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Abstract

Alterations in subcortical brain structure volumes have been found to be associated with several
neurodegenerative and psychiatric disorders. At the same time, genome-wide association studies
(GWAS) have identified numerous common variants associated with brain structure. In this

study, we integrate these findings, aiming to identify proteins, metabolites, or microbes that

have a putative causal association with subcortical brain structure volumes via a two-sample
Mendelian randomization approach. This method uses genetic variants as instrument variables

to identify potentially causal associations between an exposure and an outcome. The exposure

data that we analyzed comprised genetic associations for 2994 plasma proteins, 237 metabolites,
and 103 microbial genera. The outcome data included GWAS data for seven subcortical brain
structure volumes including accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and
thalamus. Eleven proteins and six metabolites were found to have a significant association with
subcortical structure volumes, with nine proteins and five metabolites replicated using independent
exposure data. We found causal associations between accumbens volume and plasma protease c1
inhibitor as well as strong association between putamen volume and Agouti signaling protein.
Among metabolites, urate had the strongest association with thalamic volume. No significant
associations were detected between the microbial genera and subcortical brain structure volumes.
We also observed significant enrichment for biological processes such as proteolysis, regulation of
the endoplasmic reticulum apoptotic signaling pathway, and negative regulation of DNA binding.
Our findings provide insights to the mechanisms through which brain volumes may be affected in
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the pathogenesis of neurodevelopmental and psychiatric disorders and point to potential treatment
targets for disorders that are associated with subcortical brain structure volumes.
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1. Introduction

Variations and dysfunctions of subcortical brain structures have been associated with
numerous neurological and neuropsychiatric disorders such as Parkinson’s disease, different
types of dementia, insomnia, schizophrenia, autism spectrum disorder (ASD), depression
and post-traumatic stress disorder (PTSD) (Bohnen and Albin, 2011; Nir et al., 2013;
Woineskos, 2015; van Rooij et al., 2018; Zhao et al., 2017; Emamian et al., 2021; Wang et
al., 2021). These brain structures are involved in various functions such as mood processing,
sensory investigations, cognitive control, memory, etc. Changes in these structures in
individuals with psychiatric and neurological disorders could explain the phenotypic
changes and symptoms observed and could be used as biomarkers to identify individuals

at risk for developing the disorders (Moineskos, 2015; Zhao et al., 2017; Emamian et al.,
2021). However, it is largely unknown what molecular and biochemical processes may
influence disease-related changes and how abnormalities of specific subcortical structures
influence different traits and in subcortical brain structures. Understanding the relationship
between brain volume and structure and neurological disease would help us better determine
the underlying pathophysiological pathways. Such analysis could also be important in
clinical practice, providing biomarkers that could be useful in disease diagnosis and patient
management as well as helping to identify treatment targets for the various disorders
associated with abnormalities in subcortical brain structure.

Recent large-scale multicenter studies such as the Enhancing Neuro Imaging Genetics
through Meta-Analysis (ENIGMA) and UK Biobank (UKB) have put together neuroimaging
and genomic data from tens of thousands of individuals and performed genome-wide
association studies. This has led to the identification of genetic variants that are associated
with subcortical brain structure volumes (Hibar et al., 2015; Satizabal et al., 2019;
Thompson et al., 2020). These studies have been followed by transcriptomic and epigenomic
analysis to identify genes and epigenetic markers associated with regional brain volumes
(Zhao et al., 2021; Barbu et al., 2022; Jia et al., 2021). However, studies seeking to

identify associations between regional brain volumes and other biomarkers such as proteins,
metabolites and the microbiome are limited.

Here, we seek to address this gap, exploring the role of the proteome, metabolome,

and microbiome in mediating brain structure changes which could lead to neurological
disease. Proteins are the final product of gene expression and are an important intermediary
phenotype that can provide insight into the cellular processes and functions that influence
human biology and disease pathophysiology (Geyer et al., 2016). On the other hand,
metabolites are small molecules that are a product and intermediates of cellular metabolism
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and play a pivotal role in cellular and physiological processes (Nath et al., 2017; Miles

and Calder, 2015). The observed levels of such metabolites in biofluids can elucidate these
processes. Finally, the human microbiota plays an important role in the fermentation of
non-digestible substrates as well as providing protection against foreign pathogens (Gilbert
et al., 2018; Valdes et al., 2018). A number of studies have found that changes in the level
of different proteins, metabolites and the composition of the gut microbiome are associated
with different metabolic, immunological as well as neurological disorders (Yang et al., 2021;
Mofrad et al., 2022; Sabatine et al., 2005; Vijay and Valdes, 2022). The importance of

