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Abstract

Starting in mid-May 2020, many US states began relaxing social distancing measures that were 

put in place to mitigate the spread of COVID-19. To evaluate the impact of relaxation of 

restrictions on COVID-19 dynamics and control, we developed a transmission dynamic model and 

calibrated it to US state-level COVID-19 cases and deaths. We used this model to evaluate the 

impact of social distancing, testing and contact tracing on the COVID-19 epidemic in each state. 

As of July 22, 2020, we found only three states were on track to curtail their epidemic curve. 

Thirty-nine states and the District of Columbia may have to double their testing and/or tracing 

rates and/or rolling back reopening by 25%, while eight states require an even greater measure of 

combined testing, tracing, and distancing. Increased testing and contact tracing capacity is 

paramount for mitigating the recent large-scale increases in U.S. cases and deaths.

Keywords

COVID-19; social distancing; testing; contact tracing; mathematical modeling; Bayesian analysis

Introduction

The novel coronavirus pandemic (COVID-19) emerged in Wuhan, China in December 2019 

and has now reached pandemic status, with spread to more than 210 countries and territories, 

including the United States (US) 1. The US reported its first imported case of COVID-19 on 

January 20, 2020, arriving via an international flight from China 2. Since then, the disease 

has spread rapidly within the US, with every state reporting confirmed cases within three 

weeks of the first reported community transmission. As of August 1st, the US has exceeded 
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4.5 million cases and 150,000 deaths, heterogeneously distributed across all states 1. So far, 

states such as New York, New Jersey, and California have borne the highest burden with 

more than 420,000, 183,000, and 510,000 cases and 32,000, 15,000, and 9,000 deaths, 

respectively, while Alaska and Hawaii have each reported less than 4000 cases and 25 deaths 

each 1.

COVID-19 is caused by a newly described and highly transmissible SARS-like coronavirus 

(SARS-CoV-2). Severe clinical outcomes have been observed in approximately 20% of 

symptomatic cases 3,4. There is no vaccine and no cure or approved pharmaceutical 

intervention for this disease, making the fight against the pandemic reliant on non-

pharmaceutical interventions (NPIs). These NPIs include: case-driven measures, such as 

testing, contact tracing, and isolation 5; personal preventive measures such as hand hygiene, 

cough etiquette, face mask use, eye protection, physical distancing, and surface cleaning, 

which aim to reduce the risk of transmission during contact with potentially-infectious 

individuals 6; and social distancing measures to reduce interpersonal contact in the 

population. In the US, social distancing measures have included policies and guidelines to 

close schools and workplaces, cancel and restrict mass gatherings and group events, restrict 

travel, maintain physical separation from others (e.g. keeping six feet distance), and stay-at-

home orders 7.

NPIs and other responses to COVID-19, especially stay-at-home orders, have varied widely 

across states, leading to spatial and temporal variation in the timing and implementation of 

mitigation strategies. This variation in policies and response efforts may have contributed to 

the observed heterogeneity in COVID-19 morbidity and mortality across states 8. Recent 

studies suggest that statewide social distancing measures have likely contributed to reducing 

the spread COVID-19 epidemic in the US 9,10. Understanding the extent to which NPIs, 

such as social distance, testing, contact tracing, and self-quarantine, influence COVID-19 

transmission in a local context is pivotal for predicting and better managing the future course 

of the epidemic on a state-by-state basis. This in turn will inform how these NPIs should be 

optimized to mitigate the spread and burden of COVID-19 while awaiting development of 

pharmaceutical interventions (e.g. therapeutics and vaccines).

After several weeks of statewide stay-at-home orders, most US states began to ease their 

social distancing requirements in May-June, 2020 11, while attempting to increase their 

testing and contact tracing capacities 12. Mathematical modeling is a unique tool to help 

answer these important and timely questions. Models can contribute valuable insight for 

public health decision-makers by providing an evaluation of the effectiveness of ongoing 

control strategies along with predictions of the potential impact of alternative policy 

scenarios 13.

To address these needs, we developed and validated a data-driven transmission dynamic 

model to evaluate the impact of social distancing, state-reopening, testing, and contact 

tracing on the state-level dynamics of COVID-19 infections and mortality in the US, shown 

schematically in Figure 1. Like many other COVID-19 transmission models 14–17, we used 

an extended SEIR (susceptible, exposed, infectious, removed) compartmental model. The 

model divides the population into several disease compartments and tracts movements of 
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individuals between the compartments through different transition rates. The main model 

compartments include: S, susceptible, E, exposed, A, infectious and asymptomatic, I, 
infectious and symptomatic, R, recovered, and F, dead. In addition to disease progression 

stages, our model incorporates social distancing informed by several public sources of 

mobility data, case identification via testing, isolation of detected cases, and contact tracing. 

This is a mean-field epidemiological modeling approach that captures the average disease 

dynamics behavior within a population 18,19. We used Bayesian inference methods to 

calibrate and validate our model prediction to state-level daily reported COVID-19 cases and 

fatality data. Model parameters, prior distributions, and their sources are shown in Table 1. 

We used the calibrated model to evaluate the transmissibility of COVID-19 in each state 

from March, 2020 to late July, 2020, to estimate the state-level impact of shelter-in-place 

and reopening on COVID-19 transmission. Finally, we evaluated the degree to which 

increasing testing efforts (rate of identification of infected cases) and/or contact tracing 

could curtail the spread of the diseases and enable greater relaxation of social distancing 

restrictions while preventing a resurgence of infections and deaths. A detailed description of 

the model considerations, parameterization, and analysis is provided in Methods.

Results

Model performance and validation

We used state-level mobility data from Unacast, Google, and OpenTable to calibrate a 

parametric model of shelter-in-place and reopening (Supplementary Figure 1), and used the 

results to inform prior distributions for the transmission model (Figure 1). We fit our model 

to state-level daily cases and deaths data using a Bayesian inference approach (see 

Methods). Model performance assessment for several representative states is shown in 

Figure 1, with full results in Supplementary Figures 2 and 3. With respect to validation, the 

posterior 95% credible interval of our model projections, estimated using data through April 

30th, 2020, covered 84% of the data points from May 1st through June 20th, 2020. For seven 

states (Alaska, Montana, South Dakota, Iowa, Illinois, Michigan, and Minnesota), validation 

had low coverage (<50%) because of insufficient training data through April 30 to 

adequately inform sheltering and reopening in those states. This inaccuracy was not 

unexpected because the length of sheltering and the degree of reopening could not have been 

known on April 30th, and thus our model predictions were based on generic prior 

distributions. However, during model calibration to data through July 22nd, these parameters 

were informed by updated state-specific mobility data. Model performance for fitting all 

data through July 22nd is shown in Supplementary Figures 4–6, with posterior parameter 

distributions shown in Supplementary Figure 7. Good fits with high coverage (>88% for 

cases; >92% for deaths) were obtained for all states.

