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Abstract

Single-cell data provides means to dissect the composition of complex tissues and specialized 

cellular environments. However, the analysis of such measurements is complicated by high levels 

of technical noise and intrinsic biological variability. We describe a probabilistic model of 

expression magnitude distortions typical of single-cell RNA sequencing measurements, which 

enables detection of differential expression signatures and identification of subpopulations of cells 

in a way that is more tolerant of noise.

Advances in DNA sequencing and increased sensitivity of RNA analysis methods (RNA-

seq) are making it practical to examine transcriptional states of individual cells on a large 

scale1-4, facilitating unbiased analysis of cellular states in healthy and diseased tissues5-8. 

Profiling the low amounts of mRNA contained within individual cell typically requires more 

than a million-fold amplification, which leads to severe non-linear distortions of relative 

transcript abundance and accumulation of nonspecific byproducts. Low starting amount also 

makes it more likely that a transcript will be “missed” during the initial reverse transcription 

step, and consequently not detected during sequencing. This can lead to so-called “drop-out” 

events, where a gene is observed at moderate or even high expression level in one cell but is 

not detected in another cell (Figure 1a). More fundamentally, gene expression is inherently 

stochastic, and some cell-to-cell variability will be an unavoidable consequence of 

transcriptional bursting of individual genes or coordinated fluctuations of multi-gene 

networks9. Such biological variability is of significant interest, and several methods have 
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been proposed for detecting it from RNA-seq and other single-cell measurements10-12. 

Collectively, this multi-factorial variability in single-cell measurements substantially 

increases the apparent level of noise, posing challenges for differential expression and other 

downstream computational analyses. Noting that standard RNA-seq analysis approaches 

may be thrown off by the patterns of cell-to-cell variability, we modeled single-cell 

measurements as a probabilistic mixture of successful amplification and detection failure 

events. We find that such a representation is effective at identifying differential expression 

signatures between cell groups, and improves the ability to discern distinct subpopulations in 

the context of larger single-cell datasets, such as the 92-cell mouse embryonic fibroblast 

(MEF) embryonic stem cell (ES) study by Islam et al2, or cells from different stages of early 

mouse embryos analyzed by Deng et al12.

Comparisons of RNA-seq data obtained from individual cells tend to show higher variability 

than typically observed in biological replicates of bulk RNA-seq measurements. In addition 

to strong over-dispersion, there are notable occurrences of high-magnitude outliers, as well 

as “drop-out” events (Figure 1a). Such types of variability are poorly accommodated by the 

standard RNA-seq analysis methods13,14, and the reported sets of top differentially 

expressed genes can include genes driven by high-magnitude outliers or drop-out events, 

showing poor consistency within each cell population (Figure 1b). The abundance of the 

“drop-out” events has been previously noted in single-cell qPCR data and accommodated 

using zero-inflated distributions, such as the discrete/continuous model proposed by 

McDavid et al15.

Two prominent characteristics of the drop-out events make them informative in further 

analysis of expression state. First, the overall drop-out rates are consistently higher in some 

single cell samples than others (Supplementary Figures 1,2), indicating that the contribution 

of an individual sample to the downstream cumulative analysis should be weighted 

accordingly. Second, the drop-out rate for a given cell depends on the average expression 

magnitude of a gene in a population, with drop-outs being more frequent for lower 

expression magnitude genes. This trend is a consequence of both amplification biases and 

inherent biological variability. Importantly, quantification of such dependency provides 

additional evidence about the true expression magnitude. For instance, drop-out of a gene 

that is observed at very high expression magnitude in other cells is more likely to be 

indicative of true expression differences between the cells than stochastic variability.

To accommodate high variability of single-cell data we model the measurement of each cell 

as a mixture of two probabilistic processes – one in which the transcript is amplified and 

detected at a level correlating with its abundance, and the other where a gene fails to amplify 

or is not detected for other reasons. The first, “correlated” component is modeled using a 

negative binomial distribution commonly used to describe overdispersed RNA-seq data13,16. 

The RNA-seq signal associated with the second, “drop-out” component could in principle be 

modeled as a constant zero (i.e. zero-inflated negative binomial process), however we use a 

low-magnitude Poisson process to account for some background signal that is typically 

detected for the drop-out and transcriptionally silent genes. Importantly, the mixing ratio 

between the correlated and drop-out processes depends on the magnitude of gene expression 

in a given cell population.
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To fit the parameters of an error model for a particular single-cell measurement, we use a 

subset of genes for which an expected expression magnitude within the cell population can 

be reliably estimated (Figure 1c). Briefly, pairs of all other single-cell samples from the 

same subpopulation (e.g. MEF cells) are analyzed using a similarly-structured three-

component mixture containing one correlated component, and drop-out components for each 

cell (Figure 1d, Supplementary Figures 1,2). A subset of genes that appears in correlated 

components in a sufficiently large fraction of pair-wise cell comparisons is deemed reliable, 

and their expected expression magnitude is estimated as a median magnitude observed 

across such correlated components. These expected magnitudes are used to fit the 

parameters of the negative binomial distribution as well as the dependency of the drop-out 

rate on the expression magnitude for a given single-cell measurement. We find that the drop-

out rate dependency on the expected expression magnitude can be reliably approximated 

using logistic regression (Supplementary Figure 3). Notably, the drop-out rates vary among 

the cells, depending on the quality of a particular library, cell type, or RNA-seq protocol 

(Figure 1e,f).

