1), Tumor Growth Factor beta
(TGF-β), Cytotoxic T Lymphocyte (CTL), Hypoxia-inducible Factor 1-alpha (HIF-1α), Myeloid-derived Suppressor
Cell (MDSC), Colony-stimulating Factor 1 (CSF-1), Stromal Cell Derived Factor-1 (SDF-1), CC-chemokine Ligand
2 (CCL2), Radiotherapy (RT).

Although RT represents a local treatment, it can add to the cytotoxic effects on the
circulating immune component as blood flows through the radiation field whose size,
together with prolonged treatment times and increased dose fractionation determines
the severity of immune depletion [80]. As for tumor cells and healthy cells, radiation
is directly detrimental to all cells located within the radiation field. The immune cells
are among the most radio-sensitive cells, being easily damaged and killed by ionizing
radiation [92–94]. Preclinical evidence confirmed that dendritic cells that act as professional
APCs and normally responsible for priming of naive T-cells, are significantly damaged
after RT. The RT-induced destruction of these dendritic cells can negatively affect T-cell
activation [81]. Additional immune cells that are unintentionally targeted, like dendritic
cells, macrophages and B- and T-lymphocytes within the irradiated regional lymph nodes,
could also contribute to RT-induced immune-suppression. This “collateral” damage of the
peri-tumoral immune cells during RT of tumor cells is a result of trying to treat the target
volumes that contain tumor (GTV) and surrounding clinical target volumes (CTV) whereby,
tumor is likely to have spread. The collateral damage from scattered irradiation can cause
damage to APCs, lymphocytes, supportive mesenchymal and epithelial cells as a bystander
consequence of trying to irradiate the tumor volumes. Furthermore, conventional RT
volumes are expanded to create larger volumes (i.e., internal target volume (ITV)) to account
for the tumor motion due to respiration, and taking into consideration tumor motion in
4D-CT, and the planning target volume (PTV) (to account for the set up error(s) related to
the patients daily (re)positioning) (Figure 1). The final target volume for radiation treatment
will therefore include much larger area than the one corresponding to the macroscopic lung
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cancer with significant amount of the peri-tumoral tissue between the GTV and PTV, which
will be exposed to the full radiation dose. Thus, there is substantial normal/surrounding
peri-tumor microenvironment that is irradiated during conventional irradiation approaches
(Figure 1), and could result in destruction of many surrounding immune cells circulating
within the irradiated volumes.
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Figure 1. Concept of treating volumes of the conventional RT: the figure shows a centrally located right-side lung tumor
(gross tumor volume-GTV, white contour). In order to address the high-risk of subclinical/microscopic disease spread, the
clinical target volume (CTV, green contour) is contoured and considered as target for irradiation. Additionally, in order
to account for the tumor motion due to respiration, the internal target volume (ITV, orange contour) will also be drawn
taking into consideration tumor motion in 4D-CT. Finally, to account for the set-up error(s) related to the patients daily
(re)positioning, an additionally larger volume known as the planning target volume (PTV, red contour) is also drawn as
the final treating volume for radiation treatment. The yellow arrows indicate the definitive diameter of the final treatment
volume in comparison to the macroscopic tumor (GTV). Significant amount of the surrounding peri-tumoral healthy tissue
between GTV and PTV will be exposed to the full radiation dose (blue lines), the same that will be delivered to the tumor.

Furthermore, if the regional lymph nodes are also included in the target volumes,
irradiation will further extend the radiation-induced immunosuppression to the whole
anatomical region where T-cell priming is expected to take place. The bigger the treatment
volume during RT, the greater the inhibitory effects of radiation on the immune system.
Further, an extended treatment time in terms of normo-fractionated RT (in order of several
weeks, typically 5 in case of (neo) adjuvant and 6–7 in case of radical treatment) will
additionally increase the radiation-immunosuppressive power. It has been confirmed that
radiation-related lymphocytes depletion following RT for NSCLC associates with poor on-
cologic outcome, indicating that large radiation volumes and multiple daily fractions leads
to systemic immunosuppression [19]. Without a doubt, RT destroys tumor cells and results
in cure of low-volume, earlier stage lung tumors, with probably no significant immuno-
suppressive impact on patients’ prognosis. However, for those patients whose disease is
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large and more advanced, and requires radiation volumes that are very large, the radiation-
induced immunosuppression might have significantly higher impact and relevance for
their prognosis. Furthermore, for these patients with more advanced disease, RT is usually
given in combination with chemotherapy and the combined effects of these therapies will
further exacerbate systemic inhibitory effect on the immune system. The consequences in-
clude compromised immune priming, lymphopenia and finally weak anti-tumor immune
potential. Indeed, higher radiation doses to the immune system following the definitive
RT for stage III NSCLC patients were associated with increased tumor progression and
death [82]. One study found that the lower the lymphocyte loss at 6 months after RT (every
100 lymphocytes/mcL), the greater the improvement on PFS and OS. This finding sug-
gested that lymphocyte depletion during RT reduces tumor control and survival in patients
with stage III NSCLC [83], while the opposite is also true. Similarly, a secondary analysis
of RTOG 0617, including 464 patients affected by stage III NSCLC, found that increased
radiation dose to the immune cells was highly prognostic for decreased OS and PFS [84].
These studies suggest that immune cells and organs should be considered as an organ at
risk during the radiation treatment planning, and should be spared from radiation, if one
is to optimize the peri-tumor immune environment and help convert it from a pro-tumor
suppressive environment into an anti-tumor pro-immunogenic environment.