the level of different metabolites such as glucose, lactate and pyruvate in the cerebrospinal
fluid (CSF) is well known and they are established biomarkers to study inflammation

and malignancies in the brain (Zhang and Natowicz, 2013). Numerous studies have been
performed to determine metabolic biomarkers of neurological diseases such as Alzheimers
Disease and most of the results indicate changes in biochemical pathways related to the
energy metabolism, amino acids linked to the glucogenic and ketogenic energy metabolism
among others (Quintero Escobar et al., 2021). The gut-brain axis (GBA), which consists of
bidirectional communication between the central and the enteric nervous system is heavily
influenced by the gut microbiota (Carabotti et al., 2015), establishing the importance of the
microbiome in neurological functions and disorders. Experimental studies and systematic
analyzes have shown that changes in gut microbiota exert significant effects on CNS

and immune cells (change in immune response, altered synapse formation and disrupted
maintenance of the CNS), and have been associated to various disorders such as Multiple
Sclerosis, Alzheimers, Parkinsons and Autism among others (Park and Kim, 2021).

Although the levels of these biomarkers in the body (especially metabolites and gut
microbiome) are heavily influenced by environmental factors such as diet, medication

and lifestyle (Rothschild et al., 2018; Maier and Typas, 2017; Bermingham et al., 2021;
Nicholson et al., 2011), twin and family-based studies show that genetics also play an
important role and they are highly heritable (Hagenbeek et al., 2020; Goodrich et al., 20186,
2014). With advancements in profiling methods, large-scale studies can measure the levels
of thousands of proteins and the various metabolites circulating in the blood and identify
genetic variants which influence the level of these biomarkers (Geyer et al., 2016; Shin et
al., 2014; Sun et al., 2018). Genome-wide association studies have also been performed to
identify genetic variants that are associated with the composition of various bacterial taxa
in the gut microbiome (Kurilshikov et al., 2021). With results from these multi-omic studies
at hand, there is the opportunity to investigate potential causal associations between such
biological markers and subcortical brain structure volumes, using a two-sample Mendelian
randomization (MR) approach.

MR analysis is a genetic epidemiological method that can help to determine putative causal
associations between an exposure and an outcome using genetic variants as instrument
variables (Emdin et al., 2017; Sanderson et al., 2022). The method is conceptually similar
to a randomized controlled trial which is based on the idea that the individuals receiving

the treatment/drug (the instrument variable) are assigned randomly to the different groups
(Hariton and Locascio, 2018). Similarly, in MR studies, the SNPs are randomized by nature,
assigned to offspring before birth and are not confounded by any environmental factor -
thus satisfying the requirement of a randomized trial (Sanderson et al., 2022; Swanson
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etal., 2017). This method is very powerful and can use the vast number of publicly
available results of GWAS to identify causal associations between different exposures and
outcomes. Indeed, studies undertaking this approach have identified causal associations
between proteins and disorders such as depression, anorexia, ASD, and many others (Yang
etal., 2021; Wingo et al., 2021; Yang et al., 2022a, 2022b). MR studies have also uncovered
associations between the gut microbiome and autoimmune and cardiovascular disorders
(Xu et al., 2022; Zhang et al., 2022). MR studies for brain structures have also found
causal associations between subcortical brain structure and neurological conditions like
schizophrenia, anorexia, depression, and other disorders (Wootton et al., 2022; Walton et
al., 2019; Shen et al., 2020; Wu et al., 2021). However, so far, no studies have examined
associations between the different biomarkers and metrics of subcortical brain structures.

In this study, we sought to better understand the mechanisms and mediators that lead to

the observed associations between brain structures and neurological and neuropsychiatric
disease. In a systems biology approach, we integrated multi omic data with GWAS for
subcortical brain volumes and employed a two-sample MR approach to ask if proteome,
metabolome, and microbiome could be causally associated with volume of different
subcortical brain structures. The central hypothesis of our study was that specific genetic
variants influence subcortical brain volumes by altering levels of different biomarkers from
the proteome, metabolome, or microbiome.

Methods

Ethics statement

Only publicly available deidentified summary data was used in this study.

