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Abstract
Penalized selection criteria like AIC or BIC are among the most popular methods for vari-

able selection. Their theoretical properties have been studied intensively and are well

understood, but making use of them in case of high-dimensional data is difficult due to the

non-convex optimization problem induced by L0 penalties. In this paper we introduce an

adaptive ridge procedure (AR), where iteratively weighted ridge problems are solved whose

weights are updated in such a way that the procedure converges towards selection with L0
penalties. After introducing AR its specific shrinkage properties are studied in the particular

case of orthogonal linear regression. Based on extensive simulations for the non-orthogonal

case as well as for Poisson regression the performance of AR is studied and compared with

SCAD and adaptive LASSO. Furthermore an efficient implementation of AR in the context

of least-squares segmentation is presented. The paper ends with an illustrative example of

applying AR to analyze GWAS data.

Introduction
Methods for performing variable selection, particularly in a high dimensional setting, have
undergone tremendous development over the last two decades. Of particular importance in
this context is penalized maximum likelihood estimation, which can be divided in selection
methods based on generalized information criteria and regularization methods [1]. The former
use a penalty which depends on the number of estimated parameters, sometimes called L0 pen-
alty, and include the classical information criteria AIC [2] and BIC [3]. Their asymptotic prop-
erties have been thoroughly studied and are well understood when the number of potential
regressors is fixed (see for example [4] and citations given there). Specifically BIC is known to
yield a consistent model selection rule, which means that as the sample size goes to infinity the
probability of selecting the true model goes to 1. However, this is no longer true in a high
dimensional setting, where under sparsity both AIC and BIC tend to select too large models
[5]. As a consequence a number of different modifications of BIC have been suggested, for
example mBIC [6, 7] which is designed to control the family wise error rate (FWER), mBIC2
[8, 9] controlling the false discovery rate, or EBIC [10] for which consistency under certain
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asymptotic conditions has been shown even when the number of regressors is allowed to be
larger than the sample size.

Thus from a theoretical perspective it is rather appealing to perform model selection using
generalized information criteria. However, the corresponding optimization problem is notori-
ously difficult due to the non-convexity and discontinuity of the L0 penalty. It is an NP hard
problem to find the model which minimizes a specific information criterion, and in general
already for a moderate number of say fifty variables it becomes computationally infeasible to
guarantee finding the optimal solution. Another problem often associated with L0 penalties is
the instability of selected solutions [11]. A possible workaround is to report not only one
model which minimizes the criterion, but a number of good models which have been found for
example with some evolutionary algorithms [12]. In any case the approach remains extremely
computer intensive and time consuming for high-dimensional data sets.

Regularization methods can serve as an alternative, where penalties are not based on the
number, but rather on the size of coefficients. A prominent example is bridge regression [13]
which uses penalties of the form

P
ib

q
i , where βi are the coefficients of the model to be esti-

mated. Special cases are ridge regression [14] for q = 2 and the LASSO [15] for q = 1, whereas
for q! 0 the penalty of bridge regression converges towards the L0 penalty of generalized
information criteria. It has been shown that only for q� 1 bridge regression can perform vari-
able selection [16], on the other hand only for q� 1 its penalty is convex and therefore allows
for relatively simple optimization algorithms. This partly explains the huge interest that the
LASSO (q = 1) has received in recent years (see [17] for a comprehensive treatment).

The LASSO has very nice properties in terms of prediction, but as a model selection proce-
dure it is consistent only under rather restrictive assumptions [17, 18]. Specifically for
strongly correlated regressors it can perform quite poorly, and a number of non-convex pen-
alties have been studied to achieve sparser solutions [19], among them the smoothly clipped
absolute deviation (SCAD) [20] and the minimax concave penalty (MCP) [21]. Furthermore
the coefficient estimates of the LASSO are severely biased due to shrinkage. An interesting
procedure to overcome these deficits is the adaptive LASSO [22], which makes use of a
weighted L1 norm penalty resulting in a similar convex optimization problem as the original
LASSO. With suitable choice of the weights the adaptive LASSO was shown to have the ora-
cle property, which means that it is both consistent and the nonzero coefficients are esti-
mated as well as when the correct model was known. The weights for the adaptive LASSO
can be obtained with some initial LASSO estimates, and if this procedure is further iterated
one obtains a multi-step adaptive LASSO [23, 24]

Already much earlier Grandvalet showed that the LASSO estimate can be obtained via some
weighted ridge regression [25, 26]. He called his procedure adaptive ridge regression, of which
a slightly modified version has been recently applied to detect rare variants in genome wide
association studies [27]. In this article we want to study a different adaptive ridge procedure,
which was recently proposed [28–30] with the aim of approximating L0 penalties. This Adap-
tive Ridge (AR) procedure is somewhat similar to the multi-step adaptive LASSO, in the sense
that the weights are iteratively adapted; but in each iteration weighted ridge regression is per-
formed instead of weighted LASSO, which is computationally much easier.

The iteratively adapted weights of AR are designed in such a way that the resulting penalty
converges towards the L0 penalty. Therefore the procedure is somewhat related to the seamless
L0-penalty [31] and the combination of L0 and L1 penalties suggested in [32], which both repre-
sent regularized versions of the L0 penalty. However, the latter procedures rely upon non-con-
vex optimization, which gets computationally rather difficult for large-scale problems as well
as for applications beyond linear regression. In contrast each iteration of the suggested AR is
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extremely fast, and we will see that the method also performs really well in some non-linear
examples.

The main purpose of this article is to look more systematically into the statistical properties
of the AR procedure proposed in [29]. After introducing the general procedure we will first
focus on the special case of linear regression. In particular we will provide some theoretical
results under an orthogonal design which elucidates the amount of shrinkage introduced by
AR. In extensive simulation studies we will then show to which extent these results also apply
for linear regression with more general design matrices, as well as for some generalized linear
models. We compare the performance of AR with SCAD and multi-step adaptive LASSO both
in terms of runtime and correct classification of regressors. Furthermore we will introduce a
new implementation of AR for least squares segmentation which is much more efficient than
the one used originally by Rippe et al. in [29]. Finally we illustrate the usefulness of AR in the
context of real GWAS data.

The Adaptive Ridge procedure

The Problem

Consider a parametric model with parameter vector b 2 R
d , in combination with a C2 convex

contrast C : Rd ! R. The most common examples of contrasts C(β) are the residual sum of
squares, or minus twice the log-likelihood of a given model, but more general functions like
pseudo-likelihood related quantities are conceivable. For all 0� q� 2, λ� 0 we introduce the
penalized contrast

Cl;qðbÞ¼D CðbÞ þ l k b kqLq : ð1Þ

Remark 1. One can easily replace β in the penalty term by any linear transformation Dβ
allowing to consider wider generalizations of penalty forms. For example one might consider a
subspace extraction such thatDb ¼ bJ for a given set J � f1; 2; . . . ; dg, or a difference matrix
such that Dβ = (β1 − β2, β2 − β3, . . ., βd−1 − βd)

T (where T denotes the transpose operator). We
will make use of this only when discussing least squares segmentation. All the results obtained
previously can be straightforwardly extended for penalties of the form k Db kqLq, but the generali-
zation is omitted for the sake of simplicity.