Estimations of effective reproduction number

The effective reproduction number, Reff is the average number of secondary infection cases 

generated by a single infectious individual during her infectious period 18. When Reff > 1 the 

epidemic curve is increasing, and when Reff < 1, the epidemic curve is decreasing 18. Using 

the posterior distribution of our model parameters we estimated the effective reproduction 

number Reff from March 19th to late July, 2020 and identified the minimum level of 
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transmission achieved in each state (Figure 2A). We found that for all except five states 

(Alabama, Arkansas, North Carolina, Wisconsin, and Utah), the inter-quartile range for the 

minimum Reff value was less than 1 (varying from 0.07 – 0.98) and these values were 

mainly achieved during the state shelter-in-place (April 11th to May 29th, 2020) (Figure 2A). 

Following states’ relaxations of social distancing measures, disease transmission started to 

re-increase. By July 22nd, 2020, 42 states and the District of Columbia had at least a 75% 

probability that Reff > 1. Thus, the model predicts that as states are reopening, a majority of 

states are at risk of continued increases in the scale of the outbreak and require additional 

mitigation to contain the spread of the disease.

We conducted an analysis of variance to evaluate the contribution of each parameter to the 

variation in Reff value (Supplementary Table 1). Across states, we found that the largest 

drivers of variation in Reff are the power parameter for relating social distancing to hygiene-

associated reduction in transmission, η (ANOVA F values [1 degree of freedom] =2989.166, 

p values < 2.2e-16, etâ2 >= 5%, lower 95% CI of etâ2 >= 4.5%), degree of mitigation during 

shelter-in-place, θmin (ANOVA F values [1 degree of freedom] =5177.354, p values < 

2.2e-16, etâ2 >= 8.7%, lower 95% CI of etâ2 >= 8.1%), the maximum relative increase in 

contact after shelter-in-place orders, rmax (ANOVA F values [1 degree of freedom] 

=8051.61, p values < 2.2e-16, etâ2 >= 13.5%, lower 95% CI of etâ2 >= 12.8%), and the 

fraction of contact traced, fc (ANOVA F values [1 degree of freedom] =13834.053, p values 

< 2.2e-16, etâ2 >= 23.2%, lower 95% CI of etâ2 >= 22.4%), which together contribute over 

50% of variance (Extended Data Figure 1 and Supplementary Table 1). This observation is 

consistent with mobility data alone being insufficient to account for the combined effect of 

multiple control measures, and suggest that the degree of adoption of non-mobility-related 

measures, such as enhanced hygiene practices and contact tracing, play a large role in the 

extent to which a state may reduce disease transmission.

For each state, we defined Δ as the level of reopening/rebound (Δ = 0% at minimum, 100% 

at full reopening) in disease transmission relative to its lowest transmission rate observed 

during shelter-in-place, and estimated the current level of reopening/rebound (Figure 2B). 

We found that 24 states had an average of 50 – 80% rebound in COVID-19 transmission by 

July 22nd, 2020, while no state had less than 25% rebound in transmission (Figure 2B).

Impact of testing and contact tracing on easing of social distancing

Bringing and keeping the effective reproduction number, Reff, below 1 is necessary to curtail 

the spread of an outbreak. We evaluated the probability of keeping Reff < 1 for different 

levels of testing and contact tracing under the July 22nd, 2020 level of state reopening. We 

found that in 42 states and the District of Columbia bringing and keeping Reff < 1 may not 

be possible without increased contact tracing efforts, as increasing testing and isolation 

alone would require at least a 3.5 fold increase of coverage to curtail the epidemic curve 

with a 0.975 probability (Extended Data Figures 2 & 3, and Supplementary Table 2). The 

challenges are even greater to ensure continued control of the epidemic with full reopening, 

as testing and isolation alone would be insufficient to curtail the epidemic in 33 states and in 

all states a 50% to 75% contact tracing coverage would be required to curtail the epidemic 

curve with a 0.975 probability (Extended Data Figure 4, Supplementary Table 3).
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To evaluate the impact of scaling up testing and contact tracing on the epidemic dynamics in 

each state, we assumed a linear “ramp-up” of either testing and/or contact tracing from 

August 1st – 14th, 2020, after which both parameters remain constant. We then predicted the 

daily number of reported cases and deaths (Figure 3 and Supplementary Figure 8). We found 

that under current levels of reopening and control, 40 states would be unable to curtail the 

spread of the epidemic within the next two months (Supplementary Figure 8). Even with 

increased testing and contact tracing, these states will still experience between a two-week to 

two-month increase in reported cases and deaths (Figure 3 and Supplementary Figure 8). For 

example, Ohio, Texas, and Washington may experience a two-week increase of cases and a 

one-month increase of deaths even if their current testing and contact tracing rate were 

doubled within the next two weeks (Figure 3B–D). Moreover, reported cases increase during 

the two weeks “ramp-up” period (Figure 3). We found that in 27 states and the district of 

Columbia an additional 25% (50%) relaxation of restrictions without simultaneously 

increasing contact tracing may exacerbate disease dynamics and results on average in a 25% 

– 65% (45% – 150%) increase of cases and 22% – 48% (35% – 92%) increase of deaths 

within the next two months (Supplementary Figure 8).

