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Abstract

Purpose

The circadian clock is entrained to light by the intrinsically photosensitive retinal ganglion

cells. Loss of these cells in glaucoma, an eye disease with loss of retinal ganglion cells as its

key feature, might thus result in a change in chronotype. We aimed to compare the chrono-

type between glaucoma patients and healthy subjects.

Methods

We sent the Munich ChronoType Questionnaire to 221 glaucoma patients (response rate

81%); controls (primary control group) were primarily their spouses. After exclusion of shift

workers and participants who woke-up due to an alarm clock on days off, 159 glaucoma

patients (88 early, 21 moderate, 23 severe) and 163 controls remained. We calculated

chronotype as the mid-sleep on days off, corrected for workweek accumulated sleep debt

(MSFsc). We compared means and variances between groups using Welch’s tests and F-

tests, respectively. A secondary control group was recruited from participants in a citizen-

science project (n = 17073) who completed an online questionnaire. A resampling method

was applied to enable an age- and gender- matched comparison with the glaucoma

patients.

Results

Compared to the primary control group, glaucoma did not affect the mean MSFsc (controls

3:47; early, moderate, and severe glaucoma 3:40, 3:45, and 3:33, respectively [P = 0.62]).

Chronotype variability seemed to increase with increasing disease severity (severe glau-

coma versus controls: P = 0.023). The mean MSFsc of the secondary control group was

3:50 (95% confidence interval 3:48 to 3:52); significantly later than that of the glaucoma

patients (3:40; P = 0.024). Mean MSFsc did not differ significantly between the control

groups (P = 0.42).
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Conclusions

No clear changes were found in the chronotype as determined by sleep phase in patients

with glaucoma, especially not in early and moderate glaucoma. In severe glaucoma, chrono-

type variability seems to increase, possibly alongside a small advancement.

Introduction

Glaucoma is a chronic and progressive eye disease characterized by loss of retinal ganglion

cells (RGCs) and subsequent visual field loss. Among the different types of RGCs, the

intrinsically photosensitive retinal ganglion cells (ipRGCs) express melanopsin and are held

responsible for nonvisual responses to light, such as the pupillary light reflex [1–3] and the

entrainment of the circadian clock to light [4–8]. Output of the ipRGCs is transmitted to the

suprachiasmatic nucleus, the circadian clock that drives rhythms with a period of approxi-

mately 24 hours in physiology, sleep-wake behaviour, and cognitive performance [9–11]. In

absence of light cues, the circadian system will lose its synchronisation to the Earth’s 24-hour

light/dark cycle, the Zeitgeber [12,13], and this leads to a mismatch between endogenous

rhythms and the sleep-wake cycle. Hence, loss of ipRGC function in glaucoma might result in

circadian misalignment and thus disturb the sleep quality and pattern of glaucoma patients

[14]. Interestingly, the light-induced melatonin suppression, as one of the nonvisual responses

to light, was found to be affected in patients with advanced glaucoma [15–17], and glaucoma

patients often do report a lower sleep quality [18–21]. It is controversial, however, if the latter

is related to RGC damage or to psychological factors [22].

Human circadian phase can be described by means of the chronotype of an individual. The

chronotype of an individual can be defined as the midpoint between sleep onset and wake-up

time on days off [23] corrected for sleep on working days (Mid-Sleep on Free days, Sleep debt

on work days Corrected; MSFsc) [24]. The chronotype as defined by sleep phase should be con-

sidered as a marker of circadian phase, and it has been shown to correlate well with other cir-

cadian phase parameters such as the start of melatonin production [24–27]. Functional

damage of ipRGCs might lead to misalignment of the circadian clock to light resulting in either

freerunning patterns of sleep and wakefulness, or to modulations of the direct effects of light

on sleep and wakefulness [4,28]. The intrinsic period of the circadian clock in humans differs

between individuals and is on average a little bit longer than 24 hours [13,29–31]. The

entrained phase of the circadian pacemaker is dependent on the intrinsic period showing a

later sleep phase with longer intrinsic period [25,32–35]. Consequently, damage to the ipRGCs

in glaucoma might result in a delay of the mean MSFsc and an increase in sleep phase variabil-

ity. A delay and an increase in variability in activity onsets has indeed been found in animal

studies to glaucoma [36,37]. More variability in waking time was also observed in a diverse

group of young subjects with an optic nerve disease, including some patients with glaucoma