4. Therapeutic Strategies to Overcome Tumor-Mediated Immune Suppressive Effects
in NSCLC

Similar to the melanoma, head and neck, and mismatch repair (MMR)-deficient
colorectal cancers, NSCLC tumors are considered “hot” with significant infiltration of
tumors by T-cells and high tumor mutation burden (TMB) [95]. However, inflamed TME is
not always associated with favorable prognosis. Recently, it has been reported that while
inflamed TME is associated with favorable patient outcome in case of lung adenocarcinoma
(LUAD) subtype of NSCLC, it is not true for lung squamous cell carcinoma (LUSC) [96].
This difference was attributed to increased expression of immune checkpoint marker
expression in immune-inflamed LUSC compared to inflamed LUAD. Moreover, T-cells
become exhausted during the attack on the tumor due to constant exposure to the antigens
and through immune checkpoint signaling. Therefore, immunotherapy of NSCLC using
immune checkpoint inhibitors (ICIs) was started to block this signaling and has become an
important cornerstone of NSCLC therapy. However, as explained above, not all NSCLC
tumors respond to ICIs as they develop resistance mechanisms due to the constantly
evolving interactions between cancer cells and other cells in TME such as other immune
cells, cancer-associated fibroblast, and tumor endothelial cells [97]. Therefore, multiple
strategies have been developed over time to treat ICI-refractory NSCLC.

The first approach used is the combination of two ICIs, generally anti-PD-1 and anti-
CTLA-4 to enhance anti-tumor immune-mediated response. An improved median and
2-year OS over chemotherapy was observed in NSCLC patients treated with nivolumab
plus ipilimumab (CheckMate227) [98]. However, treatment-related serious adverse events
of any grade were more frequent in the patients treated with combination ICI than with
chemotherapy although grade 3 or 4 treatment-related adverse events were similar. In addi-
tion to PD-1 and CTLA-4, other immune checkpoints such as LAG-3, TIM-3 and TIGIT have
been tested in trials for combination ICI therapies. For example, in a recent CITYSCAPE
phase 2 trial, anti-TIGIT, tiragolumab when combined with anti-PD-L1, atezolizumab
resulted in a significant benefit in PFS and ORR in PD-L1-positive metastatic NSCLC
patients compared to anti-PD-L1 monotherapy [99]. In addition to the combination ICI
therapy, ICI treatment as a re-challenge has also been investigated [100]. However, al-
though the responses have been improved following these strategies, tumor-mediated
immune suppressive effects still limit the durability and maximal positive outcomes.