We next evaluated the maximal degree of rebound in transmission (i.e., level of reopening) 

permitted while keeping Reff < 1 under different testing and contact tracing scenarios (Figure 

4). We found that under the current level of testing and contact tracing rate, 27 states cannot 

keep their Reff < 1 (at 75% confidence) even with only 25% reopening/rebound in 

transmission (Figure 4A). By doubling the current testing rate, eight states could keep their 

Reff < 1 (at 75% confidence) even with a 50% level of reopening (Figure 4B). By doubling 

contact tracing, nine states could remove all mobility restrictions while keeping Reff < 1 (at 

100% confidence) (Figure 4C). By doubling both testing rate and contact tracing, ten states 

could remove all mobility restrictions while keeping Reff < 1 (at 100% confidence) (Figure 

4D).

We categorized states by the additional amount of mitigation efforts needed to keep R(t) < 1 

with at least 75% confidence (Figure 5 and Supplementary Figure 8). We found that under 

current control efforts, no states could reduce and keep R(t) < 1 if their current level of 

reopening was relaxed by an additional 25% (“Very Low” category), and three states 

(Connecticut, Maine, New Hampshire) could reduce and keep R(t) < 1 without additional 

reopening (“Low” category). Eight states could reduce and keep R(t) < 1 by doubling their 

contact tracing rate or implementing additional social distancing restrictions, a 25% reversal 

of current level of reopening (“Moderate” category), while 30 states and the District of 

Columbia need a combined intervention of doubling both testing and contact tracing and/or 

25% reversal of current reopening to reduce and keep R(t) < 1 (“High” category). For the 

remaining eight states (Arizona, Florida, Idaho, Maryland, North Dakota, Nevada, South 

Carolina, and Washington) a 50% reversal of current reopening in addition to increased 

testing and/or contact tracing are needed in order to to reduce and keep R(t) < 1 (“Very 

High” Category).
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Discussion

There is a delicate and continuous balance to strike between the use of social distancing 

measures to mitigate the spread of an emerging and deadly disease such as COVID-19 and 

the need for re/opening various sectors of activities for the social, economic, mental, and 

physical well-being of a community. To address this issue, it is imperative to design 

measurable, data-driven, and flexible milestones for identifying when to make specific 

transitions with regard to easing or retightening specific social distancing measures. We 

developed a data-driven SARS-CoV-2 transmission dynamic model not only to make short-

term predictions on COVID-19 incidence and mortality in the US, but more importantly to 

evaluate the impact that relaxing social distancing measures and increasing testing and 

contact tracing would have on the epidemic in each state.

We showed that in most states, control strategies implemented during their “shelter-in-place” 

period were sufficient to contain the outbreak, defined as reducing and ultimately 

maintaining the effective reproduction number below 1 (Reff < 1). However, for the majority 

of states, our modelling suggests that “reopening” has proceeded too rapidly and/or without 

adequate testing and contact tracing to prevent a resurgence of the epidemic. Our model 

suggests for some states, a substantial fraction of the population may have already been 

infected such that even without additional intervention, Reff(t) is declining towards (or 

below) 1 even as R(t) > 1. The most extreme example is Arizona, where Reff(t) is estimated 

to have declined below the previous minimum Reff value achieved during shelter-in-place. 

However, accurate estimation of the susceptible fraction of the population is difficult due to 

uncertain degree of undercounting in the reported case data. Thus, we used R(t) to categorize 

the mitigation needs in each state and evaluate the level of control effort needed to curtail the 

spread of the epidemic in each state.

Moreover, even in states with currently decreasing incidence and mortality, such as Maine 

and New Jersey, additional relaxation of restrictions is likely to “bend the epidemic curve 

upwards” in the absence of increased testing or tracing. However, our model predicts that a 

combination of increased testing, increased contact tracing, and/or scaling back reopening 

will be sufficient for curtailing the spread of COVID-19 in most states. Specifically, 

doubling of current testing and contact tracing rates would enable the majority of states to 

either maintain or increase the easing of social distancing restrictions in a “safe” manner in 

the short term. Scaling back the current level of reopening by 25% in combination with 

doubling of testing and tracing will be sufficient to control the epidemic in the long term in 

all but eight “Very High” risk states. The impact of these interventions on the epidemic 

curve was evaluated by computing their probability of reducing and keeping the 

reproduction number below one. However, in states with high overdispersion in disease 

transmission, epidemic with high super-spreadability characteristics, the reproduction 

number may be subject to large fluctuation as the number of infection cases decreases. This 

may more likely be the case for states with lower dispersion parameters posterior values 

such as Arkansas, Connecticut, Idaho, Kansas, Kentucky, Louisiana, Mississippi, New 

Hampshire, South Carolina, and Wyoming (see Supplementary Figure 7).
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Increasing testing and contact tracing rates entails both increasing the number of tests 

performed per day as well as requiring early identification and effective isolation of 

COVID-19 infected individuals. This can be accomplished through active case detection via 

efficient contact tracing strategies. However, it should also be noted that increased testing 

and contact tracing will lead to a short-term increase in reported cases because a larger 

fraction of the infected population is being observed, and that several weeks may pass before 

these rates begin to show a decline. Therefore, it is imperative that policymakers and the 

public recognize that such a surge is actually a sign that testing and tracing efforts are 

succeeding, and exercise the patience to wait several weeks before these successes are 

reflected as declining rates of reported cases.

Other modeling studies have used SEIR-type compartmental models to assess the impact of 

social distancing, testing and contact tracing to curb the epidemic curve in Italy and the 

United Kingdom 14–17. Consistent with our results, these studies have shown that rapid 

reopening of the economy without adequate testing and contact tracing could lead to a 

resurgence of the epidemic 14–17. Specifically, they show that high testing and contact 

tracing rates may enable to maintain/increase the easing of social distancing restrictions 

without an increased rate of COVID-19 transmission 14.

Our study has several limitations due to modelling assumptions and the quality of available 

data. Like most COVID-19 transmission models 14–17, we used a compartmental SEIR-type 

model to model the spread of SARS-CoV-2 because of its simplicity and ability to capture 

population average dynamics. This modeling approach does not account for heterogeneity in 

individual-level behavior, overdispersion due to “super-spreaders,” social contact networks, 

and inherent stochasticity which may play an important role in SARS-CoV-2 transmission 

dynamics. These factors can be modeled through the use of individual-based models 20–22. 

However, individual-based modeling is a more complex modeling framework and may 

require a substantial amount of individual-level data for model parameterization, calibration, 

and validation.

