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ABSTRACT
The complete mitochondrial genomes of Notomastus sp. (15,776bp) (Annelida: Capitellidae) and
Armandia sp. (18,538bp) (Annelida: Opheliidae) were assembled for the first time. A group II intron
(303 bp) was found in cox1 of Notomastus sp. A phylogenetic analysis revealed that Notomastus sp. and
Armandia sp. were monophyletic, and this clade was clustered with echiurans, although the possibility
of the effect of long-branch attraction should be considered.
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Annelida is an ecologically diverse group with over 20,000
described species (Capa and Hutchings 2021). Sedentaria
includes derivative annelid species that inhabit sediment and
possess a cylindrical body with reduced parapodia. Although
mitogenomes are often used for inferring the phylogenetic
relationships of closely related annelids (Sun et al. 2021), sev-
eral annelid families are yet undetermined. In this study, we
determined the mitogenomes of two families of Sedentaria,
namely Capitellidae and Opheliidae, for the first time, exam-
ined the features of mitogenomes, and reconstructed their
phylogenetic relationships.

The specimens were collected from the intertidal zone in
Wakayama, Japan (33�410N, 135�210E–135�220E) and depos-
ited at the Rishiri Town Museum (voucher numbers:
RTManl68 (Notomastus sp.) and RTManl69 (Armandia sp.);
contact person Shinri Tomioka, rishiritownmuseum@town.
rishiri.hokkaido.jp). DNA extraction and long polymerase
chain reaction (PCR) procedures were performed according
to the methods used by Kobayashi et al. (2021). Primer sets
were designed for each species to amplify nearly complete
mitogenomes of Notomastus sp. and Armandia sp. based on
their partial 16S sequences, which were determined using
16SarL/16SbrH (Palumbi 1996) (Notomastus sp.) or 16Sann-f2/
16Sann-r2 (Kobayashi and Kojima 2021) (Armandia sp.).
Paired-end sequencing (2� 300 bp) of the mitogenome
amplicons was performed using an Illumina Miseq System
(Illumina) at the National Institute for Environmental Studies,
Japan. Mitogenomes were assembled with GetOrganelle
v1.7.1a (Jin et al. 2020) using the 16S sequences of each spe-
cies as seed sequences. Assembled contigs and the 16S gene
sequence were manually concatenated and the complete

mitogenome of Notomastus sp. was obtained. The second
assembly was conducted for Armandia sp. using the nad5
gene sequence, which was detected with the MITOS2 web
server (Donath et al. 2019) from the contig of the first assem-
bly, as a seed sequence, since only a partial mitogenome was
obtained from the first assembly. The partial 16S sequence of
Armandia sp., which was not determined by the above
method, was confirmed by Sanger sequencing using 16Sar/
16Sb-Arm (16Sb-Arm: 5’-CGYCGGTCTRAACTCAGCTC-3’; this
study). Then, the complete mitogenome of Armandia sp. was
obtained by concatenating the 16S sequence and the contigs
obtained in the second assembly. The PCGs and tRNAs were
identified using the MITOS2 web server. The tRNAs were also
detected using ARWEN (Laslett and Canback 2008) imple-
mented in ARAGORN (Laslett and Canback 2004). The clover-
leaf secondary structures of tRNAs were validated using
ARWEN. The annotated mitogenome sequences were depos-
ited in GenBank through DNA Data Bank of Japan with acces-
sion numbers LC661358 (Notomastus sp.) and LC661359
(Armandia sp.).

Maximum likelihood phylogeny was reconstructed using
amino acid sequences of 13 PCGs according to Kobayashi
et al.’s (2021) procedure using the following softwares: IQ-
TREE v1.6.12 (Nguyen et al. 2015) for phylogenetic analysis,
ModelFinder (Kalyaanamoorthy et al. 2017) for selecting the
best-fit substitution models for each of 13 PCGs, SeqKit (Shen
et al. 2016) for translating nucleotide sequences, MAFFT v7
(Katoh and Standley 2013) for sequence alignment, and
FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) for
illustrating the phylogenetic tree. A dataset consisting of 41
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mitogenome sequences of Sedentaria and 2 outgroups
(Siboglinidae) was obtained from GenBank.

The complete mitogenomes of Notomastus sp. and
Armandia sp. consisted of 15,776 bp (AT content ¼ 57.8%)
and 18,538 bp (AT ¼ 60.2%), respectively. Thirteen PCGs and
two rRNAs were annotated for both species. Notomastus sp.
possesses 24 tRNAs and Armandia sp. possesses 23 tRNAs,
including a tRNA corresponding to the stop codon (anti-
codon: TTA). Both the species have tRNAs coded on the
negative strand (trnS2 and trnD in Notomastus sp. and
trnStop in Armandia sp.), which is unusual in Annelida (see
Daffe et al. 2021). An intron (303 bp) was found in cox1 of
Notomastus sp. based on the alignment of the dataset. This
intron was regarded as a group II intron since it included a
sequence (starting with GTGCG and ending with AG) similar
to the motif of group II intron (starting with GUGYG and end-
ing with AY) (Bonen and Vogel 2001). This intron was
inserted in a unique position (1115–1417) and was shorter
than other known annelid group II introns in the cox1 region
(Vall�es et al. 2008; Richter et al. 2015; Bernardino et al. 2017;
Kobayashi et al. 2022). The gene orders of PCGs (Figure 1)
were unique for each species among annelids (see Sun et al.
2021). The resultant tree revealed that Notomastus sp. and
Armandia sp. were monophyletic, and this clade was clus-
tered with the echiuran species of Urechis (Thalassematidae)
(Figure 1). This result was inconsistent with that of previous
studies that have shown a sister relationship between

echiurans and capitellids (e.g. Struck et al. 2007). Although
the close relationship between Notomastus sp. and Armandia
sp. in this study might be affected by long-branch attraction,
TreeShrink v1.3.9 (Mai and Mirarab 2018) did not identify any
abnormally long branches (the option�q was set to ‘0.05
or 0.10’).
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Figure 1. Maximum likelihood phylogeny of a subset of Sedentaria based on the amino acid sequences of 13 mitochondrial genome PCGs (4185 characters). The
best-fit substitution models for each of the PCGs were selected by ModelFinder using the Bayesian Information Criterion as follows: mtARTþ IþG4 (nad1),
mtInvþ FþG4 (atp6), mtInvþ Fþ IþG4 (nad2, nad4, and nad5), mtMetþG4 (nad6), mtMetþ IþG4 (nad3 and nad4l), mtZOAþ R4 (cox1); mtZOAþ R5 (cytb),
mtZOAþ IþG4 (cox2), and mtZOAþG4 (cox3). Asterisks indicate Bootstrap value ¼ 100%. Gene orders of the PCGs and rRNAs of Capitellida and Opheliida are
shown above the tree. The orders of polychaetes and the family of echiurans follow the classification of Struck (2019) and Goto et al. (2020), respectively.
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