In addition to the tumor-mediated increased expression of checkpoints, VEGF and
IDO secreted in the TME serve as important immunosuppressive molecules. VEGF pro-
motes hypoxia-mediated neo-angiogenesis in the TME. VEGF inhibitors can restore normal
vasculature to enable immune cell infiltration [101] and provide a rationale for their combi-
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nation with ICIs to improve outcomes. Indeed, in a recent clinical trial, an improved OS was
obtained when atezolizumab was combined with doublet chemotherapy and bevacizumab
compared to bevacizumab plus doublet chemotherapy [102]. There are multiple studies
that are currently testing this concept [103]. IDO1, IDO2 and TDO2 play important role in
tryptophan catabolism, a critical metabolic pathway. IDO1 and TDO2 are overexpressed
in several cancer types, including NSCLC and are associated with poor prognosis and
resistance to immunotherapy [104]. By depleting tryptophan and increasing kynurenine in
the TME, these enzymes enhance immunosuppression as Tregs and MDSCs are generated
and proliferation and activation of effector T-cells is inhibited [105]. However, a clinical
trial in advanced melanoma patients combining IDO1i epacadostat with pembrolizumab
failed [106], most likely due to several flaws in the design such as unselected patient
population and insufficient dosing [97]. Therefore, IDOi are still being investigated either
in combination with ICIs in NSCLC (NCT02460367) or with other combination partners
such as RT and STING agonists. Level of another amino acid, arginine that is essential
for lymphocyte proliferation and function, is regulated by arginase 1 and 2 (ARG1/2).
Similar to IDO, high expression of ARG1/2 has been found in NSCLC [107] and shown
to be associated with poor prognosis. These enzymes are mainly released by MDSCs
and macrophages in the TME and hamper T-cell function by lowering production of IFN-
γ, TNF-α, and other inflammatory cytokines [108]. Therefore, therapeutic inhibition of
ARG1/2 is being employed to enhance anti-tumor immune responses. A phase I/II study
in advanced or metastatic solid cancers (NCT02903914), including NSCLC is currently in-
vestigating the anti-tumor effects of a small molecule INCB001158 alone or in combination
with pembrolizumab.

Several components of adenosine-signaling pathway such as CD73, A2a receptor
(A2aR) are overexpressed in variety of cells in the TME. Multiple molecular pathways,
including mTOR, MAPK, HIF1-α, and TGF-β regulate expression of CD73 and in turn
adenosine [109]. CD73, an ectonucleotidase, generates adenosine (an effective immuno-
suppressive molecule) by breaking down extracellular ATP [109]. In accordance, high
expression of CD73 is associated with poor outcomes in NSCLC [110]. Similarly, high
A2aR expression results in an increased binding of adenosine and leads to accumulation of
immunosuppressive Tregs, MDSCs, proliferation of cancer-associated fibroblasts, inhibition
of effector T-cells, lowering of PD-L1 expression on tumor cells and other anti-immune
inhibitory consequences in NSCLC [111]. Therefore, adenosine signaling pathway has been
targeted by inhibiting either CD73 or A2aR alone, or in combination with ICIs to overcome
tumor-mediated immunosuppressive effects in NSCLC [97].

Recently, neoantigens that are produced due to mutations in the tumor cells have
been identified in NSCLC. Because these antigens are unique to the cancer cells and are
generally immunogenic, vaccines containing these antigens have been developed [112]
and can exploit the benefits of ICIs [113]. Melanoma-associated antigen (MAGE)-A3 is
expressed in approximately 32% of NSCLC [114,115]. However, vaccines containing this
antigen did not improve PFS or OS [116]. Thus, the combination of these neoantigen-based
vaccines with ICIs may be needed and studies in this direction are required. In this regard,
it is important to recognize that the sequencing of vaccine and the ICI is important to
achieve optimum results. Recently, it is reported that under suboptimally-primed CD8+
T-cell conditions, PD-1 blockade increases the generation of dysfunctional PD-1+CD38hi
cells, leading to anti-PD-1 therapy resistance [117]. Accordingly, it may be speculated that
treatments such as RT that act as in situ vaccine may be administered before ICI treatment
to achieve improved outcomes.

It is now clearly established that TME-mediated immunosuppressive effects hinder the
anti-tumor immune response, which is significantly influenced by the heterogeneity of the
TME. Targeting these pathways have been employed either alone or in combination with
immunotherapies but with limited success, suggesting that other novel, unconventional
strategies such as Stereotactic Body Radiotherapy (SBRT)-based PArtial Tumor irradiation
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targeting HYpoxic clonogenic cells (SBRT-PATHY) may still have scope to further improve
treatment outcomes in NSCLC (discussed in the following paragraph).