To characterize the limitations of using cell phone-based mobility data to infer (prior 

distributions for) contact rates, we examined the state-to-state variation in mobility data to 

the corresponding posterior distributions for each mobility-related parameter (see 

Supplementary Figure 9). Three parameters of particular interest are the minimum relative 

contact rate θmin, the duration of the shelter-in-place phase τs, and the maximum amount of 

reopening rmax. For θmin, none of the r2 values were consistently less than 0.2, although the 

slope and intercept of the regression line for the Unacast Visitation metric were within 15% 

of 1 and 0, respectively. Similarly, for τs, the highest r2 value was 0.37, for OpenTable 

Bookings data, which also had a relatively accurate regression line (again within 15%). For 

rmax, the highest r2 values were for Google retail and recreation (0.49), and Unacast 

Visitation (0.52) metrics, but the Google data were much more accurate, with a slope close 

to 1 and intercept close to 0. Overall, these results suggest that cell-phone based mobility 

data vary substantially in their accuracy (slope and intercept near 1 and 0, respectively) and 

overall have low precision (no r2 more than about 0.5), and supports our use of the range 

across multiple sources in developing prior distributions, rather than using such data directly 

for modeling contact rates.
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The initiation of social distancing measures, such as stay-at-home orders in the US, for 

mitigating the spread of COVID-19 has occurred concurrently with increased promotion and 

application of other NPIs, such as hygiene practices (e.g. hand hygiene, surface cleaning, 

cough etiquette, and wearing of face mask). These hygiene practices coupled with the 

avoidance of physical contact whenever possible (keeping six feet apart) could impact the 

spread of COVID-19 by reducing both the risk of exposure and the risk of transmission of 

SARS-CoV-2 from infected patients 23,24. Though our model explicitly accounts for the 

differential contribution of social distancing (mobility reduction) versus hygiene practices 

and physical distancing to reducing COVID-19 transmission, we assume that the impact of 

hygiene practices and physical distancing was a function of social distancing (mobility 

reduction). While cell phone mobility data may continue to be informative as to contact 

rates, at least in aggregate, the impact of enhanced hygiene practices is more difficult to 

measure independently. As several states have eased their social distancing requirements, 

especially their stay-at-home orders, compliance with hygiene practices would become even 

more important for reducing individuals’ risk of getting or transmitting the pathogen. 

However, keeping a high population-level adherence to these measures is required to 

mitigate the spread of the COVID-19 epidemic 25. As states are reopening various aspects of 

their economy, data on compliance with enhanced hygiene practices and physical distancing 

are needed to improve the estimation of these measures’ population-level impact on 

reducing disease transmission.

Additionally, consistent with previous COVID-19 modeling studies 26–28, our model uses a 

simple functional form to model increases in testing rate from early March to June, 2020. 

This testing rate was estimated through model fitting to daily reported case and mortality 

data. Particularly in states that have seen a substantial increase in testing capability and 

efforts during the month of May, our simple time varying assumption may underestimate the 

current level of testing and contact tracing. However, it should be noted that increased 

testing capacity does not necessarily lead to increased rate of testing if individuals are 

unaware, unwilling, or unable to be tested 29. Having contact tracing and date of symptoms 

onset data would enable us to compute a better estimate of the current testing and contact 

tracing rate in each state. Our model also assumes that all individuals who test positive to 

COVID-19 are effectively isolated for the rest of their infectious period and no longer 

contribute to disease transmission. Though voluntary compliance to COVID-19 self-

quarantine recommendations may be high across the US, it is likely not 100%. Therefore, 

the assumption of effective isolation of all identified cases may cause our model to slightly 

overestimate the impact of increased testing rate on disease dynamics. However, we 

anticipate that this assumption would only have a marginal impact on the qualitative nature 

of our results.

Finally, our model does not explicitly account for age-stratified risk of disease transmission 

and mortality. This age-stratification is important for designing and evaluating social 

distancing and testing strategies that are targeted towards the elderly population, which is at 

higher risk of COVID-19-induced hospitalization and death 30. As reopening the economy 

becomes an imperative for states across the US, age- or risk-targeted interventions may be a 

valuable tool to mitigate the burden of the pandemic. Future modeling studies could 

investigate the effectiveness of age- or risk-targeted non-pharmaceutical and potential 
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pharmaceutical (vaccine or therapeutic) interventions for controlling the spread and burden 

of COVID-19.

In sum, we use a data-driven mathematical modeling approach to study the impacts of social 

distancing, testing, and contact tracing on the transmission dynamics of SARS-CoV-2. Our 

findings emphasize the importance for public health authorities not only to monitor the case 

and mortality dynamics of SARS-CoV-2 in their state, but also to understand the impact of 

their existing social distancing measures on SARS-CoV-2 transmission and evaluate the 

effectiveness of their testing and contact tracing programs for promptly identifying and 

isolating new cases of COVID-19. As reported case rates are increasing widely across US 

states because social distancing restrictions have been eased to allow more economic activity 

to resume, we find that most states need to either significantly scale back reopening or 

enhance their capacity and scale of testing, case isolation, and contact tracing programs in 

order to mitigate large-scale increases in COVID-19 cases and deaths.

Methods

Our overall approach is as follows: 1) develop a mathematical model (an SEIR-type 

compartmental model)18,19 that incorporates social distancing data, case identification via 

testing, isolation of detected cases, and contact tracing; 2) assess the model’s predictive 

performance by training (calibrating) it to reported cases and mortality data from March 19th 

to April 30th, 2020 and validating its predictions against data from May 1st to June 20th, 

2020; and 3) use the model, trained on data through July 22nd, 2020, to predict future 

incidence and mortality. The final stage of our approach predicts future events under a set of 

scenarios that include increased case detection through expanded testing rate, contact 

tracing, and relaxation or increase of measures to promote social distancing. All model 

fitting is performed in a Bayesian framework in order to incorporate available prior 

information and address multivariate uncertainty in model parameters.