[38]. Intriguingly, studies to the entrained circadian phase of glaucoma patients appear to be

completely lacking.

The aim of this study was to compare chronotype as a measure of circadian phase between

glaucoma patients and healthy subjects. For this purpose, we performed a questionnaire study

with the Munich ChronoType Questionnaire (MCTQ) and determined the chronotype distri-

bution amongst a large group of glaucoma patients and controls.
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Methods

Study population and data acquisition

The MCTQ was sent by mail to 221 glaucoma patients (cases) with open-angle glaucoma

(primary or related to pseudoexfoliation or pigment dispersion). Patients were participants

in the Groningen Longitudinal Glaucoma Study (GLGS). The GLGS is an observational

cohort study conducted in the University Medical Center Groningen [39]. We approached

those participants who were still visiting our clinic, were followed with standard automated

perimetry (SAP; Humphrey field analyzer [HFA] 30–2 SITA; Carl Zeiss Meditec AG, Jena,

Germany), and had a reproducible visual field defect on SAP in at least one eye, defined as a

scotoma according to the LTG-P criterion [40] or a glaucoma hemifield test ‘outside normal

limits’. For descriptive statistics, the patients were stratified into early, moderate, or severe

glaucoma, using the mean deviation (MD) value of the better eye (eye with the higher MD

value) [41–46] corresponding to the most recent visual field test. As cut-off points between

the strata we employed -6 and -12 dB. For the classification, we used the most recent visual

field test result.

Two questionnaires were sent to each patient; they were asked to complete one question-

naire and to give the other to their spouse, neighbor, friend, etc. (no consanguinity), who

served as control [47]. Patients and controls were explicitly asked to fill in the questionnaire

independently. As the number of returned patient questionnaires exceeded the number of

control questionnaires (in 30% only the patient questionnaire was returned), additional con-

trols were recruited from a recent case-control studies conducted in our department [48].

Controls were asked to confirm that they (1) did not have relatives with high eye pressure or

glaucoma and (2) did not receive regular checkups by an ophthalmologist for high eye pressure

or glaucoma. In this way we assured a glaucoma prevalence of<1% amongst the controls [49].

A secondary control group was obtained by taking an age- and gender-matched sample

from 17073 subjects who participated in an internet-based citizen-science project. Details of

the study protocol and the results for the first 5055 subjects have been described before [50].

From these subjects, only their age and gender was known.

The ethics board of the University Medical Center Groningen (UMCG) approved the study

protocol (METc 2014.338). All participants provided written informed consent. The study fol-

lowed the tenets of the Declaration of Helsinki.

Data analysis

Shift workers and participants who woke-up due to an alarm clock on days off were excluded

from the analyses. The study population was described using descriptive statistics. Univariable

comparisons between cases and controls (from the primary control group) were made with a

t-test or Mann-Whitney test, depending on the distribution, for continuous variables; for pro-

portions we used a Chi-square test with Yates correction.