The objective of this paper is to minimize the penalized contrast of Eq (1) in order to obtain:

b̂¼D argmin
b

Cl;qðbÞ: ð2Þ

This relates to Bridge regression for q> 0 [13], with the special cases of ridge regression for
q = 2, and LASSO for q = 1 [15]. Note that if q> 1, the penalized contrast is both convex and

C2 and the problem can be easily solved with straightforward convex optimization (Gradient
descent, Newton-Raphson, etc.). For q = 1, the problem is still convex but with derivative sin-
gularities that makes the optimization problem more delicate but still tractable (coordinate
descent [33], gradient LASSO [34], etc.). If 0� q< 1, the penalized contrast is not convex any-
more and the problem is much more challenging [19]. For the limiting case q = 0 one obtains
for suitable choices of λ the classical model selection criteria AIC and BIC. Only for very small
p it is possible to apply exact algorithms which guarantee to find the minimal solution [35],
whereas for p> 20 one essentially has to use heuristic search strategies like stepwise selection
procedures. However, variable selection based on L0 penalties is believed to be optimal for
achieving sparsity and unbiasedness, and therefore there is much interest to find efficient algo-
rithms which minimize Cλ,q also in case of q = 0.
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The Suggested Solution
Recently Rippe et al. [29] suggested a method for visualizing changes of copy number variation
along the chromosome which is based on an iterative procedure to minimize residual sum of
squares with L0 penalties. We will adapt this procedure to our setting of penalized likelihoods

and discuss it in a slightly more general form. The idea is to obtain b̂ through an iterative
weighted fixed-point procedure. For any λ� 0 and any non-negative weight vector w 2 R

p
þ we

introduce the function:

Fl;wðbÞ¼D CðbÞ þ
l
2
bTdiagðwÞb ¼ CðbÞ þ l

2

Xd
j¼1

wjb
2

j ; ð3Þ

where diag(w) is the diagonal matrix with weights w on its diagonal. We are now ready to
introduce our Adaptive Ridge procedure:

Definition 1 (AR). For any λ> 0 and 0� q< 2, the Lq Adaptive Ridge sequences β
(k) and

w(k) are defined by the initialization w(0) = 1, and for k 2 N by:

bðkÞ ¼ argmin
b

Fl;wðk�1Þ ðbÞ ð4Þ

wðkÞ ¼ ðjbðkÞjg þ dgÞðq�2Þ=g ð5Þ

where Eq (5) is defined component-wise, and depends on the constants δ> 0 and γ> 0.
Eq (4) is just a weighted version of ridge regression, which is usually fast to solve. Note that

for q = 2 one always has w(k) = 1 and thus the procedure is not really iterative. In contrast for
q< 2, w(k) does depend on the iteration step k, and in case of convergence of the sequence β(k)

we will write bðkÞ ! ~b.
The form of the weights w(k) of Eq (5) is motivated by the heuristic consideration that at

least formally the penalty term of Eq (3) converges towards the penalty term of Eq (1),

bðkÞTdiagðwðk�1ÞÞbðkÞ !
k!1

Xd
j¼1

~b2
j

ðj~b jjg þ dgÞ
ð2� qÞ

g

�
Xd
j¼1
j~b jjq ¼k ~b kqLq : ð6Þ

For q = 1 one obtains in the limit the LASSO penalty by iteratively solving weighted ridge
problems, which has been exactly the motivation of the Adaptive Ridge approach introduced
in [25]. However, the main aim of our Adaptive Ridge procedure AR is not to approximate the
LASSO, but to focus on 0� q< 1, and especially on the case q = 0. As a consequence our AR is
more similar in spirit to the multi-step adaptive LASSO discussed in [23] and [24], where itera-
tively the weights of the ℓ1 penalty are updated using formulas which are very similar to Eq (5).
More precisely both references make use of γ = 1, whereas we will later recommend to work
with γ = 2. Furthermore one finds δ = 0 in [23], whereas [24] introduces δ> 0 for numerical
stability. Again we will discuss the exact choice of δ in our procedure below.

The main advantage of our AR approach compared with the multi-step adaptive LASSO is
that solving a ridge problem in each iteration is much easier than solving a LASSO problem.
While AR works for any q< 1 we will focus here on the case q = 0, which corresponds to a
number of widely used variable selection criteria, and for which minimizing Eq (1) is particu-
larly difficult. In fact this optimization problem is NP hard with growing p, and thus it is very
useful to have a good approximate procedure.
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Numerical considerations
The Definition (5) of the weights wj is very intuitive but from an algorithmic perspective its
algebraic form is not ideal. Typically the terms β(k) and δ will be of different order and comput-
ing the sum of |β(k)|γ and δγ in floating point arithmetics becomes problematic. The following
formula to update the weights is algebraically equivalent to Eq (5) but avoids any numerical
instabilities:

wj ¼
dq�2 exp

q� 2

g
log1p

����bj

d

����
g� �� �

if j~b jj � d

j~b jjq�2 exp
q� 2

g
log1p

���� dbj

����
g

 !" #
if j~b jj > d

ð7Þ

8>>>>><
>>>>>:

where log1p is the classical function defined by log1pðuÞ¼D logð1þ uÞ (for all u> −1) for
which stable implementations are publically available.

According to Definition 1 the AR procedure depends on two parameters, δ and γ. The
choice of δ calibrates which effect sizes are considered as relevant. If βj < δ the corresponding

weight wj will become large. Eventually one will obtain in the limit ~b j � 0, and thus also

wj
~b2
j � 0. On the other hand for βj� δ it holds that wj

~b2
j � j~b jjq. A choice of δ = 0 (like in

[23]) might then appear to be reasonable, but our numerical experiments show that it leads to
numerical instabilities and that a small δ> 0 (like in [24, 29]) performs noticeably better. Sim-
ulation results (not presented in this manuscript) suggest that in case of standardized data the
procedure is not particularly sensitive to the exact choice of δ, which coincides with the find-
ings of [24] in case of adaptive LASSO. Throughout this paper we will thus work with δ = 10−5.

The second parameter γ determines the quality of the approximation wj
~b2
j � j~b jjq. Fig 1

illustrates for several choices of q the shape of wj
~b2
j depending on the parameter γ. Clearly for

increasing values of γ the approximation is getting closer to the desired thresholding step func-
tion. In simulations not presented here we observed dramatic improvement of the performance

Fig 1. Approximation of |βj|
q by the function β2

j ðjβjjγ þ δγÞðq�2Þ=γ in dependence of the parameter γ 2 {1,
2, 3}. The x-axis is at the scale of δ. The four panels illustrate the cases q = 1.5, 1, 0.5, 0.

doi:10.1371/journal.pone.0148620.g001
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of AR by raising the parameter from γ = 1.0 (like in [23–25]) to γ = 2.0 (like in [29]), while fur-
ther increasing of γ did not yield much more benefit.