The error models of individual cells provide a basis for further statistical analysis of 

expression levels. A common task is the analysis of expression differences between pre-

determined groups of single cells. We have implemented a Bayesian method for such 

differential expression analysis (single cell differential expression - SCDE) that incorporates 

evidence provided by the measurements of individual cells in order to estimate the 

likelihood of a gene being expressed at any given average level in each of the single-cell 

subpopulations, as well as the likelihood of expression fold change between them (Figure 

2a,b). The Bayesian approach provides a natural way of integrating uncertain information 

gained from individual measurements. For example, while an observation of a drop-out 

event in a particular cell does not provide a direct estimate of expression magnitude, it 

constrains the likelihood that a gene is expressed at high magnitude in accordance with the 

overall error characteristics of that cell measurement. To moderate the impact of high-

magnitude outlier events, the joint posterior probability of expression in a cell group was 

calculated using bootstrap resampling. The resulting sets of top differentially expressed 

genes (can be browsed at http://pklab.med.harvard.edu/scde/) show high consistency and 

relevance to the examined cell types. To quantify the ability of the proposed approach to 

detect differentially expressed genes in single-cell RNA-seq, we evaluated false positive/

false negative relationship bases on the expression differences observed in traditional bulk 

measurements of mouse ES and MEF cells17 (Figure 2c). We find that the proposed SCDE 

method shows higher sensitivity than the common RNA-seq differential expression methods 

(DESeq and CuffDiff) and the zero-inflated approach developed by McDavid et al. for 

qPCR data15. Higher SCDE sensitivity is particularly pronounced for genes that are 

expressed at higher magnitude in ES cells (Supplementary Figure 4), likely due to a lower 

total RNA abundance and higher noise levels observed in these cells.

A key promise of the single-cell approach is the ability to discern novel subpopulations of 

cells within complex mixtures in an unbiased manner, without a priori knowledge of which 

cells are which. While a variety of existing multivariate analysis techniques can be used to 

group single cells by transcriptional signatures2,5, drop-out and outlier events pose 
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substantial problems for standard similarity and variability measures. The error models of 

individual cells can be used to derive more robust measures. For instance, Pearson linear 

correlation of gene expression magnitudes (on log scale) provides a good genome-wide 

similarity measure, and can be used in combination with hierarchical clustering methods to 

identify transcriptionally distinct subpopulations of cells. We compared the classification 

performance of the Pearson linear correlation measure with two modified correlation 

measures that take into account the likelihood of drop-out events. The first measure (“direct 

drop-out”) evaluates correlation over a simulated dataset where likely drop-out events are 

designated as missing data. The second (“reciprocal drop-out”) weights the contribution of 

each gene based on the probability that the gene will fail (drop-out) in the second cell given 

its expression level in the first cell (see Methods). Evaluating the performance of different 

correlation measures over increasingly difficult cell classification, we find that measures 

adjusted on the basis of the derived error models perform consistently better in resolving cell 

populations (Figure 2d, Supplementary Figure 5).

Recent progress in single-cell assays and microfluidic manipulation techniques is enabling 

genome-wide transcriptional examination of cellular heterogeneity within complex tissues. 

Such studies will likely redefine the boundaries separating cell types or key cellular states in 

statistical terms18. Here we have used a simple mixture model, to capture the uncertainty in 

expression magnitude observed in a given cell, propagating this uncertainty into subsequent 

analyses. As single-cell studies gain in scope, such probabilistic views of the transcriptional 

state will become increasingly important.

Online Methods

Datasets and initial abundance estimates

ES and MEF single-cell measurements (96 cells) from Islam et al2 were used. The initial 

RPM estimates were obtained using TopHat21 and HTSeq. The mouse embryo data was 

taken from Deng et al, using the read alignments described in the manuscript12.