For questions regarding bedtime information on days off (Q1-Q8; see Results section), the

mean and standard deviation (SD) were determined for glaucoma patients and controls (from

the primary control group). Sleep onset was calculated as the sum of the point of time to get

ready to fall asleep, and the length of time needed to actually fall asleep (Q2 and Q3). The sleep

duration was defined as the difference between the calculated sleep onset and the wake-up

time (Q4). The mid-sleep on days off (MSF) was defined as the midpoint between sleep onset

and wake-up time. When the sleep duration during the workweek was shorter compared to

that of days off, we corrected the MSF (MSFsc) for workweek accumulated sleep debt [24]. We

compared means with a Welch’s t-test (unlike the default t-test, this test allows for unequal
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variances) and distributions with an F-test. For MSFsc, we also performed a comparison after

stratification to disease severity (early glaucoma: MD of better eye above -6 dB; moderate glau-

coma: MD between -6 and -12 dB; severe glaucoma: MD below -12 dB) using a Welch F-test

(an alternative to one-way analysis of variance (ANOVA) that does not assume the variances

to be equal) to compare means and F-tests to compare variances. If significant differences

between disease severity strata were found, we also performed a trend analysis. Analyzes were

performed using R (version 3.4.2; R Foundation for Statistical Computing, Vienna, Austria). A

P value of 0.05 or less was considered statistically significant.

From the citizen-science project participants (n = 17073), we selected all participants with

age 42 (age of youngest glaucoma patient) and above (n = 4571; median age 51, range 42–100,

interquartile range [IQR] 46–57)). From this subset, we took an age- and gender-matched

sample (matched to the glaucoma patients) using propensity score matching in R (matchit

with method = "nearest", discard = "both", and ratio = 1). This sampling was repeated 30 times,

yielding a mean MSFsc with corresponding confidence interval (CI).

Results

We retrieved 178 questionnaires from 221 glaucoma patients (response rate 81%) and 182

questionnaires from controls. After exclusion of shift workers and participants who woke-up

due to an alarm clock on days off, 159 glaucoma patients and 163 controls remained. Table 1

shows the characteristics of the study population. The group of glaucoma patients was older

and consisted of fewer females, compared to the controls. Most of the patients had early glau-

coma (63%); about one-third had either moderate (16%) or severe (21%) glaucoma in the bet-

ter eye.

Table 2 presents the results from the MCTQ (A) and the corresponding calculated variables

(B). We used the 24-hour clock notation for questions regarding time (23:30 is half past eleven

p.m.) and duration (0:30 is 30 minutes, i.e., 0.5 hours). The original questions (Table 2A)

revealed no major differences in average sleep timing parameters between the groups; how-

ever, for bedtime (Q1), time to get ready to fall asleep (Q2), sleep latency (Q3), minutes to get

up after waking (Q5), and hours spent outside (Q8), the variability appeared to be larger in the

glaucoma patients than in the controls, although only for Q5 a Bonferroni corrected P value of

0.006 (0.05/8) was reached. Fig 1 presents the distribution of chronotypes (MSFsc). The mean

and distribution of the MSFsc were not significantly different between glaucoma patients and

controls (Table 2B; P = 0.21 for mean and P = 0.15 for variability). Table 3 shows the corre-

sponding results after stratification to disease severity. Because of missing data (reported in the

last column of Table 2), the total number of glaucoma patients and controls in Table 3 differs

Table 1. Characteristics of the study population.

Glaucoma patients (n = 159) Controls (n = 163) P value Missing (%)

Age (year; mean [SD]) 72.2 (10.0) 65.9 (10.5) <0.001 0.0

Gender, female, n (%) 77 (48%) 105 (64%) 0.005 0.0

BMI (kg/m2; mean [SD]) 26.2 (4.7) 26.1 (4.9) 0.81 5.3

Smoker, n (%) 15 (9.4%) 16 (9.8%) 1.0 0.0

Working days per week (days; median [IQR]) 0 (0 to 0) 0 (0 to 3) 0.004 5.3

HFA MD of the better eye (dB; median [IQR]) -4.5 (-10.7 to -1.9) NA NA 0.0

SD = standard deviation; BMI = body mass index; IQR = interquartile range; HFA MD = mean deviation of Humphrey Field Analyzer; NA = not applicable.

https://doi.org/10.1371/journal.pone.0214046.t001
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slightly from the total numbers in Tables 1 and 2. The mean MSFsc did not differ between the

groups (P = 0.62). The variability of MSFsc was significantly larger for the patients with severe

glaucoma compared to the controls (P = 0.023); the variability of MSFsc showed a non-signifi-

cant trend to increase with disease severity (P = 0.057).