For the rest of the paper we will focus on the variable selection case q = 0, and stick with the
choice δ = 10−5 and γ = 2. The Adaptive Ridge Regression procedure for L0 regularization is
therefore defined by the following (component-wise defined) weighting scheme:

wðkÞ ¼ ððbðkÞÞ2 þ d2Þ�1: ð8Þ

Shrinkage for Linear Regression
Our first objective is to study AR theoretically in the context of linear regression. Thus consider
the model

y ¼ Xbþ ε ; ð9Þ

where y 2 R
n, X ¼ ðX1; � � � ;XpÞ 2 R

n	p and b 2 R
p. The error terms are assumed to be i.i.d.

normal, εi 
 N ð0; s2Þ. Furthermore let y be centralized, that is
Pn

i¼1 yi ¼ 0, and let all regres-

sors be centralized and standardized such that XT
j Xj ¼ n. Specifically this means that we con-

sider only models without intercept.
Clearly the log-likelihood of Model (9) is of the form

‘ðb; s2Þ ¼ const:� nlogs� 1

2s2
ðXb� yÞTðXb� yÞ :

Then −2ℓ takes the role of the convex contrast C in Eq (1), and in case of known error variance
σ2 we obtain (after neglecting constants)

CðbÞ ¼ 1

s2
ðXb� yÞTðXb� yÞ¼D RSSðbÞ

s2
:

Variable selection with classical model selection criteria like AIC or BIC becomes a special case
of Eq (1) with q = 0. More specifically let a model be defined by the set of non-zero coefficients
M = {j: βj 6¼ 0}. Then Eq (1) becomes

Cl;0ðbÞ ¼
1

s2
RSSðbÞ þ ljMj ; ð10Þ

which for a given modelM is clearly minimized at b̂M , the maximum likelihood estimate with
respect to the given model.

We now want to compare variable selection based on Eq (10) with the AR procedure
defined by Eqs (4) and (8). It is straight forward to see that for linear regression Eq (4) can be
written as an explicit dynamic system,

~bðkÞ ¼ ðXTXþ ~ls2 diagðwÞÞ�1XTy : ð11Þ

Our major theoretical result is concerned with shrinkage of coefficients resulting from the AR

procedure. It turns out that the non-zero coefficients of ~b ¼ lim ~bðkÞ obtained via Eq (11) are

smaller in absolute terms than the maximum likelihood estimates b̂M of a modelM containing

exactly the same non-zero coefficients as ~b. Closely related is the fact that AR with parameter
~l ¼ l does not directly correspond to variable selection based on minimizing Cλ,0(β), but that

a smaller value of ~l must be chosen. Theorem 1 gives the precise relationship between AR and
exact model selection based on information criteria for the case of orthogonal regressors. Sub-
sequently in the Results Section we will illustrate the behavior of AR for a variety of more com-
plex models based on comprehensive simulation studies.

Adaptive Ridge for L0 Regularization
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The case of orthogonal regressors is of limited use for most applications, but it allows a
detailed analysis of the shrinkage properties of the AR procedure. Specifically the following

relationship between the penalties λ and ~l must hold to guarantee that AR with penalty ~l gives
the same results as selection based on the penalized likelihood with penalty λ.

Theorem 1. In the context of linear regression under orthogonality performing AR with ~l cor-

responds to minimizing Eq (10) with l ¼ 4~l.
The proof is given in full detail in S1 Proof.

Remark: The result holds under the condition that ~l < n=s2. In practice this seems to be no
huge restriction. To give some examples, the penalties of AIC, BIC and mBIC are λ = 2, λ = log n
and λ = log(np2/42), respectively. As long as y is reasonably scaled the condition λ/4< n/σ2 will
always apply.

Results
In this section we will provide results from simulation studies and from a real data analysis to
illustrate the performance of AR in the context of different models. The simulation scenarios
include linear and generalized linear models as well as the problem of least squares segmenta-
tion. The real data sets stem from a large genome-wide association study [36] concerned with
metabolic traits in a Finnish cohort.

Linear Regression
The initial simulation scenarios will be concerned with different linear regression models,
where we are interested to which extent the results of Theorem 1 still hold for more general
correlation structures between regressors. For the non-orthogonal case a full analysis of the
dynamical system Eq (11) becomes way more complicated, because it cannot be reduced any
longer to independent analysis for the individual coefficients. Instead of attempting to obtain
analytic results we will focus here on illustrating the most important features of AR by present-
ing results from simulations. Before that we only want to mention that as a simple consequence
of Eq (11) it always holds that

k ~bðkÞ k � k ðXTXÞ�1XTy k; ð12Þ

and thus the sequence of ~bðkÞ remains bounded. However, it turns out that the mapping under-

lying the dynamic system ~bðkÞ is usually not a contraction, and therefore theoretical conver-
gence results are rather hard to obtain. In fact changing the initial value of the weights w(0) can

have some effect on the limit of ~bðkÞ, though usually the obtained solutions are not too different
from each other.

Fig 2 provides a typical example that illustrates the behavior of AR for the general linear
case. We simulated one instance according to Eq (9) with p = n = 100, where the correct model

had k� = 24 regressors. The first plot uses our standard initial value wð0Þj ¼ 1 for all compo-

nents, whereas in the second plot the components of the initial value are randomly chosen
between 1/2 and 3/2. The models resulting from the two starting points differ only in one
regressor, where a true positive detected by the second model is substituted in the first model
by a false positive. Otherwise both models contain the same non-zero coefficients, for which

estimates can also slightly differ. For this instance trying further random initial values of wð0Þj 

Uð0:5; 1:5Þ provided a third limiting model which added one false positive to the second
model. Interestingly the model obtained with the second starting point which was doing best in
terms of misclassification had the largest BIC criterion (141.03), while the other two models
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had almost identical BIC criterion (140.06 and 140.07). In general our experience with simula-
tions shows that although the limit of the AR procedure depends on the starting point, the dif-
ferent solutions obtained will have very similar values of the selection criterion that one
attempts to approximate. In fact the instability of solutions does not come as a surprise bearing
in mind that variable selection based on information criteria is well known to suffer from insta-
bilities with respect to small changes within the data [1].

Note that for the two examples shown in Fig 2 any component of the sequence ~bðkÞ which
once has approached zero also remains there. This is actually always the case because for small
~bðkÞj the corresponding weight wj becomes very large, and the matrix XTXþ ~ls2diagðwÞ
becomes essentially orthogonal with respect to the j-th component. The majority of coordi-
nates converging to zero does so within less than 10 iterations, but there are some exceptions
for which convergence to zero takes substantially longer. The instability of the AR model as a
function of the initial values appears to depend mainly on the behavior within the first few iter-
ations, where for the majority of coefficients it becomes clear whether they are selected or not.
In practical applications it is sometimes desired to perform model selection only on a certain
subset of regressors. This can be rather easily achieved within the AR procedure: One can force
some βj to stay in the model by setting its corresponding initial weight wj to 0 and keeping it
then fixed at 0 for all iterations.

We will next consider three different simulation scenarios, where the first two are aiming at
verifying to which extent the result of Theorem 1 can be extended to non-orthogonal regres-
sors. In the third scenario we will then compare the performance of AR with other model selec-
tion approaches.