Fitting individual error models

To identify a subset of genes that can be used to fit error models for a particular single-cell 

measurements, all pairs of individual cells belonging to a given subpopulation (e.g. all MEF 

cells) were analyzed using three-component mixture model. To do so, the observed 

abundance a given transcript in each cell was modeled as a mixture of the “drop-out” 

(Poisson) and “amplification” (negative binomial -NB) components. This way, the 

expression of a gene with observed RPM levels of r1 and r2 in cells c1 and c2 respectively 

was modeled as:
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The background read frequency for the dropout components was set at λ00.1. The mixing 

between the three components was determined by a multinomial logistic regression on a 

mixing parameter m = log(r1) + log(r2). Pseudo-counts of 1 were added to r1 and r2 for log 

transformations. The mixture was fit using EM algorithm, implemented under the FlexMix 

framework22. Alternatively, the initial three-component segmentation can be determined 

based on a user-defined background threshold, which is a lot less computationally intensive. 

The genes that were assigned to the “amplified” components were noted, and a set of genes 

appearing in the “amplified” components in at least 20% of all pair-wise comparisons of 

cells of the same subpopulation (excluding the cell for which the model is being fit) was 

used to fit the individual error models, as described below. The expected expression 

magnitude of these genes was estimated as a median observed magnitude between all the 

cell measurements in which a gene was classified to be in the “amplified” component. The 

aim of the 20% threshold is to have a sufficiently large number of measurements for a given 

gene so that the median expression magnitude estimate would be reliable, and the model 

parameters resulting from the fitting procedure correlate well for a range of values 

corresponding to 6-12 cells (Supplementary Figure 3d).

To fit an individual error model Ωc for a measurement of a single cell c, the observed RPM 

values were modeled as a function of an expected expression magnitude, using the set of 

estimates for a subset of genes described in the previous paragraph. The RPM level rc 

observed for a gene in cell c was modeled as a mixture of a “drop-out” and “amplified” 

components, as a function of an expected expression magnitude e:

with the mixing parameter m = log(e), λ0 = 0.1. For each cell the model Ωc was fit using EM 

algorithm based on the set of genes for which expected expression magnitudes have been 

obtained. The resulting estimates of parameters for the negative binomial and concomitant 

(mixing) regression were used as a description of an error model Ωc in the subsequent 

analysis.

Differential expression analysis

Following Bayesian approach, the posterior probability of a gene being expressed at an 

average level x in a subpopulation of cells S, was determined as an expected value (E):

where B is a bootstrap sample of S, and p(x|rc, Ωc)is the posterior probability for a given cell 

c: p(x|rc, Ωc) = pd(x)ppoisson (x + (1 − pd (x)pNB(x|rc), where pd is the probability of 

observing a drop-out event in a cell c for a gene expressed at an average level x in S, ppoisson 

x and pNB(x|rc) are the probabilities of observing expression magnitude of rc in case of a 

drop-out (Poisson) or successful amplification (NB) of a gene expressed at a level x in a cell 
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c, with the parameters of the distributions determined by the Ωc fit. For the differential 

expression analysis, the posterior probability that the gene shows a fold expression 

difference of f between subpopulations S and G was evaluated as 

, where X is the valid range of expression levels. The posterior 

distributions were renormalized to unity, and an empirical P value was determined to test for 

significance of expression difference.

Comparison of differential expression performance

The results if SCDE, DESeq, CuffDiff2 and SingleCellAssay (SCA) were benchmarked 

against an expression dataset by Moliner et al.17 that measured bulk MEF and ES cells 

grown using the same suspension growth protocol23 as used by Islam et al.2. The ability to 

recover top 1000 genes showing highest expression difference in Moliner et al. was assessed 

using ROC/AUC (Figure 2c, Supplementary Figure 4) ranking genes by significance of 

differential expression as determined by different methods.

Similarity measures and subpopulation analysis

Standard measure of the genome-wide similarity between two single-cell measurements was 

determined as a Pearson linear coefficient on log-transformed RPM values. Genes that did 

not show expression signals in any of the cells were excluded from the analysis. The Bray-

Curtis similarity measure was also calculated on log-transformed values (linear-based values 

showed lower performance).

The “direct drop-out” similarity measure aims to estimate Pearson linear correlation 

excluding likely “drop-out” events in any given cell. To achieve that we evaluate average 

correlation across 1000 sampling rounds, in each round probabilistically excluding likely 

drop-out observations. Specifically, in each round, an observation of a given gene at an 

expression level x in a particular cell was substituted with a missing value with probability 

pd(x)k, where pd(x) is the probability of a drop-out event in the current cell at an expression 

magnitude level x, and k=0.9 is additional factor (to stabilize similarity measure in cases 

when drop out rates are very high in a given cell). The overall similarity between any two 

cells was then calculated as an average (across 1000 sampling rounds) Pearson linear 

correlation between log-transformed values of observations that are valid (not missing) in 

both cells.