5. Radiation and Immune Stimulation in NSCLC: Bystander and Abscopal Effects

RT, if used appropriately, has a potential to convert a TME into a immuno-stimulative
environment that can aid local and distant radiation-induced immune-mediated anti-tumor
response [118] and enhance response to immune checkpoint inhibitors [119–121]. RT can
alter the tumor micro-niche by increasing neo-antigen shedding, increase PD-L1 expres-
sion, increase MHC class I expression, and reverse exhausted CD8+ T-cells [120]. RT can
also increase infiltration of CD8+ T-cells into the tumor and TME and could potentiate
the response [119] and can be thought of as a form of immunotherapy with systemic
effects [122]. It can alter tumor cells to increase stimulation or immunogenic cell death
pathways within the tumor cells, upregulate MHC molecules within tumor cells, increase
release of DAMPs, promote expression of cryptic tumor antigens, and lead to production
of immune-stimulatory cytokines and chemokines [85]. RT, if used properly, could also
alter APCs to promote infiltration into the tumor cells, improve maturation of APCs, alter
the APCs to acquire a more immune-stimulatory phenotype, encourage APCs to uptake
antigens and to improve processing cross presentation of antigens by APCs, promotion
production of immune-stimulatory cytokines and chemokine production, and aid APCs to
enhance migration to regional lymph nodes [85]. At the T-cell level, RT has been shown to
increase infiltration into the tumor, especially CD8 and CD4 T-cells, promote production of
immune-stimulatory cytokines by the T-cells, help T-cells maintain effector function, and
may alter T-regs [85]. Table 3 highlights proposed mechanisms as to why radiation could
induce an immuno-stimulatory effect that could enhance response to checkpoint inhibitors.

The above mentioned radiation immunogenic effects are typically observed in the
preclinical, experimental conditions but clinically their therapeutic impact remain neg-
ligible following the use of conventional RT which is considered to be a weak immune-
stimulator. In fact, conventional RT usually shows an immunosuppressive character
(Table 2: [19–22,80,84–91]). Accordingly, the 5-year overall survival rate of NSCLC patients
to RT and chemo-RT remains at a dismal low ranging from 68% for stage IB to <10% for
stage IVA-IVB NSCLC [123]. These results suggest that a combination with other strategies
such as immunotherapy is essential to enhance the response of these radio- and radio-
chemotherapy-resistant NSCLCs. The RT would induce activation of the immune system
against the tumor cells (as highlighted in Table 3) while its immunosuppressive effects
can be reversed by ICIs. Indeed, several clinical trials are currently ongoing to explore
the potential of the combined strategy of RT and immunotherapy and have been recently
reviewed for both stage III and advanced NSCLC [124]. It is important to note that while
in some of these trials, RT and ICIs are being administered concurrently, in others ICIs are
given as an adjuvant therapy after RT. The sequence of these therapies are dependent on
several factors such as the dose, fractionation, dose/fraction of RT, the type of ICI to be
used as well as on the intrinsic properties of the tumor and their response to the first line of
therapy as we have reported earlier [121].

In addition to the combination approaches, the immunosuppressive effects of RT
could be turned into a pre-dominant immune-stimulatory effect leading ideally to clinically
desirable abscopal effect (AE) and bystander effect (BE) using novel, unconventional
delivery approaches of RT. BE and AE are tumoricidal non-targeted immune-mediated
radiation effects that have a great anti-tumor potential and thus significant clinical relevance.
They both represent an out-of-field-extended regression of non-irradiated local (BE) or
distant (AE) tumor lesions as a result of an optimally balanced interplay between the
radiation-induced, pro-inflammatory and anti-inflammatory cytokines, TME and immune
system cells. The characteristics of BE/AE induced by conventional RT are described
elsewhere in more detail [125]. To be optimally pro-immuno-stimulative, RT needs to be
administered in a way to release enough quantity of hidden tumor (neo) antigens required
for a potent immune-stimulation and to maximally spare the loco-regional peri-tumoral
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immune cells necessary to induce BE/AE. This balance is only occasionally achievable after
conventional, normo-fractionated RT, which is a weak inductor of BE and AE. Modern
radiation technique needs to be properly adapted and adjusted, if one is to drive the
maximum BE and AE effects.