Simulation Scenario: Correlated regressors. In our first set of simulations we consider
with p = 15 a relatively small number of regressors. This allows for a systematic examination of
the performance of AR compared with all subset selection, which is for p = 15 still conveniently

possible. Thus we can directly evaluate to which extent the relationship l ¼ 4~l of Theorem 1
holds for the non-orthogonal case. We consider correlation structures from compound sym-
metry and auto regressive models letting a parameter ρ vary between 0 and 0.8, where ρ speci-
fies pairwise correlation between neighboring covariates for auto regression (Scenario 2), and
pairwise correlation between all regressors for compound symmetry (Scenario 1). For each sce-
nario we simulate 500 traits for n = 50 individuals based on linear models with 5 regressors
having nonzero coefficients. The effects are all chosen to be βj = 0.5, which equals half of the
predefined standard deviation σ = 1. Regressors entering the model were chosen to be j 2 {1,
. . ., 5} for Scenario 1, and j 2 {2, 5, 8, 11, 14} for the second scenario. Selection based on BIC is

compared with AR using parameter λ = log(n)/4, that is we use the relationship l ¼ 4~l as sug-
gested by Theorem 1.

Fig 2. Convergence of procedure for one simulated instance where the standard initial value (left
panel) is compared with a different choice ofw(0) (right panel).

doi:10.1371/journal.pone.0148620.g002
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Fig 3 illustrates to which extent AR yields the optimal model according to BIC. For small
correlations AR gives in the majority of cases the same model as all subset selection, which
starts to change only for ρ� 0.3. In Scenario 2 AR yields more often the optimal model than in
Scenario 1, when comparing results at the same level of pairwise correlation. Clearly a com-
pound symmetry model provides in general more correlation between regressors than an auto-
regressive model, and we might conclude that AR differs increasingly from all subset selection
the farther away one gets from orthogonality.

Interestingly from a statistical point of view AR seems to perform almost better than all sub-
set selection based on BIC. For the majority of cases AR has less misclassifications than all sub-
set selection (see Table 1). Specifically for Scenario 1 AR tends to have larger power to detect
the correct regressors, while controlling the Type I error at a similar rate like BIC. On the other
hand in Scenario 2 AR tends to give less Type I errors, while having similar power to BIC. In

summary one might conclude that for p< n (at least in these two scenarios) the choice of l ¼
4~l from Theorem 1 worked quite well even in the non-orthogonal case.

Simulation Scenario: High-dimensional setting. A large number of recent statistical
applications are confronted with the challenging task of model selection when p> n. Here we
perform simulations under the assumption that regressors are independent normally distrib-
uted variables. Sample size was fixed with n = 100, while for the growing number of potential
regressors we considered p 2 {100, 250, 500, 1000, 2500, 5000, 10000}. For each setting 1000
models of size k� = 24 were simulated from Eq (9), with normally distributed random effect
sizes βj * N(0, 0.5), j 2 {1, . . ., 24}, and again an error standard deviation of σ = 1. Keeping k�

fixed gives with growing p an increasingly sparse situation. Hence the model selection criterion
mBIC is more appropriate than BIC (see [7]), but here we are mainly interested in studying the
properties of AR and will therefore show results for both criteria.

We want to compare the performance of variable selection using simple stepwise search
strategies for the two information criteria BIC and mBIC with their respective AR procedures.
Our stepwise procedure is fairly simple. It starts with a model including the best 40 regressors
according to marginal test statistics. Then greedy backward elimination is performed all the
way down to a model of size one. That model along the way which minimizes the criterion in
question is then considered as the starting point for some final greedy forward selection which
is performed till no more improvement of the criterion is obtained. For the AR procedure we

use again the relationship l ¼ 4~l from Theorem 1. Before applying AR the top 100 regressors
were preselected based on marginal tests, which noticeably improved the performance of AR.

We start with discussing Fig 4, which compares classification characteristics of the four pro-
cedures. Only for n = p = 100 BIC and mBIC are comparable in terms of misclassification.

Fig 3. Difference of BIC betweenmodel obtained with AR and best model. The numbers below the
boxplots give the relative frequency of simulation runs in which AR gave the optimal solution. In the left panel
we used a correlation structure of compound symmetry, and we used an auto regression model in the right
panel.

doi:10.1371/journal.pone.0148620.g003
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With growing p BIC produces exceedingly more false positives than mBIC, which cannot be
compensated by the relatively mild gain in power. Both for BIC and mBIC the AR procedure is
more conservative than the corresponding stepwise selection procedure, which means that it is
less powerful, but produces also less false positives. Interestingly for both criteria AR produces
less misclassifications than stepwise selection.

Looking again at the differences of criteria for models obtained with stepwise selection and
with AR, one can see in Fig 5 that for p getting larger AR tends to give models with larger values
of the criterion than stepwise selection. However, even for the largest p there are at least some
instances where AR gives better models according to each criterion than stepwise selection. For
p = n = 100 AR and stepwise selection perform more or less identical, where the median of dif-
ferences is almost exactly at 0. In case of BIC the median of differences increases with p till
p = 1000 and then remains constant, whereas for mBIC the median of differences continues to
grow also for larger values of p. It is interesting to observe that although for p> n AR does usu-
ally not manage to find those models that minimize the information criterion, it outperforms
the corresponding stepwise selection procedure with respect to misclassification.

The fact that the AR procedure is for p> nmore conservative than stepwise selection gives

rise to the question whether the relationship l ¼ 4~l from Theorem 1 is still correct, or whether
one would rather have to use in that situation more relaxed penalties to compensate for shrink-
age. Our simulation results did not provide a definite answer to this question, but we will see

next that it is easy to obtain solutions of AR for a whole range of ~l values, among which one
can then choose the model which minimizes the original L0 penalty with parameter λ.

Table 1. First Simulation on linear regression. Comparison of the performance of all subset selection (BIC) with AR in terms of power, number of false pos-
itives (FP), false discovery rate (FDR) and number of misclassifications (Mis). For Scenario 1 the correlation (Corr) refers to pairwise correlation between all
regressors, for Scenario 2 only for neighboring regressors.