Model formulation

We modified the standard SEIR model to address testing and contact tracing, as well as 

asymptomatic individuals. A fraction fA of those exposed (E) to enter the asymptomatic A 
class (divided into AU for untested, and AC for contact traced) instead of the infected I class, 

which in our model formulation also includes infectious pre-symptomatic individuals. With 

respect to testing, separate compartments were added for untested, “freely roaming” infected 

individuals (IU), tested/isolated cases IT, fatalities FT. Upon recovery, untested infected 

individuals IU) and all asymptomatic individuals move to the untested recovered 

compartment IU, and tested infected individuals move to the tested recovered compartment 

IT. In balancing considerations of model fidelity and parameter identifiability, we made the 

reasonably conservative assumptions that all tested cases are effectively isolated (through 

self-quarantine or hospitalization) and thus unavailable for transmission, and that all 

COVID-related deaths are identified/tested.

With respect to contact tracing, the additional compartment SC represents unexposed 

contacts, who undergo a period of isolation during which they are not susceptible before 

returning to S; while EC, AC, and IC represent contacts who were exposed. Again, the 
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reasonably conservative assumption was made that all exposed contacts undergo testing, 

with an accelerated testing rate compared to the general population. We assume a closed 

population of constant size N for each state.

The ordinary differential equations governing our model are as follows:

dS
dt = − S ⋅ c ⋅ [β + (1 − β) ⋅ fC] ⋅ (IU + AU)/N + SC ⋅ γ

dSC
dt = − SC ⋅ γ + S ⋅ c ⋅ (1 − β) ⋅ fC ⋅ (IU + AU)/N

dE
dt = − E ⋅ κ + S ⋅ c ⋅ β ⋅ (1 − fC) ⋅ (IU + AU)/N

dEC
dt = − EC ⋅ κ + S ⋅ c ⋅ β ⋅ fC ⋅ (IU + AU)/N

dIU
dt = − IU ⋅ (λ + ρ) + E ⋅ κ ⋅ (1 − fA)

dAU
dt = − AU ⋅ ρ + E ⋅ κ ⋅ fA

dIC
dt = − IC ⋅ (λC + ρC) + EC ⋅ κ ⋅ (1 − fA)

dAC
dt = − AC ⋅ ρC + EC ⋅ κ ⋅ fA

dRU
dt = (IU + AU + AC) ⋅ ρ + IC ⋅ ρC

dIT
dt = − IT ⋅ (ρ + δ) + IU ⋅ λ + IC ⋅ λC
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dRT
dt = IT ⋅ ρ

dFT
dt = IT ⋅ δ

c is the contact rate between individuals, β is the transmission probability per infected 

contact, fC is the fraction of contacts identified through contact tracing, 1/γ is the duration of 

self-isolation after contact tracing, 1/κ is the latent period, fA is the fraction of exposed who 

are asymptomatic, λ is the testing rate, δ is the fatality rate, ρ is the recovery rate, λC and ρC 

is the testing rate and recovery rate of contact traced individuals, respectively. The testing 

rates λ and λC, the fatality rate δ, and the recovery rate of traced contacts ρC are each 

composites of several underlying parameters. The testing rate defined as

λ(t) = Ftest, 0 ⋅ 1 − 1
1 + e(t − T50T )/τT

⋅ Senstest ⋅ ktest,

where Ftest,0 is the current testing coverage (fraction of infected individuals tested), Senstest 

is the test sensitivity (true positive rate), and ktest is rate of testing for those tested, with a 

typical time-to-test equal to 1/ktest. The time-dependence term models the “ramp-up” of 

testing using a logistic function with a growth rate of 1/τT days−1, where T50T is the time 

where 50% of the current testing rate is achieved. Similarly, for testing of traced contacts, 

the same definition is used with the assumption that all identified contacts are tested, Ftest,0 = 

1 and at a faster assumed testing rate kC,test:

λC(t) = 1 − 1
1 + e(t − T50T )/τT

⋅ Senstest ⋅ kC, test,

Because all contacts are assumed to be tested, the rate ρC at which they enter the 

“recovered” compartment RU is simply the rate of false negative test results:

ρC(t) = 1 − 1
1 + e(t − T50T )/τT

⋅ (1 − Senstest) ⋅ ktest

The fatality rate is adjusted to maintain consistency with the assumption that all COVID-19 

deaths are identified, assuming a constant infected fatality rate (IFR). Specifically, we first 

calculated the fraction of infected that are tested and positive

fpos(t) = fC
λC(t)

λC(t) + ρC(t) + (1 − fC) λ(t)
λ(t) + ρ .

Then the case fatality rate CFR(t) = IFR/fpos(t). Because the CFR = δ/(δ + ρ), this implies
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δ(t) = ρ CFR(t)
1 − CFR(t) = ρ IFR

fpos(t) − IFR .

The model is “seeded” Ninitial cases on February 29th, 2020. Because in the early stages of 

the outbreak, there may be multiple “imported” cases, we only fit to data from March 19th, 

2020 onwards, one week after the U.S. travel ban was put in place 31.

Our model is fit to daily case yc and death yd data (cumulative data are not used for fitting 

because of autocorrelation). To adequately fit the case and mortality data, we accounted for 

two lag times. First, a lag is assumed between leaving the IU compartment and public 

reporting of a positive test result, accounting for the time it takes to seek a test, obtaining 

testing, and have the result reported. No lag is assumed for tests from contact tracing. 

Second, a lag time is assumed between entering the fatally ill compartment FT and publicly 

reported deaths. Additionally, we use a negative binomial likelihood in order to account for 

the substantial day-to-day overdispersion in reporting results. The corresponding equations 

are as follows:

yobs, c, d (t) ∼ NegBin α c, d , p c, d (t)

p c, d (t) =
ypred, c, d (t)

α c, d + ypred, c, d (t)

ypred, c(t) = IU(t − τcase) ⋅ λ(t) + IC(t) ⋅ λC(t)

ypred, d(t) = IT (t − τdeatℎ) ⋅ δ(t)

In this parameterization, as the dispersion parameter α → ∞, the likelihood becomes a 

Poisson distribution with expected value ypred,[c,d], whereas for small values of α there is 

substantial inter-individual variability. Case and death data were sourced from The COVID 

Tracking Project 32.