2.2. Study design and datasets

We applied a two-sample MR analysis to determine and identify causal associations between
three multi-omic datasets (plasma proteome; metabolome; microbiome) and seven different
subcortical brain structure volumes (accumbens, amygdala, caudate, hippocampus, pallidum,
putamen, and thalamus) using genetic variants as instrument variables. Fig. 1 shows the
overall design of the analysis. The basic principle of MR is that SNPs (genetic instruments),
which are significantly associated with modifiable exposure, would be causally associated
with the exposure-related outcome. Three important assumptions are required for a valid
genetic instrument and MR analysis. First, the instrument must be causally related to the
exposure. Second, it must be independent of any confounders; and, finally, it should only

be associated with the outcome through the exposure. In our current study, the genetic
instruments for the different exposures were obtained from large-scale GWAS studies for
each of the different omic datasets (information on these studies is shown in Supplementary
Table 1). Overall, we obtained GWAS data on 2994 plasma proteins, 237 blood metabolites
and 103 microbial genera (Shin et al., 2014; Sun et al., 2018; Kurilshikov et al., 2021).

Our outcome dataset included the GWAS summary statistics for the seven subcortical brain
structure volumes (adjusted for intracranial volume) obtained from the ENIGMA consortium
(Hibar et al., 2015). All participants in all cohorts in the different GWAS studies gave
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written informed consent and the sites involved obtained approval from local research ethics
committees or Institutional Review Boards.

2.3. Selection of genetic instruments

The first step to performing MR analysis is the selection of instrument variables. We

used a threshold of nominal significance (P< 1 x 107°) to select SNPs from the GWAS
summary statistics for each of the exposure variables. Ideally, genome-wide SNPs (P <

5 x 1078) are used for MR analysis but a relatively relaxed threshold for the genetic
instruments has been previously used in MR investigations when there were no or only a
few genome wide SNPs available (Yang et al., 2022a, 2022b; Choi et al., 2019; Sanna et
al., 2019). To select independent SNPs, we performed LD clumping using PLINK2 with

an /2 threshold of 0.01 within a 500 kb window using the 1000 Genomes European dataset
as the reference panel (Auton et al., 2015). The next steps of the analysis were performed
using the TwoSampleMR package in R (Hemani et al., 2018). Once the independent SNPs
were selected, we harmonized the exposure and outcome datasets to match the effect alleles,
obtained the SNP effects and corresponding standard errors, and removed ambiguous SNPs
with intermediate allele frequencies. In cases where a SNP was not available in the outcome
dataset, a proxy SNPs with high LD with main SNP was used (LD at /2> 0.8) for the
analysis. No overlap was present between the outcome data and the reference LD data
used. We then evaluated the instrument strength of each of the exposures by estimating

the proportion of variance explained by the SNPs (/%) and the Astatistic for each of

the variables (Brion et al., 2013). Typically, an Fstatistic >10 is considered sufficiently
informative for MR analysis (Burgess et al., 2013). We extracted a range of seven to 84
SNPs for the proteome data with an average R2 of 21 % and the minimum £ statistic was
20.56. The number of SNPs for the metabolites ranged from three to 241 with an average
RZof 13.1 % and a minimum F statistic of 20.52. Finally, for the various microbial genera
we extracted 3 to 22, with an average R of 3.2 % and the lowest ~statistic of 20.46.The
number of instrument variables, /2 and Fstatistics for each individual biomarker is shown
in Additional file 1.

2.4. Two sample MR analysis and statistical validation

We used the inverse variance weighted (IVW) method of MR analysis to estimate the
association between the different exposures and outcomes. The method provides a high-
power estimate and assumes that all the genetic instruments used for the analysis are
valid. Significant associations of protein, metabolites and microbiomes with the different
subcortical brain structures were identified after adjusting for multiple testing using the
Benjamini-Hochberg false discovery rate (FDR) threshold of 0.05. We then performed
downstream validation using other methods of MR estimation, heterogeneity analysis and
pleiotropy analysis for the significant associations. Two methods - the weighted median
method and MR-Egger method - were adopted as alternate methods to evaluate the
robustness of causality and detect pleiotropy. These methods are useful to validate the
results of the MR analysis in case we use SNPs that do not satisfy the assumptions for
the analysis. The weighted median method provides a consistent estimate if less than 50
% of the SNPs were invalid instruments (Bowden et al., 2016) and the MR-Egger method
was useful when up to 100 % of the SNPs came from invalid instruments (Bowden et
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al., 2015). Cochran’s Qtest was performed to test for heterogeneity, and pleiotropy was
tested by performing an MR-Egger Intercept test and a leave-one out analysis. We used the
Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method to
test for horizontal pleiotropy and detect any outliers in our analysis (Verbanck et al., 2018).
Briefly the method performs a global test for pleiotropy and if significant the outlier SNPs
are reported, which can then be removed, and the analysis is repeated without them. The
directionality test to validate whether the genetic instruments were acting on the outcome
through the exposure was tested using the MR Steiger directionality test, which calculates
the variance explained in the exposure and the outcome by the instrumenting SNPs, and
tests if the variance in the outcome is less than the exposure (Hemani et al., 2017). We also
performed reverse MR analysis with the subcortical brain structure volume as exposure and
the biomarkers as outcomes. This allows us to evaluate if there were any feedback loops
between the brain structures and biomarker levels which could lead to false positive results.
We used the same thresholds to select the genetic instruments from the GWAS studies of the
subcortical structures and used the IVW method to estimate the association.