Power FP FDR Mis

Corr BIC AR BIC AR BIC AR BIC AR

Scenario 1:

0.0 0.85 0.83 0.54 0.52 0.11 0.10 1.30 1.39

0.1 0.81 0.84 0.61 0.62 0.11 0.11 1.54 1.42

0.2 0.82 0.86 0.56 0.51 0.10 0.09 1.47 1.23

0.3 0.79 0.83 0.65 0.66 0.13 0.12 1.71 1.50

0.4 0.75 0.80 0.61 0.62 0.12 0.12 1.86 1.60

0.5 0.68 0.74 0.79 0.73 0.17 0.15 2.38 2.02

0.6 0.66 0.72 0.61 0.65 0.14 0.14 2.30 2.04

0.7 0.56 0.62 0.71 0.76 0.19 0.18 2.90 2.68

0.8 0.49 0.54 0.84 0.87 0.25 0.24 3.41 3.19

Scenario 2:

0.0 0.85 0.83 0.54 0.47 0.10 0.10 1.29 1.35

0.1 0.86 0.88 0.55 0.53 0.10 0.09 1.24 1.11

0.2 0.81 0.80 0.62 0.54 0.13 0.11 1.58 1.52

0.3 0.67 0.62 0.70 0.65 0.19 0.18 2.37 2.56

0.4 0.88 0.88 0.74 0.72 0.13 0.13 1.36 1.32

0.5 0.81 0.83 0.84 0.79 0.17 0.15 1.81 1.62

0.6 0.80 0.80 0.91 0.93 0.18 0.18 1.93 1.94

0.7 0.72 0.75 1.00 0.89 0.21 0.18 2.41 2.13

0.8 0.61 0.65 1.30 1.24 0.30 0.28 3.27 3.00

doi:10.1371/journal.pone.0148620.t001
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Comparison of AR with SCAD and adaptive LASSO. In the third set of simulations for
linear regression we want to compare the performance of AR not only with stepwise regression,
but also with two other state of the art selection methods, namely SCAD which is performed by
using the ncvreg R-package [37], and adaptive LASSO by using the lqa R-package [38]. In case
of adaptive LASSO we would ideally like to compare AR with a multi step version which is iter-
ated till convergence is achieved, but up to our knowledge there is no software available which
performs this task. As a compromise we perform five steps of adaptive LASSO using the lqa
package and call this procedure ALASSO.

Like in case of LASSO it is also possible for AR to take advantage of a warm start of the algo-
rithm to obtain the full regularization path of the problem (see Fig 6). For that purpose, we
start with a near null penalty λ, and then increase the value of the penalty using for each new

Fig 4. Comparison of model selection performance based on some stepwise selection procedure for
BIC andmBIC with the corresponding AR procedures. The four panels show the average over 1000
simulation runs of power, number of false positives, number of misclassifications and false discovery rate as
a function of the total number of potential regressors p. Data were simulated under a model with k = 24
regressors.

doi:10.1371/journal.pone.0148620.g004

Fig 5. Boxplots of differences between values of selection criteria for models obtained with stepwise
search strategy and with AR. The first panel shows results for BIC, the second panel for mBIC. Results are
based on the same data as Fig 4.

doi:10.1371/journal.pone.0148620.g005

Adaptive Ridge for L0 Regularization

PLOS ONE | DOI:10.1371/journal.pone.0148620 February 5, 2016 11 / 23



penalty the previously computed weight vector w and parameter β as starting points. Obtaining
the full regularization path will be of particular importance in the next section on GLM where

we do not have any theoretical results like Theorem 1 telling us which ~l of AR corresponds to
the λ of a given selection criterion. However, even for linear regression it is not guaranteed for
the non-orthogonal case that a scaling factor 4 (like in Theorem 1) will always gives the best
model. For AR, SCAD and ALASSO we will therefore compute the selection criterion for all
models along the regularization path and then choose that model along the path which mini-
mizes the criterion.

We consider two simulation scenarios, the first one with p = 50, the second one with p = 500
potential regressors. In both scenarios we have a sample size of n = 300. Data were simulated
from standard linear regression models of size k = 10 and k = 25, respectively. The covariates
Xi,j and the non-zero coefficients βj were independently drawn from normal random variables

according to Xi;j 
 N ð0; 0:12Þ and bj 
 N ð0; 1:52Þ. For the first scenario model selection was

performed using BIC, whereas for the second high-dimensional scenario we applied both BIC
and mBIC. For the second scenario we also performed a pre-selection step and considered only
the 75 regressors with smallest p-values from marginal tests before applying any of the four
selection procedures.

Table 2 as well as Figs 7 and 8 summarize the results from this simulation study. First note
that AR was always only a little bit slower than SCAD, but much faster than stepwise selection
or ALASSO. In the majority of cases stepwise selection gave the model with the lowest crite-
rion, though there were a number of instances where AR gave models with smaller criterion
than SW, specifically in the high-dimensional scenario when selecting with BIC. For the first
scenario with p = 50 differences of BIC obtained with the four methods were relatively small
(see Fig 7), whereas for p = 500 ALASSO and especially SCAD tended to yield models with sub-
stantially larger BIC value than AR and stepwise selection (see Fig 8). Consequently SCAD and
ALASSO have rather large values of the ‘mean squared error’mse, which is defined as the aver-
age squared difference between the criterion obtained with a specific method and the best crite-
rion. AR performs very well in terms of mse which means that even when it does not give the
model with the minimal criterion it still gives a model which is very close to the best.

Fig 6. Example of a full regularization path for L0 adaptive ridge linear regression with n = 300, p = 50,
and β* = 0 except for the first k = 10 coordinates. The covariates Xi,j and non-zero coefficients βj are
independently drawn from normal random variables according to Xi;j 
 N ð0; 0:12Þ and bj 
 N ð0; 1:52Þ.
doi:10.1371/journal.pone.0148620.g006
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Table 2. Third simulation on linear regression. Comparison of AR with Stepwise (SW), SCAD and multi-step adaptive LASSO (ALASSO) in case of linear
regression for two scenarios (p = 50 and p = 500). For the first scenario we consider only BIC, for the second high-dimensional scenario both BIC and mBIC.
To assess the quality of classification we report the average over 200 simulation runs of the following quantities: Power, number of false positives (FP), false
discovery rate (FDR) and number of misclassifications (Mis). The next two statistics quantify for each procedure the performance in terms of minimizing the
criterion: the mean over the squared differences with the criterion of the best method (mse) and the percentage of simulation runs in which a procedure gave
the model with the smallest criterion (best). Finally we report the average computational time for one replication (time). For each quantity the best method is
printed in bold.

Power FP FDR Mis mse best time (sec)

p = 50, Criterion: BIC

SW 0.405 0.76 0.13 6.70 0.02 0.97 1568

SCAD 0.401 0.69 0.12 6.68 0.57 0.60 79

AR 0.403 0.74 0.13 6.71 0.01 0.90 89

ALASSO 0.396 0.67 0.12 6.71 0.20 0.69 1471

p = 500, Criterion: BIC

SW 0.350 12.30 0.58 28.53 3.48 0.62 4429

SCAD 0.334 7.36 0.44 24.02 182.60 0.00 120

AR 0.347 10.40 0.54 26.75 0.90 0.48 181

ALASSO 0.352 9.58 0.50 25.78 26.90 0.01 2530

p = 500, Criterion: mBIC

SW 0.127 0.10 0.04 21.94 0.06 0.96 4909

SCAD 0.119 0.09 0.03 22.12 1.29 0.72 123

AR 0.125 0.10 0.04 21.97 0.09 0.86 184

ALASSO 0.125 0.12 0.03 22.00 0.76 0.70 2538

doi:10.1371/journal.pone.0148620.t002

Fig 7. Comparison of BIC criteria of four different methods for the linear regression scenario with
n = 300, p = 50, and k = 10 where n is the sample size, p the total number of regressors and k the size
of the data generatingmodel. The four panels show results for stepwise search, AR procedure, SCAD and
multi-step adaptive LASSO, respectively, where criteria are compared with the best BIC criterion obtained by
any of the four methods.

doi:10.1371/journal.pone.0148620.g007
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In terms of classification the four methods perform fairly similar, where in particular AR
gives results which are extremely close to stepwise selection. The biggest differences can be
observed for the high-dimensional scenario with p = 500, where as expected BIC tends to select
too large models. Interestingly SCAD provides here the smallest number of false positives
resulting in the lowest average number of misclassifications. However, this simply means that
BIC is not the ideal selection criterion in a sparse high-dimensional setting, and SCAD benefits
from not having models along its search path which minimize BIC. Performing selection with
mBIC yields a much better control of Type I error rate and here the four methods behave
rather similarly in terms of classification.