Finally, we derived the time-dependent reproduction number, R(t) and the effective 

reproduction number, Reff(t) of this model, given by

R(t) = c ⋅ β ⋅ (1 − fC)
1 − fA
λ + ρ +

fA
ρ

and

Reff(t) = R(t) ⋅ S(t)
N
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Reff(t) is the average number of secondary infection cases generated by a single infectious 

individual during her infectious period in partially susceptible population at time t. It is 

equal to the product of the transmission risk per contact of an infectious individuals with her 

untraced contacts, c ⋅ β ⋅ (1 − fC), times her average duration of infection, 
1 − fA
λ + ρ +

fA
ρ , and 

the portion of contacts that are susceptible S(t)
N . This accounts for the relative contribution of 

asymptomatic, c ⋅ β ⋅ (1 − fC)
fA
ρ ⋅ S(t)

N , and symptomatic infection, 

c ⋅ β ⋅ (1 − fC)
1 − fA
λ + ρ ⋅ S(t)

N . Using posterior samples for all 50 states and the District of 

Columbia, we conducted an analysis of variance using a linear model to characterize the 

contributions to the combined inter- and intra-state variation in Reff. Specifically, we used a 

linear model for Reff with the model parameters R0, η, θmin, rmax, fC, fA, λ, and ρ as 

predictors, and evaluated the percentage of variance in Reff contributed by each parameter.

Incorporating social distancing, enhanced hygiene practices, and reopening

The impact of social distancing, hygiene practices, and reopening were modeled through a 

time-dependence in the contact rate c and the transmission probability per infected contact 

β:

c(t) = c0 ⋅ θ(t) + (1 − θmin) ⋅ r(t)

β(t) = β0 ⋅ θ(t)η

The θ(t) function parameterized social distancing during the progression to shelter-in-place, 

and is modeled as a Weibull function

θ(t) = θmin + (1 − θmin)e−(t/τθ)nθ,

which starts a unity and decreases to θmin, with τθ being Weibull scale parameter and nθ the 

Weibull shape parameter (Figure 1).

The r(t) function parameterized relative increase in contacts due to reopening after shelter-

in-place, with r = 1 corresponding to a return to baseline c = c0.

r(t) = rmax
t − τθ − τs

τr
u(t − tr) − u(t − trmax) + u(t − trmax)

u(t) = Heaviside(t) ≈ 1 − 1
1 + e4t
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tr = τθ + τs

trmax = τθ + τs + τr

The term r(t) is 0 before tr, linear between tr and trmax, and constant at a value of rmax after 

that, and made continuous by approximating the Heaviside function by a logistic function. 

The reopening time is defined as τs days after τθ, and the maximum relative increase in 

contacts rmax happens τr days after that.

We selected the functional form above for c(t) because it was found to be able to represent a 

wide variety of social distancing data, including cell phone mobility data from Unacast 33 

and Google 34, as well as restaurant booking data from OpenTable 35. We used these 

different mobility sources to derive state-specific prior distributions because different social 

distancing datasets had different values for θmin, τθ, nθ, τS, rmax, and τR (Figure S1).

With respect to the reduction in transmission probability β, we assumed that during the 

“shelter-in-place” phase, hygiene-based mitigation paralleled this decline with an 

effectiveness power η, and that this mitigation continued through re-opening.

Finally, we define an overall “reopening” parameter Δ that measures the “rebound” in 

disease transmission c ⋅ β relative to its minimum, defined to be 0 during shelter-in-place 

(i.e., R(t) is at a minimum), and 1 when all restrictions are removed (when R(t) = R0), which 

can be derived as:

Δ(t) =
c ⋅ β /(c0 ⋅ β0) − θmin

1 + η

1 − θmin
1 + η .

Our model is illustrated in Figure 1, with parameters and prior distributions listed in Table 1.

Scenario evaluation

We used the model to make several inferences about the current and future course of the 

pandemic in each state. First, we consider the effective reproduction number. Two time 

points of particular interest are the time of minimum Reff, reflecting the degree to which 

shelter-in-place and other interventions were effective in reducing transmission, and the final 

time of the simulation, July 22nd, 2020, reflecting the extent to which reopening has 

increased Reff. Additional parameters of interest are the current levels of reopening Δ(t), 
testing λ, and contact tracing fC.

We then conducted scenario-based prospective predictions using our model’s parameters as 

estimated through July 22nd, 2020. We asked the following questions:

a. Assuming current levels of reopening, what increases in general testing λ and/or 

contact tracing fC would be necessary to bring Reff < 1?
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b. What amount reopening Δ can maintain Reff < 1 under four different scenarios: 

current values of testing and contact tracing, doubling testing, double tracing, 

and doubling both testing and tracing?

c. What will the rates of new cases and deaths be under different scenarios? 

Specifically, we evaluate the impact of increases in testing and contact tracing 

under current levels of reopening, as well as increases or decreases of 25% or 

50%.

For (a), we evaluated the posterior probability that Reff < 1 under scaling transformations λ 
→ λ ⋅ μλ and fC → fC ⋅ μC with scaling factors μλ and μC:

Reff(t) = S(t) ⋅ c ⋅ β ⋅ (1 − μC ⋅ fC)
1 − fA

μλ ⋅ λ + ρ +
fA
ρ

We additionally derived “critical” values of μC and μλ where Reff(t) < 1 under the conditions 

of increased testing only (μC = 1), increased contact tracing only (μλ = 1), and equal 

increases in testing and tracing (μC = μλ). We also performed the same analysis under a full 

re-opening scenario (i.e., setting S(t) = 1, c = c0, and β = β0).

For (b), we re-arranged the equation for Reff in terms of the reopening parameter Δ

Reff(t) = S(t) ⋅ c0 ⋅ β0 ⋅ (1 − μC ⋅ fC)
1 − fA

μλ ⋅ λ + ρ +
fA
ρ Δ ⋅ (1 − θmin

1 + η) + θmin
1 + η

We then fixed the scaling factors at 1 or 2, and solved the above equation for Δcrit such that 

Reff < 1. Values of Δcrit ≥ Δ(t) indicate the additional degree of reopening possible while 

maintaining Reff < 1, while values of Δcrit < Δ(t) indicate a reduction of reopening is needed. 

To convert back to testing and contact tracing rates, we multiplied the scaling factors μC and 

μλ by the original values of fC and λ, respectively.