Table 2. MCTQ derived bedtime information on days off.

Glaucoma patients (n = 159) Mean (SD) Controls (n = 163) Mean (SD) P value For Mean (SD) Missing (%)

A. Questionnaire results

Q1. I go to bed at . . . o’clock 23:24 (0:55) 23:27 (0:46) 0.56

(0.013)

5.6

Q2. I actually get ready to fall asleep at . . . o’clock 23:42 (0:53) 23:48 (0:45) 0.36

(0.025)

7.5

Q3. I need . . . minutes to fall asleep 0:16 (0:15) 0:16 (0:17) 0.71

(0.036)

9.6

Q4. I wake up at . . . o’clock 7:25 (1:11) 7:37 (1:07) 0.13

(0.23)

7.1

Q5. After . . . minutes I get up 0:29 (0:39) 0:25 (0:27) 0.24

(<0.001)

6.8

Q6. After . . . minutes I feel awake 0:07 (0:13) 0:07 (0:14) 0.81

(0.29)

7.5

Q7. The quality of my nightrest (1–10) 6.7 (1.7) 6.9 (1.6) 0.37

(0.29)

4.3

Q8. Hours spent outside 2:50(2:02) 2:48 (1:41) 0.84

(0.013)

6.8

B. Calculated variables

Sleep onset 23:58 (0:56) 00:04 (0:49) 0.32

(0.046)

11.2

Sleep duration 7:28 (1:12) 7:33 (1:08) 0.58

(0.28)

12.1

MSFsc 3:40 (0:53) 3:47 (0:48) 0.21�

(0.15)

13.7

The 24-hour clock notation is used for questions regarding time (23:30 is half past eleven p.m.) and duration (0:30 is 30 minutes, i.e., 0.5 hours).

� = age- and gender-adjusted P value 0.91.

https://doi.org/10.1371/journal.pone.0214046.t002

Fig 1. Histogram with frequency as a function of chronotype (MSFsc) for patients with glaucoma (A) and controls (B).

https://doi.org/10.1371/journal.pone.0214046.g001
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The mean MSFsc of the secondary control group was 3:50 (95% CI 3:48 to 3:52). Compared

to this control group, the mean MSFsc of the glaucoma patients was significantly earlier (differ-

ence 0:10; P = 0.024). Mean MSFsc did not differ between the control groups (P = 0.42).

Discussion

Glaucoma appears not to have a substantial effect on the mean chronotype (MSFsc). Possibly,

MSFsc is slightly advanced in glaucoma patients and—related to that—has an increased its

variability.

The chronotype as a function of age in healthy subjects has been investigated in a large

open study of around 25,000 subjects from Germany and Switzerland. In agreement with our

study, the MSFsc in subjects older than 50 years of age was between 3 and 4 AM, with a stan-

dard deviation of 1 hour [24]. Although chronotype was not assessed in glaucoma before,

some studies that included glaucoma patients presented data on sleep timing. In agreement

with our findings, they showed a general similarity between glaucoma patients and controls

[18,22,51]. Albeit no differences in sleep timing, a lower sleep efficiency (the amount of actual

sleep during the night) and quality have been reported in glaucoma patients [18–22]. Of note,

the previous studies did not analyze working days and days off separately. Since the sleep pat-

tern on work days significantly differs from the sleep pattern on days off, the comparison to

our study is limited [23].