In summary one might say that for linear regression AR gives results which are similar to
stepwise selection, but the procedure is much faster with a runtime which is fairly close to that
of SCAD.

Generalized linear model
In this section we discuss Poisson regression as a particular case of a generalized linear model
to illustrate the usefulness of the adaptive ridge procedure beyond linear regression. There is
nothing particularly special about Poisson regression, other examples like logistic regression or
multinomial regression can be approached quite similarly. As the weighted ridge problem asso-
ciated with this type of model has no closed-form solution one needs some iterative numerical
algorithm for optimization, like gradient descent, Newton-Raphson or Marquardt, but other-
wise the AR procedure defined by Eqs (4) and (8) can be directly applied.

Fig 8. Comparison of BIC criteria of four different methods for the linear regression scenario with
n = 300, p = 500, and k = 25 where n is the sample size, p the total number of regressors and k the size
of the data generatingmodel. The four panels show results for stepwise search, AR procedure, SCAD and
multi-step adaptive LASSO, respectively, where criteria are compared with the best BIC criterion obtained by
any of the four methods.

doi:10.1371/journal.pone.0148620.g008

Adaptive Ridge for L0 Regularization

PLOS ONE | DOI:10.1371/journal.pone.0148620 February 5, 2016 14 / 23



The classical Poisson regression problem is of the form yi 
 PðmiðbÞÞ where μi(β) = exp(Xi

β) with y; m 2 R
n, X 2 R

n	p, and b 2 R
p. In order to maximize the L0 penalized log-likelihood

of the problem, we introduce for any penalty λ� 0 and weight vector w 2 R
p the following

weighted ridge penalized log-likelihood:

‘ðb; l;wÞ ¼ const:þ bTXTy� uTmðbÞ � 1

2
lbTdiagðwÞb ; ð13Þ

where u 2 R
n is an all-one column-vector. For given λ� 0 we want to maximize this quantity

using the Newton-Raphson algorithm. Simple computations give the first two derivatives of
ℓ(β; λ, w),

r‘ðb; l;wÞ ¼ XTðy� mðbÞÞ � ldiagðwÞb; ð14Þ

Hess ‘ðb; l;wÞ ¼ �XTdiagðmðbÞÞX� ldiagðwÞ: ð15Þ

Maximizing Eq (13) can therefore be done iteratively using the following update for β:

b b�Hess ‘ðb; l;wÞ�1r‘ðb; l;wÞ: ð16Þ

Accordingly a solver for the weighted Poisson regression model can be implemented in R as
follows:

for (iter in 1:itermax) {
mu = exp(X\%�\%beta)[,1]
grad = crossprod(X,y-mu)-pen�w�beta
hess=-crossprod(X,mu�X)-pen�diag(w)
beta = beta-solve(hess,grad)

}
We want to point out that the resulting code for adaptive ridge is compact and extremely

easy to understand and to implement. This is in stark contrast to the available LASSO imple-
mentation of the same problem [39] which uses a rather delicate coordinate descent algorithm.
We believe that this is one of the greatest advantages of the AR procedure that for many differ-
ent applications it provides a very easy way to perform model selection based on a non-convex
penalization scheme.

To evaluate the performance of the AR procedure for Poisson regression we consider again
two simulation scenarios with p = 50 and p = 500, where now count data are simulated from
Poisson regression models of size k = 10 and k = 25, respectively. All other aspects of this simu-
lation study are identical with the last simulation study on linear regression, where we compare
again AR with stepwise regression, SCAD and ALASSO. The results are summarized in
Table 3, which are qualitatively quite similar to the corresponding results from linear regres-
sion. In terms of classification there is no huge difference in performance between the four
methods except for selection with BIC in the second scenario. Once again SCAD and ALASSO
have on average a smaller number of misclassifications than stepwise search and AR, which
reflects the fact that in a sparse high-dimensional setting it is not ideal to perform selection
with BIC. Like in case of linear regression stepwise selection tends to perform best with respect
to minimizing the selection criterion, closely followed by AR, whereas ALASSO and specifically
SCAD tend to give models with substantially larger criteria.

The biggest difference to the results from linear regression is concerned with runtime,
where AR has now lost its big advantage compared with stepwise regression and ALASSO. On
the contrary, AR now actually tends to be slower than ALASSO. However, this comparison is
not entirely fair because ALASSO uses the lqa R-package which is based on a highly efficient
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implementation in C, whereas AR uses only the extremely simple R code sketched above to
solve the weighted Poisson regression problem. It is evident that an efficient C implementation
of this solver could speed up the procedure substantially, but this is not the main focus of this
article. On the contrary, our emphasis is that even such a simple implementation using only a
few lines of R-code remains competitive and provides very good results in terms of classifica-
tion. The biggest advantage is that AR can be easily adapted to more complicated models as we
will see in the next section.

Least squares segmentation
The AR procedure can be applied in contexts which go beyond regression models, like for
example for least squares segmentation of a one-dimensional signal which was recently applied
in the context of analyzing pathological patterns of DNA in tumor tissues [29]. We want to
improve on the original publication by deriving explicit recursive formulas for solving the
weighted ridge problem rather than relying on (sparse) LU decompositions. As a result, our
approach is much faster than the original one.

Let y 2 R
n denote nmeasurements which are spatially (or temporally) ordered. Then the

problem of segmentation can be formalized by introducing L0 penalties for changing the esti-
mated mean between neighboring measurements,

m̂ ¼ argmin
m2Rn

Xn
i¼1
ðyi � miÞ2 þ l

Xn�1
i¼1

1ðmi 6¼ miþ1Þ
( )

; ð17Þ

where 1ð�Þ 2 f0; 1g is the indicator function. According to Remark 1 this fits into our context

Table 3. Simulation on Poisson regression. Comparison of AR with Stepwise (SW), SCAD and multi-step adaptive LASSO (ALASSO) in case of Poisson
regression for two scenarios (p = 50 and p = 500). For the first scenario we consider only BIC, for the second high-dimensional scenario both BIC and mBIC.
To assess the quality of classification we report the average over 200 simulation runs of the following quantities: Power, number of false positives (FP), false
discovery rate (FDR) and number of misclassifications (Mis). The next two statistics quantify for each procedure the performance in terms of minimizing the
criterion: the mean over the squared differences with the criterion of the best method (mse) and the percentage of simulation runs in which a procedure gave
the model with the smallest criterion (best). Finally we report the average computational time for one replication (time). For each quantity the best method is
printed in bold.