Finally, for (c), we additionally evaluated changes in reopening Δ → Δ + ΔΔ for ΔΔ values of 

+25% (+50%) or −25% (−50%), for a total of 20 scenarios (4 different levels of testing and 

tracing, and 5 different levels of reopening). We then ran the SEIR model forward in time 

until September 30th, 2020. For all three intervention parameters μC, μλ, and ΔΔ, we 

assumed a “ramp-up” period of 2 weeks from August 1st–14th, 2020.

To summarize the relative need for mitigation in each state, we categorized states based on 

which scenarios resulted in the IQR of R(t) being < 1 on August 15th, 2020. The categories 

were defined as follows:

• Very Low: Can reopen further by >25% while keeping R(t) < 1;

• Low: Can reopen further by < 25% with up to 2X increase in testing while 

keeping R(t) < 1;

• Moderate: Requires 2X contact tracing or reversal of reopening by 25% to bring 

and keep R(t) < 1;
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• High: Requires multiple interventions (2X testing, 2X contract tracing, reversal 

of reopening by 25%) to bring and keep R(t) < 1;

• Very High: Combining 2X testing, 2X contact tracing, and reversal of reopening 

by 50% is needed to bring and keep R(t) < 1.

We use R(t) instead of Reff(t), to minimize the impact of heterogeneity and uncertainty in the 

value of S(t)/N on our results. Thus, requiring R(t) < 1 provides greater assurance of state-

wide control of the epidemic.

Software and code

Posterior distributions were sampled using Markov chain Monte Carlo simulation performed 

using MCSim version 6.1.0 using Metropolis within Gibbs sampling 36. For each US state, 

four chains of 200,000 iterations each were run, with the first 20% of runs discarded, and 

500 posterior samples saved for analysis. For each parameter, comparison of interchain and 

intrachain variability was assessed to determine convergence, with the potential scale 

reduction factor R ≤ 1.2 considered converged 37. Additional analysis of model outputs was 

performed in RStudio version 1.2.1335 38 with R version 3.6.139.

Data availability statement

The following publicly available datasets are used:

• Mobility data from Unacast were sourced from https://covid19-scoreboard-

api.unacastapis.com/api/search/covidstateaggregates_v3.

• Mobility data from Google were sourced from https://www.gstatic.com/covid19/

mobility/Global_Mobility_Report.csv.

• Restaurant booking data were sourced from OpenTable https://

www.opentable.com/state-of-industry.

• Case and death data were sourced from The COVID Tracking Project (https://

covidtracking.com/).

Mobility data are shown in Supplemental Figure 1. Case and death data are shown in Figures 

1 and 3, and Supplemental Figures 3–6, 8. All data used are also available in the software 

and code repository.

Code availability statement

The codes used to generate our results will be available on GitHub prior to publication at 

https://github.com/wachiuphd/COVID-19-Bayesian-SEIR-US.
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Extended Data

Extended Data Fig. 1: Correlations across states between Reff(t) and (A) θmin, (B) η, (C) Δ, and 
(D) fC.
For each state, 500 posterior samples are shown. Substantial state-to-state heterogeneity is 

evident in all parameters, with η,θmin, rmax, and fC contribute over 50% of the variance in 

Reff(t) under a linear model (estimated from ANOVA table [Table S1] using the sum-of-

squares relative to the total sum-of-squares). For θmin, while lower values appear to be 

associated with greater current values of Reff(t) in a univariate model (linear model 
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coefficient = −0.54, t statistic = −78.14, p < 2.2e-16, 95% CI = [−0.56,−0.53]), the 

correlation is positive in the multivariate model (coefficient = 0.11, t statistic = 13.65, p < 

2.2e-16, 95% CI = [0.09, 0.13]). The other parameters correlate as expected: higher Reff(t) is 

correlated with lower contribution from hygiene practices (smaller η) (coefficient = −0.39, t 

statistic = −59.7, p < 2.2e-16, 95% CI = [−0.40,−0.38]), more reopening (larger rmax) 

(coefficient = 0.44, t statistic = 119.0, p < 2.2e-16, 95% CI = [0.43, 0.45]), and lower rates of 

contact tracing (smaller fC) (coefficient = −0.90, t statistic = −114.6, p < 2.2e-16, 95% CI = 

[−0.92, −0.89]).
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Extended Data Fig. 2: Contour maps for each state of the probability that Reff(t) at different 
levels contact tracing fC and testing λ.
Contours are labelled as by median and 95% Credible interval, and current median estimates 

of fC and λ are shown by the circle.

Extended Data Fig. 3: Estimated testing and contact tracing rates needed for Reff(t) < 1 as of 
July 22, 2020.
Boxplots (line = median, box = IQR, whiskers = 95% CrI) are filled based on the estimated 

Reff(t) on July 22, 2020, as shown in the legend. Top panel is changing testing rate alone, the 

middle panel is changing contact tracing rate alone, and the bottom panel is changing both to 

the same value. Also shown are the current median estimates of the testing and contact 

tracing rates.
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Extended Data Fig. 4: Estimated testing and contact tracing rates needed for R(t) < 1 with 
complete re-opening (i.e., removal of all social distancing and hygiene mitigation).
Boxplots (line = median, box = IQR, whiskers = 95% CrI) are filled based on the estimated 

Reff(t) on July 22, 2020, as shown in the legend. Top panel is changing testing rate alone, the 

middle panel is changing contact tracing rate alone, and the bottom panel is changing both to 

the same value. Also shown are the current median estimates of the testing and contact 

tracing rates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SEIR model structure, parameter, data sources, and fitting/validation methods.
We used mobility data to constrain the time-dependence of the contact rate. We fitted the 

model to daily reported cases and confirmed deaths from March 19th to April 30th and 

validated its projections against data from May 1st to June 20th. On the model projections, 

the black solid line is the median, the pink band is the 95% credible interval (CrI) and the 

orange is the interquartile range (IQR). We show model fitting and validation for four states: 

New York (NY), Ohio (OH), Texas (TX), and Washington (WA).
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Figure 2. Estimated effective reproduction number Reff and the level of reopening/rebound in 
transmission as of July 22nd, 2020 for all states.
(A) shows estimated Reff (median, IQR, and 95% CrI) across States. The figure shows the 

value of Reff on July 22nd, 2020, as well as the “minimum” value of Reff between March 