A limitation of the current study is that the glaucoma patients and controls (from the pri-

mary control group) significantly differed with respect to age and gender. However, the change

of MSFsc with age above 45 years of age is small, and gender differences also appear only signif-

icant below 45 years of age. Therefore, age and gender differences between our groups are pre-

sumably hardly relevant [24]. To confirm this, we adjusted the MSFsc for age and gender and

still did not find a difference between glaucoma patients and controls (P = 0.91; footnote to

Table 2). Essentially one control was recruited per patient, being the spouse or a neighbor or

friend (no consanguinity). An advantage of this approach is that it may control for external

factors that influence sleep behavior. A possible drawback is synchronization of the chrono-

types of people living together. A small to moderate correlation (0.25–0.40) between chrono-

types in husband-wife relationships has been found, which was more the result of assortative

mating than caused by cohabitation during marriage [52,53].To explore potential biases

related to our recruitment method, we recruited a secondary control group from an indepen-

dent source. This control group was age and gender matched to the patients and came from

the same latitude and longitude. No significant differences in MSFsc were found between the

control groups. A strength of this study is that it is the first study that investigated chronotype

as a measure of circadian phase in a large group of glaucoma patients, and compared it to con-

trols. We did not screen for the presence of other eye diseases but rather assumed that they

Table 3. MSFsc mean and standard deviation as a function of disease severity.

n MSFsc mean P value� MSFsc SD P value†

Controls 146 3:47 0.62 0:48

Early glaucoma 88 3:40 0:49 0.40

Moderate glaucoma 21 3:45 0:55 0.20

Severe glaucoma 23 3:33 1:05 0.023

SD = standard deviation;

� = Welch F-test;
† = significance of MSFsc SD compared to the controls.

https://doi.org/10.1371/journal.pone.0214046.t003
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would be equally distributed amongst the groups. In this way we aimed for a realistic sample

of elderly rather than super normals.

Our results appear to be in agreement with studies on the ipRGC-mediated pupil response,

which has repeatedly been found to be similar in early glaucoma compared to controls, while

differences did appear in more advanced disease [54–56]. There are several hypotheses why

there is no clear difference in chronotype distribution between early and moderate glaucoma

patients and controls. First, it is not clear if the ipRGCs disappear in parallel with the image-

forming RGCs, or only in advanced disease [57–60]. Second, a lower number of ipRGCs does

not necessarily mean less effect—the dose-response curve might be highly nonlinear. A mouse

study found that even with the loss of 83% of the ipRGCs, a normal ipRGC-mediated pupil

constriction could still be obtained [4]. Moreover, a hamster study reported that the circadian

system attained saturation at lower irradiance levels than those required to induce pupil con-

striction [61]. Interestingly, our results hint towards an increase in the variability of the MSFsc

in patients with severe glaucoma, and possibly some advancement of the mean MSFsc. If con-

firmed in other studies, this suggests that some patients have a more advanced sleep phase,

with or without a more delayed sleep phase in others. The delay might be explained by the

hypothesized change related to the longer than 24-hour intrinsic period. More advanced sleep

phases may be explained by some people having an intrinsic period that is shorter than 24

hours and who at the same time suffer from a lack of delaying evening light or miss the acute

effects of light keeping them awake [11,62]. An increase in artificial light and the adaptational

properties of the non-image forming system might compensate for a change in the MSFsc

[63,64]. Whatever the mechanisms involved, individual shifts of the MSFsc to either way will

contribute to an increase in variability.

In conclusion, no clear changes were found in the chronotype as determined by sleep phase

in patients with glaucoma, especially not in early and moderate glaucoma. In severe glaucoma,

chronotype variability seems to increase, possibly alongside some advancement. A more severe

loss of ipRGCs in the human retina of glaucoma patients probably results in more difficulties

with stable entrainment either due to a reduction in the phase shifting effects of light on the

clock or to less influence of light on brain areas directly involved in sleep-wake regulation

itself. Future studies might focus on a more in-depth analysis of the circadian clock in severe

glaucoma and related disturbance of their quality of life.
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