Power FP FDR Mis mse best time (sec)

p = 50, Criterion: BIC

SW 0.431 0.82 0.15 6.51 0.02 0.95 3367

SCAD 0.420 0.73 0.14 6.54 0.98 0.57 135

AR 0.423 0.79 0.14 6.56 0.03 0.83 2098

ALASSO 0.428 0.77 0.14 6.48 0.22 0.68 1523

p = 500, Criterion: BIC

SW 0.337 6.84 0.44 23.42 1.82 0.68 10184

SCAD 0.328 5.08 0.37 21.87 190.00 0.00 213

AR 0.341 6.02 0.41 22.51 1.54 0.42 7931

ALASSO 0.348 5.58 0.38 21.88 18.70 0.06 2659

p = 500, Criterion: mBIC

SW 0.216 0.47 0.07 20.06 0.94 0.89 10587

SCAD 0.193 0.53 0.08 20.71 93.00 0.25 212

AR 0.213 0.39 0.06 20.05 2.54 0.63 7906

ALASSO 0.207 0.43 0.07 20.24 7.41 0.40 2668

doi:10.1371/journal.pone.0148620.t003
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as a slightly generalized version of the penalized contrast Eq (1), and like in [29] we introduce
the following weighted ridge square loss as a generalization of Eq (3):

SLðm; l;wÞ ¼
Xn
i¼1
ðyi � miÞ2 þ l

Xn�1
i¼1

wiðmiþ1 � miÞ2 : ð18Þ

For the corresponding AR procedure we again start with the initial weights w(0)’ 1 and for
k� 1 perform the iterations

mðkÞ ¼ argmin
m2Rn

SLðm; l;wðk�1ÞÞ ; wðkÞi ¼ ðd2 þ ðmðkÞiþ1 � mðkÞi Þ2Þ�1 : ð19Þ

The computations of Eq (19) can be easily solved analytically by considering the derivatives of
SL(μ; λ, w). Minimization of the loss function then corresponds to solving the following set of
linear equations:

ðy1 � m1Þ þ lw1ðm2 � m1Þ ¼ 0

ðy2 � m2Þ þ lw2ðm3 � m2Þ � lw1ðm2 � m1Þ ¼ 0

..

.

ðyn � mnÞ � lwn�1ðmn � mn�1Þ ¼ 0

ð20Þ

8>>>>>>>><
>>>>>>>>:

In [29] it was suggested to solve this problem using an efficient sparse LU decomposition. Here
we provide a dramatically faster alternative which allows to recursively compute the solution.
For i = 1, . . ., n − 1, let us write μi = ai + bi μi+1 where ai; bi 2 R. From the linear equations
above we obtain

a1 ¼ y1
1þ lw1

b1 ¼
lw1

1þ lw1

i ¼ 1;

ai ¼
yi þ lwi�1ai�1

Di

bi ¼
lwi

Di

1 < i < n ;

ð21Þ

with Di = 1 + λwi + λwi−1(1 − bi−1), and finally

mn ¼ yn þ lwn�1an�1
1þ lwn�1ð1� bn�1Þ

i ¼ n ;

mi ¼ ai þ bimiþ1 i < n :

ð22Þ

Using these recursive formulas one can hence perform one update step of Eq (19) inOðnÞ.
Alternatively, one can use dynamic programming to find the best solution of Eq (17) with at
most kmax� 1 segments inOðkmax 	 n2Þ. Such a strategy is for example explained in [40] and
implemented in the Segmentor3IsBack R package [41].

In order to validate the adaptive ridge approach in the context of least squares segmentation
we will compare its performance with the exact approach in a small simulation study. We con-
sider a simple Gaussian design with n = 500 consecutive measurements and three breakpoints
at positions 100, 250 and 375. Based on a Gaussian model 200 data sets were generated with
mean values −0.3, 0.7, 1.5, 0.5 in the four different segments, and a common standard deviation

of σ2 = 1.0. After performing some calibration of the parameter ~l using the previously dis-

cussed warm start method of AR (Fig 9a) we decided upon using the AR penalty ~l ¼ l=6,
where λ = 2log(n) is the penalty of the original criterion. This rescaling factor appeared to be
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quite stable for various scenarios, though perhaps increasing slightly with growing n (data not
shown).

We can see in Fig 9b a comparison of the SE penalized criterion obtained both by exact
computations and the AR method. AR clearly gives good results, although sometimes subopti-
mal. In Fig 9c and 9d we give two examples of such suboptimal situations: in Fig 9c, AR has
two misplaced breakpoints and the selection of an additional one. In Fig 9d AR missed one
very small segment that was considered relevant by the exact approach. Thus although AR did
not find the optimal model in terms of the criterion, its solution is in fact closer to the underly-
ing true model. Given the general good performance of AR one might conclude that due to its
efficiency it might be preferable to looking for the exact solution particularly for large scale
problems.

Real Data Analysis
To illustrate the applicability of AR in practice we want to reanalyze a GWAS on metabolic
traits from a Finnish cohort [36]. Our analysis is based on the data provided by dbGaP (see
Acknowledgements) which does not coincide entirely with the data used for the original publi-
cation. On the one hand dbGaP provides data for a slightly larger number of patients (e.g.
n = 4843 for LDL) compared with the data set used in [36] (n� 4518 for LDL). On the other
hand the covariates of smoking status and alcohol intake, which play a crucial role for some of
the metabolic traits, are not provided by dbGaP. One thus has to be a little bit careful when
comparing our results with those of [36], although in general there is quite good agreement.

In the original analysis LDL was the trait for which the greatest number of associated SNPs
was reported. Consequently this is the trait which is most interesting for us, because the more
complex a trait the more gain can be expected from applying a model selection approach [9,

Fig 9. Comparison of exact segmentation (λ = 2 log n) and adaptive ridge segmentation (
~
λ ¼ λ=scale).

Panel (a) shows the calibration of the rescaling parameter which leads to scale = 6. Panel (b) compares the
exact penalized SE to the one obtained through AR with λ = 2log(n)/6. Panels (c) and (d) illustrate the
segmentation output for two specific instances where one observes some disagreement between exact (red
solid line) and AR segmentation (blue dashed line).

doi:10.1371/journal.pone.0148620.g009
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42]. Furthermore according to [36] the influence of smoking and alcohol intake on LDL was
not too large, so it is not a huge problem that we are lacking that information. For these reasons
we will focus in our presentation on the trait LDL.

Sabatti et al. [36] performed data analysis by applying main effect models for each marker
separately while correcting for sex, pregnancy status, oral contraceptive use and BMI. The
problem of potential population stratification was addressed by using a genomic-control
parameter. We are using in our analysis linear regression models with the same four patient
related covariates (sex, pregnancy status, oral contraceptive use and BMI) and add the first
four principal components of the genotype matrix to correct for population stratification. The
resulting 8 covariates will be not under selection in our AR approach. Sabatti et al. applied sin-
gle marker tests for each SNP using only data from those individuals where genotyping was
successful. Therefore the number of individuals used for analysis is for some SNPs much
smaller than n = 4518 (with a minimum of n = 4268 for the reported associations). For the AR
approach one needs complete genotype data for all SNPs. To achieve this we performed impu-
tation of missing values using Beagle 4.1 [43].