19th, 2020 and July 22nd, 2020, in lighter shades of each color. It also includes the date of 

the minimum Reff. (B) shows the level of reopening/rebound in disease transmission in each 

state relative to its minimum value during state shelter-in-place (median, IQR, and 95% CrI).
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Figure 3. 
Predicted time-course (median, IQR, and 95% CrI) of daily reported cases and deaths under 

different testing and contact tracing rates (1X and 2X) in New York (A), Ohio (B), Texas 

(C), and Washington State (D).
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Figure 4. Reopening/rebound in transmission Δcrit permitted (0% = minimum shelter-in-place 
value, 100% = return to no restrictions) to keep Reff < 1.
(A) If testing and contact rates are unchanged, (B) testing rate is doubled, (C) contact tracing 

is doubled, or (D) both testing and contact tracing are doubled. Δ(t) the level of reopening/

rebound in transmission on July 22nd, 2020 is shown by the circle. All boxplots show 

median, IQR, and 95% CrI.
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Figure 5. State-specific level of mitigation needed as a July 22nd, 2020 to curtail the spread of 
COVID-19
(keeping R < 1 with at least 75% confidence, equivalent to the upper bound of the 

Interquartile range (IQR)). Categories based on evaluating scenarios with different 

combinations of baseline/doubling testing, baseline/doubling contact tracing, and baseline/

+25%/−25% in the reopening parameter Δ. Categories are defined as follows: Very Low (no 
states): Can reopen further by >25% while keeping R(t)<1; Low (3 states): Can reopen 

further by < 25% with up to 2X increase in testing while keeping R(t)<1; Moderate (9 
states): Requires 2X contact tracing or reversal of reopening by 25% to keep R(t)<1; High 
(30 states and DC): Requires multiple interventions (2X testing, 2X contract tracing, reversal 

of reopening by 25%) to keep R(t)<1; Very High (8 states): Reverse of reopening by 50%, 

combined with 2X testing and/or 2X contact tracing with to keep R(t)<1. The U.S. map 

shapefile is from the “usmap” R package, which is open source under GPL-3.
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Table 1.

Model inputs, parameters and prior distributions for Bayesian analysis.

Symbol Definition (units) Calibrated parameter(s) Prior [Truncation] Notes

N Population size Input (not calibrated) Constant 40

Ninit Initial IU on 2020–02-29 Ninit LogN(1000, 10) [1, 10000] ¶

1/γ Self-isolation time after contact tracing Tisolation = 1/γ LogN(14, 2) [7, 21] ϯ

1/κ Latent period (d) Tlatent = 1/κ N(4,1) [2,7] 41,42

c0 Baseline contact rate (contacts d−1) c0 N(13, 5) [7, 20] 43

ρ Recovery rate (d−1) Trecover= 1/ρ LogN(10, 1.5) [5, 30] 42,44

β0 Transmission probability per contact (unitless) R0 = c0β0/ρ N(2.9, 0.78) [1.46, 4.5] 45–47

fC Fraction of contacts traced (unitless) fC LogN(0.25, 2) [0.05, 1] 48

fA Fraction of infected asymptomatic (unitless) fA N(0.295,0.275) [0.02, 0.57] 49

T50T Date of 50% of final testing rate (d) T50T U(60, 106) (Mar 1 – Apr 15) ¶

λ General positive diagnosis rate (d−1) λ = Ftest Senstest ktest Derived 45,50,51

Ftest General test coverage (unitless) Ftest Beta(2,2) 45,50,51

Senstest Test sensitivity (unitless) Senstest N(0.7, 0.1) [0.6, 0.95] 52

ktest General testing rate (d−1) τtest = 1/ktest N(7, 3) [2, 12] 53,54

λC Contacts positive diagnosis rate (d−1) λC = Senstest ktest,C Derived

kC,test Contacts testing rate (d−1) τC,test = 1/kC,test N(2, 1) [1, 3] ¶

ρC Rate of infected contacts testing negative (d−1) ρC = (1 – Senstest) ktest,C Derived

δ Fatal illness rate (d−1) IFR (infected fatality rate)* LogN(0.01, 2) [0.001, 0.1] 44,55

θmin Minimum of θ(t) θmin Validation: Beta(2,2)
Calibration: State-specific

¶
ƣ

τθ Weibull scale parameter τθ Validation: N(21, 7) [7, 35]
Calibration: State-specific

¶
ƣ

nθ Weibull shape parameter nθ Validation: LogN(6, 2) [1,11]
Calibration: State-specific

¶
ƣ

η Hygiene effectiveness relative to social distancing 
(unitless)

η Beta(2,4) ¶

τs Duration of shelter in place (d) τs Validation: N(45, 30) [21, 90]
Calibration: State-specific

56

τr Duration of linear increase after shelter-in-place (d) τr Validation: N(45, 30) [14, 105]
Calibration: State-specific

¶
ƣ

rmax Maximum relative increase in contacts from shelter-in-
place (unitless)

rmax Validation: N(1, 1) [0, 2]
Calibration: State-specific

¶
ƣ

τcase Lag time for observing confirmed case τcase LogN(7, 2) [1, 14] ¶

τdeath Lag time for observing confirmed death τdeath LogN(7, 2) [1, 14] ¶

αpos Negative Binomial shape parameter for cases likelihood 
function

αpos LogU(0.1, 40) ¶

αdeath Negative Binomial shape parameter for deaths likelihood 
function

αdeath LogU(0.1, 40) ¶
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LogN(GM, GSD) = lognormal distribution with geometric mean GM and geometric standard deviation GSD

N(M,SD) = normal distribution with mean M and standard deviation SD

U(MIN,MAX) = uniform distribution with minimum MIN and maximum MAX

LogU(MIN, MAX) = log-uniform distribution with minimum MIN and maximum MAX

Beta(a,b) = beta distribution with shape parameters a and b

Time (t) is measured from t=1 corresponds to 2020–01-01.

¶
Assumed, non-informative prior wide enough to have adequate validation coverage.

ϯ
Standard contact tracing guidance is to self-isolate for 2 weeks.

ƣ
For calibration to 6/20/20, state-specific priors were derived by fitting to different social distancing data sets, with each parameter’s mean, 

standard deviation, and range used to define a normal distribution prior.

*
See Methods for relationship between IFR and δ.
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