2.5. Replication analysis

To validate the significant associations identified in our analysis, we obtained independent
exposure data for the different biomarkers. For our replication tests we used proteome data
from a study of 5368 European individuals (Gudjonsson et al., 2022) and metabolome data
from a study of 8871 European individuals (Chen et al., 2023). We then used the same
thresholds for instrument selection as described above and performed MR-IVW analysis to
test whether the associations are significant in an independent analysis.

2.6. Functional enrichment analysis

Functional enrichment analysis was performed using the gProfiler tool (Raudvere et

al., 2019). We tested for enrichment across different gene ontology terms, KEGG and
reactome pathway databases, protein complexes and human phenotype ontology databases.
A Bonferroni threshold was used to correct for multiple testing for all pathways tested. The
pathway and enrichment analysis for metabolites was performed using the MetaboAnalyst
platform (Pang et al., 2021).

3. Results

3.1. Investigating the causal association between proteome and subcortical brain

structures

Using two sample MR analysis, we tested for potentially causal associations between 2994
proteins and seven subcortical brain volumes (Additional file 2). Eleven proteins showed
significant causal association with one of the subcortical brain structures as shown in

Fig. 2 and Supplementary Table 2. Agouti Signaling Protein (ASIP) had the strongest
association with putamen volume, with increase in the protein expression resulting in
decrease in putamen volume (Beta: 28, p-value: 1.2 x 1078). Plasma protease C1 inhibitor
(SERPING1) and Secretoglobin family 1C member 1 (SCGB1C1) were both found to

be causally associated with accumbens volume, with the increase in expression of these
proteins being associated with increase in the volume of accumbens (Beta: 6.3-9.7, p
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value: 3 x 107 - 6.9 x 1077). Increase in Granzyme A (GZMA) levels was found to

be significantly associated with increase in amygdala volume (Beta: 17, p-value: 1.43x10—
5). Two proteins had a significant causal association with caudate volume. Increase

in Thioredoxin domain containing protein 12 (TXNDC12) levels was associated with
increase in caudate volume (Beta: 11.7, p-value: 2.3 x 1075), whereas Transmembrane
protease serine 11D (TMPRSS11D) had a negative association (Beta: —26.8, p-value: 7.1
x 1077). For the hippocampus, we found four proteins significantly associated and all of
them had a negative association with volume of hippocampus. These included Copine-1
(CPNEZ1), Cardiotrophin-1 (CTF1), Selenoprotein S (VIMP) and Protein CEI (C50rf38)
(Beta: —21.2 to —25.9, p-value: 4.9 x 107° - 9.8 x 1077). Finally, we found that increases
in Chymotrypsinogen B (CTRB1) were significantly associated with decrease in the volume
of thalamus (Beta: —23.9, p-value: 1.4 x 107°). No proteins were found to be significantly
associated with pallidum volume after multiple testing corrections.

Interestingly, we observed that certain proteins such as SERPING1, CTRB1 and ASIP where
nominally associated (p< 0.05) with other subcortical brain structures as well in similar
direction as their primary associations (Supplementary Fig. 1).

3.2. Investigating causal association between metabolome and subcortical brain

structures

We proceeded to test for potentially causal association between metabolites and subcortical
brain structure (Additional file 3). We found six metabolites to be significantly associated
with one of the subcortical brain structure volumes (Supplementary Table 3 and Fig. 3).
Among these, two metabolites had a causal association with amygdala volume. These
included uridine levels which had a positive association (Beta: 255.9, p-value: 1.44x107%)
and Arachidonate which had a negative association with amygdala volume (Beta: —=110.4,
p-value: 2.54x1074). We also found three metabolites significantly associated with thalamus
volume which were Urate (Beta: —458.7, p-value: 3.7 x 1075), 1-arachidonoyl-GPC (Beta:
269.7, p-value: 1.1 x 1074) and N-acetylornithine (Beta: 72.4, p-value: 5.6 x 1074). Increase
in mannose levels was found to be causally associated with increase in caudate volume
(Beta: 244.7, p-value: 5.5 x 107°). We also observed that Uridine, N-acetylornithine and
1-arachidonoyl-GPC were nominally associated (p < 0.05) with other subcortical structures
as well (supplementary Fig. 2).