One of the attempts to make such a novel, unconventional RT is SBRT-PATHY, purpose-
fully developed to improve immunogenic potential of radiation, and to act synergistically
with the immune system [118]. This approach is fully subordinated to immunostimulation.
The key components of this technique are: (1.) partial tumor irradiation targeting the more
immunogenic-hypoxic clonogenic cells, (2.) sparing of the loco-regional immune cells as an
organ at risk, and (3.) time-synchronization of irradiation with the homeostatic oscillation
of the anti-tumor immune response, giving radiation at certain, individually determined
optimal timing corresponding to the most reactive phase of the immune anti-tumor re-
sponse. Typically, the treatment is given in very short time (1–3 fractions) so as not to
interfere much with the functioning of the immune system, using an immunogenic-high
radiation dose, in order to be fully stimulative. Although this is an emerging technique
and thus only small number of patients have been treated so far, its preliminary results in
terms of BE- and AE-induction are encouraging [118]. Most of the patients treated with
this approach were affected by unresectable bulky NSCLC, whose immuno-suppressive
biological behavior showed to be manipulable resulting in immunostimulation and con-
sequent improvement of treatment outcomes [126]. Indeed, the immunohistochemistry
and gene-expression analysis of surgically removed partially irradiated squamous cell
and adenocarcinoma NSCLCs following SBRT-PATHY, and non-irradiated but regressing
abscopal tumor sites, showed activation of immune system in the radiation-spared TME
with very dense infiltration of T-lymphocytes, with more or less pronounced predom-
inance of CD8+ cytotoxic lymphocytes [118]. Furthermore, Apoptosis-inducing Factor
(AIF) was highly expressed not only in the partially irradiated NSCLCs, but also in the
non-irradiated distant tumor lesions pointing to an induction of tumor apoptosis at all sites
(partially irradiated and non-irradiated). Surprisingly and interestingly, the lymphocyte
infiltration was absent at non-irradiated distant tumor sites, where AIF was highly upregu-
lated, indicating an alternative radiation-induced activation of apoptosis pathway possibly
through cytochrome C [118]. Additionally, analysis of non-irradiated abscopal tumor sites
performed by real-time PCR of reverse transcribed mRNAs showed the strongest signals
of cell death-regulating signaling molecules IL-6, AIF and TNF-alpha, which had higher
expression levels compared to the partially irradiated tumors suggesting an abundance
of potentially cell death-inducing signals not only in the partially irradiated NSCLCs but
even more so in non-irradiated out of field abscopal sites [118]. These findings indicate that
the presence of these signaling molecules at abscopal tumor sites may play an important
role in the systemic anti-tumor response modulated by SBRT-PATHY at TME and hypoxic
segment of partially irradiated bulky NSCLCs.

A prospective phase I trial is ongoing, currently recruiting patients, aiming to as-
sess the immunogenic potential and optimal timing of SBRT-PATHY for treatment of
unresectable bulky tumors of all histologies and organ-sites [127]. Additionally, another
prospective phase I/II trial is currently assessing the potential physical and biological
advantages of carbon-ions in form of CARBON-PATHY delivered synchronously with an
estimated most reactive phase of anti-tumor immune response considering the homeostatic
immune oscillations [128]. Moreover, for the purpose of target delineation, CARBON-
PATHY is for the first time planned using hypoxia-specific [64Cu][Cu(ATSM)] PET/CT.

Interestingly, it has been reported that certain RT byproducts, such as tumor exosomes
can play a role in BE [129]. Radiation-induced BE and the role of tumor exosomes are de-
scribed elsewhere [120]. More recent data demonstrated that RT can induce the production
of tumor exosomes that contain DAMPs and key proteins that play a role in radiation-
induced abscopal response [130]. Following irradiation, tumor exosomes can activate
dendritic cells and NK cells, and can lead to tumor growth delay via an NK cell dependent
pathway in a fashion analogous to irradiation itself [130,131]. These findings showed for
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the first time the link between tumor exosomes-related BE and NK cell-mediated radiation-
induced AE adding to the credibility that RT, if used appropriately, can be used to enhance
anti-tumor immunity. Recent animal models are now being developed in NSCLC to better
understand radiation-induced immune-related abscopal effects and to find ways to opti-
mally integrate RT with emerging systemic immune checkpoint blockade agents such as
the anti-CTLA-4 (ipilimumab) and anti-PD-1 (nivolumab) [131,132]. These models have
been looking at RT and anti-CLTA-4 and anti-PD-L1 immune checkpoint combinations,
and have suggested synergism of the combination approach [133,134]. Golden et al. [135]
reported a proof of principle phase 2 study demonstrating that granulocyte-macrophage
colony-stimulating factor along with RT (35 Gray in 10 fractions over two weeks) lead to
27% abscopal response in metastatic NSCLC, breast and thymic cancer patients. Keynote-
001 trials demonstrated that in a subgroup of 24 or 97 patients with metastatic NSCLC
who received thoracic RT followed by pembrolizumab, there were statistically significant
notable improvements in PFS (6.3 vs. 2.0 months, p = 0.008) and OS (p = 0.034) compared
to those who did not received RT, with notable increase in pneumonitis in those that
previously received thoracic RT (13% vs. 1%, p = 0.046) [136]. Results from a randomized
phase II SBRT trial of sequential SBRT and pembrolizumab alone vs. pembrolizumab
also demonstrated an improved overall response rate (41% vs. 19%) and median PFS
(6.4 months vs. 1.8 months) in favor of the combined SBRT and pembrolizumab approach.