Concerning multiple testing correction Sabatti et al. applied the Benjamini Hochberg proce-
dure at a nominal level of 0.05 and then argued that equivalently they might use a significance
threshold of 5 × 10−7 which corresponds approximately to a Bonferroni correction at nominal
level 0.16. The mBIC criterion we are going to adopt is of the form

mBICðcÞ ¼ �2logLðMÞ þ jMjlogðnp2c�2Þ

where c can be interpreted from a Bayesian point of view as the a priori expected number of
causal SNPs. From a frequentist perspective the mBIC criterion is closely connected with the
Bonferroni multiple testing rule, where in [7] one can find an approximate formula of the fam-
ily wise error rate (FWER) to be expected when applying mBIC(c) form independent regres-
sors and n individuals. In our case the typically recommended choice of c = 4 yields
FWER = 0.008, which appears to be extremely conservative compared with the multiple testing
correction used by Sabatti et al. Using mBIC with c = 10 gives a FWER of 0.02 which is still
rather conservative, whereas c = 23 yields FWER = 0.05.

Table 4 reports all SNPs detected by AR when trying to minimize mBIC(10). Before apply-
ing AR we preselected SNPs with marginal p-value smaller than 0.001 and we did not include

SNPs from the X chromosome. Given the uncertainty of the relationship l ¼ 4~l from

Table 4. Real Data Analysis.Results from GWAS analysis for the trait LDL. The first three columns provide the identifier, chromosome and position of each
SNP detected by AR with a penalty mBIC(10). Here 10 is the a priori expected number of causal SNPs whereas the standard mBIC uses c = 4. The last three
columns show the p-values of marginal tests including covariates as specified in the text, the two SNPs selected by standard mBIC and finally information
about the SNPs reported by Sabatti et al. [36]. The symbol • refers to exactly the same SNP, *marks two SNPs which are in close proximity to rs693 reported
in [36], and # is one representative of a region on chromosome 11 for which [36] reports 5 significant SNPs.

SNP Chr Position p-value mBIC(4) Sabatti

rs207150 1 55579053 5.6E-07

rs646776 1 109620053 1.1E-14 • •

rs4844614 1 205941798 1.0E-07 •

rs6728178 2 21047434 2.9E-09 *

rs1713222 2 21124828 5.7E-07 *

rs174556 11 61337211 3.4E-07 • #

rs11668477 19 11056030 3.7E-08 • •

rs157580 19 50087106 2.1E-07 •

doi:10.1371/journal.pone.0148620.t004
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Theorem 1 in case of correlated regressors we performed AR with a number of scaling parame-
ters ranging from 2 to 6. Among all different models thus obtained we report the one which
minimizes mBIC(10). From the 8 SNPs we have detected with this procedure 5 coincide with
SNPs reported in [36] and 2 are in very close proximity to the SNP rs693 also reported in [36].
Thus our detections cover all autosomal SNPs from Sabatti et al. and include one additional
SNP rs207150 lying on chromosome 1. Note that this SNP has a marginal p-value of 5.6E-07
and would therefore not have been selected applying the threshold 5 × 10−7 suggested by
Sabatti et al. This goes along with the fact that model based analysis will typically have larger
power to detect SNPs than single marker tests, even when the selection criterion guarantees
that the type I error rate is controlled at a stricter level (see [9] for a comprehensive discussion
of this topic). Applying AR to minimize mBIC(23) gave the same result as mBIC(10), whereas
the extremely conservative choice of mBIC(4) resulted only in the selection of 2 SNPs (see
Table 4).

Discussion
In this paper we have introduced the adaptive ridge procedure AR, an iterative procedure
whose purpose is to solve L0 penalized problems via weighted ridge optimization. The
approach, recently suggested by [29] in the particular context of least squares segmentation, is
very similar to the iterative adaptive LASSO procedure introduced in [23, 24], with the notice-
able difference that AR requires at each iteration to solve a weighted ridge problem instead of
the weighted LASSO. As a result, the practical implementation of the adaptive ridge is often
dramatically simpler than its adaptive LASSO counterparts.

The possibility of a multi-step adaptive LASSO which has been widely discussed at a con-
ceptual level [17, 23, 24]. However, up to our knowledge there does not exist any software pack-
age which has implemented multi-step adaptive LASSO in the sense that steps are repeated till
convergence of weights has been achieved. In our own attempts to implement multi-step adap-
tive LASSO based on existing software for adaptive LASSO we observed a number of problems
(like programs crashing or numerical instabilities), so developing ALASSO for different appli-
cations appears to be not a completely trivial task. On the other hand adaptive ridge turned out
to be running stable for all models we looked at. In principle adaptive ridge should also be com-
putationally faster than the ALASSO, but we only see this in our simulations on linear regres-
sion. For Poisson regression we do not have an optimized implementation of the weighted
regression problem to be solved in each step of the iteration which explains why we AR is here
somewhat slower than the five-step adaptive LASSO procedure based on the lqa R-package.

It was pointed out in [29] that the adaptive ridge approach clearly performs very well in
practice, though any theoretical justifications of that behavior was missing. In this paper we
partially addressed this problem by studying the dynamics of AR in the particular case of
orthogonal linear regression (with known variance). In this context we derived explicit condi-
tions for the convergence of AR and proved that the adaptive ridge penalty needs to be four
times smaller than the original L0 penalty to give the same results. According to our simula-
tions this scaling factor of 1/4 worked quite well also in case of non-orthogonal linear regres-
sion, as long as the correlation between covariates was not too high. In case of highly correlated
regressors, as well as for p� n, further investigation might be necessary, but in general such
rescaling offers a natural way to select adaptive ridge penalties by targeting classical L0 penalty
schemes like AIC and BIC, or in a high-dimensional setting the more recently suggested mBIC.

In principle adaptive ridge should be also computationally faster than the multi-step adap-
tive LASSO, although we do not quite see this advantage in our presentation because on the
one hand we do not have an optimized implementation Furthermore the AR procedure, just
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like the LASSO, allows to take advantage of warm starts to compute efficiently the entire solu-
tion surface for a sequence of penalties. This gives the possibility to select the most appropriate
penalty of AR without any need to know the rescaling scheme. Note that for the adaptive ridge
we have to consider increasing penalty values, whereas for the LASSO one usually considers
decreasing penalty values.

In summary the AR procedure suggested in this paper is quite straightforward to under-
stand and implement, can be easily combined with iterative optimization procedures like New-
ton-Raphson, and offers efficient ways to compute entire solution surfaces. We hope that this
paper could be a first step to learn more about the theoretical properties of this method, which
definitely seems to be worth of further investigation.

Supporting Information
S1 Proof. Proof of Theorem 1.
(PDF)
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