The “reciprocal drop-out” similarity measure aims to reduce the impact of drop-out events 

on the Pearson linear correlation measure by weighting down the contribution of genes that 

are not likely to be reliably measured in both cells. For instance, if a gene was observed at a 

level x1 in the first cell, we will weigh its contribution by the likelihood that such level of 

expression can be reliably detected (i.e. without drop-out) in the second cell. This kind of 

reciprocal weighting minimizes the contribution of discrepant (i.e. amplified vs. drop-out) 

measurements to the overall similarity. Specifically, the “reciprocal drop-out” similarity was 

calculated as a weighted Pearson linear correlation on log-transformed RPM values, 

weighting the contribution of each gene by , where 

 is a probability of observing a dropout event in cell 1 for an expression magnitude x2 
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at which the gene was observed in the cell 2. k=0.95 was used in calculating reciprocal 

drop-out similarity. We find that both direct and reciprocal similarity measures show robust 

improvements in classification performance for a range of k values between above 0.85 (see 

Supplementary Figure 3e).

All similarity measures do well when all 90+ cells and a complete gene set are considered. 

To provide a meaningful comparison we measured performance on more challenging 

classification problems based on partial data. Specifically, a subset of 20 random ES and 20 

MEF single-cell measurements was sampled in each iteration. Furthermore, increasing 

fraction of top differentially-expressed genes was excluded from the analysis (Figure 2d, x-

axis) to pose a more challenging classification problem. The cells were clustered using Ward 

method. The fraction of correctly classified cells was determined based on the top-level split 

of the resulting clustering. The performance was evaluated based on 200 such random 

sampling iterations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Modeling single-cell RNA-seq measurement as a mixture of two processes
a. Types of cell-to-cell variability observed in single-cell RNA-seq measurements. A 

smoothed scatter plot compares gene expression estimates from two cells of the same type 

(MEF cells), illustrating prevalence of drop-out events, over-dispersion, and high-magnitude 

outliers.

b. Single-cell variability throws off standard RNA-seq analysis methods, with top 

differentially expressed genes influenced by difference in drop-out (Rnaseh2a) or outlier 

(Bmp4) events. The examples are taken from CuffDiff214 comparison of 10 ESC and 10 
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MEF cells, with triangles showing expression magnitudes observed in different cells, and 

whiskers spanning the range of observed expression magnitudes.

c. To identify a reliable set of genes for fitting model parameters, our approach initially uses 

cross-comparison of single-cell measurements (using cells of the same type, e.g. MEF), 

determining whether the transcript is likely to have been successfully amplified in both 

experiments (correlated component). The true expression magnitude of such genes is 

estimated as a median expression level across cells in which the gene appears in a correlated 

component.

d. Each single-cell measurement is modeled as a mixture of drop-out and successful 

amplification processes. The parameters of the distributions and the magnitude-dependent 

mixing of the two processes are determined based on the expected population expression 

averages of genes appearing in many correlated components (c.).

e. Drop-out rates vary between different cell types. The rate of transcript detection failures 

(drop-out events) depends on the average expression magnitude of a gene in the cell 

population, and varies among the cells. In Islam et al. dataset2, higher drop-out frequencies 

are observed for mouse ES cells compared to MEF cells.

f. Drop-out rates for 4, 8 and 16-cell embryo samples examined by Deng et al.12 using a 

recently-developed protocol also show systematic differences.
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Figure 2. Applying single-cell models for differential expression and subpopulation analyses
a. The model fitted for each single cell is used to estimate the likelihood that a gene is 

expressed at any particular level (i.e. posterior distribution) given the observed data (colored 

curves). The approach estimates joint posterior distribution for the overall level with each 

cell type (black curves), and the expression fold difference between the cell types (middle 

plot). The example demonstrates expression differences of Sox2 between all ES and MEF 

cells measured by Islam et al2. The plots show posterior probability of expression 

magnitudes in proximal (top) and distal (bottom) cells. The posterior probability of the fold-

expression difference magnitude is shown in the middle plot with the associated raw P-value 

of differential expression.

b. Differential expression of Dazl between cells of 8-cell and 16-cell mouse embryo stages, 

as determined by SCDE method. A regulator factor expressed in mammalian embryos19,20 , 

Dazl is expressed at earlier stages, and shows a drop-off between 8- and 16-cell stages.

c. The ability of different analysis methods to detect differentially expressed genes is shown 

using the false/true positive rate relationship (ROC curve), using traditional bulk expression 

measurements as a benchmark. The SCDE method shows higher sensitivity at low false-

positive range, as well as higher overall performance, as measured by area under the curve 

(AUC) scores.

d. Performance of error-model-based transcriptional similarity measures in distinguishing 

ES and MEF cell types. The plot shows the fraction of correctly classified cells, assessed for 

increasingly difficult classification problem by iteratively excluding up to 7000 most 

informative genes (i.e. genes differentially expressed between ES and MEF, x-axis). The 

95% confidence bands are shown in light shading. Transcriptional similarity measures that 

take into account direct or reciprocal drop-out event probability show consistently better 

classification performance than Pearson linear correlation or Bray-Curtis similarity measure.
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