Table 3. Radiation-related immunostimulative effects.

Radiation-Induced Effect Consequences

Increase of NKG2D ligands, co-stimulatory molecules
(e.g., CD80) and adhesion molecules (e.g., ICAM-1, E-selectin)

on tumor cells [137].

Enhance recognition and killing of cancer cells by cytotoxic
lymphocytes.

Smac release from mitochondria [138]. Increase tumor cells sensitivity to granzyme-induced apoptosis.
Release of chemokines (e.g., CXCL9, CXCL10, CXCL16),

increase of adhesion molecules on the vascular endothelium
(e.g., VCAM-1), normalization of the tumor vasculature [139].

Facilitate the recruitment of effector T-cells to the tumor site.

Release of ATP * [140]. Release of pro-inflammatory cytokines from APCs (priming of
IFN-γ-producing cytotoxic CD8+ T-cells).

Calreticulin translocation to the surface of tumor cells (“eat me”
signal) * [141].

Increased tumor cells phagocytosis; Promotes pro-inflammatory
cytokines release from APCs.

Generation of novel peptides and increase of the pool of
intracellular peptides presented [120]. Increase the anti-tumor immune response.

HSP increase (membrane-bound expression and extracellular
release) * [142]. Stimulate innate and adaptive immune responses.

Upregulation of “death receptors” (e.g., FAS/CD95) [143]. Enhance recognition and killing of cancer cells by cytotoxic
lymphocytes.

Release of HMGB1 protein (“danger signal”) * [144].

DC migration and maturation (increase in efficiency of antigen
processing and presentation)

Release of pro-inflammatory cytokines and chemokines
from APCs.

Decrease of CD47 surface expression (“do not-eat-me”
signal) [145]. Increase tumor cells phagocytosis.

Increased MHC-I expression (critical for antigen recognition by
CD8+ TCRs) [146].

Enhance recognition and killing of cancer cells by
cytotoxic T-cells.

Accumulation of cytosolic DNA in irradiated tumor cells * [147].
Activation of the cGAS/STING pathway and production of

type I IFNs and other pro-inflammatory cytokines (APCs
maturation, cross-presentation and T-cell recruitment).

Abbreviations: Natural Killer Group 2D (NKG2D), Intercellular Adhesion Molecule 1 (ICAM-1), CXC-Ligand 9 (CXCL9), CXC-Ligand
10 (CXCL10), CXC-Ligand 16 (CXCL16), Vascular Cell Adhesion Molecule 1 (VCAM-1), Adenosine Triphosphate (ATP), Antigen-presenting
Cells (APCs), Interferon (IFN), Heat-Shock Proteins (HSP), High Mobility Group Box 1 (HMGB1), Dendritic Cells (DC), T-cell receptor
(TCR), GMP-AMP synthase (cGAS), STimulator of INterferon Genes (STING). * Cellular phenomena related to the “immunogenic cell
death” of the tumor cell.
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6. Conclusions

Due to a high incidence and dismal treatment outcome, NSCLC represents one of the
major research challenges in the 21st century. While the immune system emerged as an
important link in the chain of tumor development, tumor control and tumor progression,
the immunogenic balance becomes one of the major focuses of future preclinical and clinical
work. In particular, researchers are attempting to shift the prevalently immuno-inhibitory
tumor- and radiation-related effects towards a more immuno-stimulative one, with hopes
of improving the therapeutic ratio that combines optimal RT in combination with emerging
immunotherapy agents. RT, if used appropriately, could aid local and distant radiation-
induced immune-mediated anti-tumor response and lead to clinically desirable AE and
BE. In one such scenario, being increasingly clinically investigated, RT was shaped in such
a way to limit unnecessary irradiation of immune cells at the immediate periphery of
visible tumor mass. A novel, unconventional RT (SBRT-PATHY) successfully addressed
important aspects deemed necessary for the treatment success: partial tumor irradiation
targeting possibly the more immunogenic- hypoxic clonogenic cells, sparing of the loco-
regional immune cells as an organ at risk, and time-synchronization of irradiation with the
homeostatic oscillation of the anti-tumor immune response. Ongoing research with this
novel approach will provide a better understanding between the interplay between the
host, the tumor, and the various treatment manipulations to render a pro-tumor immune-
suppressive environment into an anti-tumor immuno-stimulatory one. This may especially
be the case, if novel RT approaches are combined with emerging immunotherapy agents
for NSCLC patients.
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