3.3. Investigating causal association between microbiome and subcortical brain

structures

Here, we pursued MR analysis between 103 microbial genera as exposure and subcortical
structure as outcome. Although our analysis did not reveal any significant associations after
multiple testing corrections (Additional file 4), 28 associations were found to be nominally
significant (p < 0.05) (Supplementary Figs. 3 and 4) between microbiome and brain volume.
The strongest association was observed for Erysipelatoclostridium and Amygdala volume
(Beta: 29, pvalue: 1.1 x 1073),
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3.4. Heterogeneity, sensitivity and pleiotropy analyzes

To determine the robustness and the validity of our results, we performed downstream
statistical analysis to further increase the confidence in the observed associations. For all
the significant associations identified in the primary analysis, we repeated the MR analysis
using other methods such as the weighted median method and the MR-Egger method. We
found that the associations were largely consistent with effects in the same direction and

a significant p-value for the proteins (Supplementary Table 4). The MR-Egger estimate
between the metabolites and subcortical brain volumes was found to be non-significant
(Supplementary Table 5). We then determined if there was any heterogeneity in the genetic
instruments used by calculating the Cochran’s Q statistic and found little to no evidence

of heterogeneity (p-value: 0.094-0.99) for all proteins and metabolites (Table 1A and B).
Following this, we tested for pleiotropy of SNPs between exposure and outcome using

the Egger intercept test and leave one out analysis. We found no evidence of pleiotropy
(Egger Intercept p-value: 0.06-0.95) and leave one out analysis showed that removing any
SNP did not greatly affect the association (Table 1 and additional file 5). Additionally, the
MR-PRESSO test showed that there was no horizontal pleiotropy in the genetic instruments
(global test p> 0.05) used and thus no outliers were present in the analysis (Table 1).

One of the assumptions of MR is that the instruments influence the exposure first and then
the outcome through the exposure. To evaluate this, we used the MR-Steiger test which
calculates the variance explained in the exposure and the outcome by the instrumenting
SNPs, and tests if the variance in the outcome is less than the exposure. The test showed that
for all the proteins and metabolites that had significant associations with subcortical volume,
the variance of the genetic instruments in the exposure is always greater than the outcome -
thus validating the assumption of MR (Supplementary Tables 6 and 7).

3.5. Reverse Mendelian randomization analysis

We performed the MR analysis with the subcortical brain structure volumes as exposure and
the significantly associated biomarkers as outcomes. The results showed that for all proteins
except C5orf38, there was no reverse causation observed in our analysis (Table 2A), thus
indicating the causal effects of the proteins on the subcortical brain volume were statistically
robust and not false positives. No reverse association was found between subcortical brain
volume and the six metabolites as well (Table 2B).

3.6. Replication analysis

We validated our significant biomarker — subcortical structure volume associations using
independent exposure data (Gudjonsson et al., 2022; Chen et al., 2023) and performed
MR-IVW analysis. The results showed that nine proteins (out of the ten tested — one was
not available in the dataset) (Table 3A) and five (out of six) metabolites (Table 3B) were
associated (FDR p-value < 0.05) with the subcortical brain structure volume, thus providing
additional confirmations for our findings.
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Functional enrichment analysis

Analysis of the associated proteins using the g:Profiler platform revealed significant
enrichment for various Gene Ontology terms after adjusting for multiple testing (Fig. 4
and Supplementary Table 8).

These included molecular functions such as endopeptidase activity, peptidase activity and
hydrolase activity. We also observed significant enrichment for biological processes such
as proteolysis, regulation of the endoplasmic reticulum apoptotic signaling pathway and
negative regulation of DNA binding. Most of the proteins were enriched in the extracellular
regions of the human system. No significant enrichment was observed for the metabolites
across all metabolic pathways.

4. Discussion

Here, pursuing a systems biology, multi-omic approach, we sought to provide insights

into the mechanisms and mediators that underlie known associations of brain structures

and neuropsychiatric disease. To do this, we performed a two-sample MR analysis to
identify potentially causal associations between the genetically predicted levels of different
biomarkers (plasma proteome, blood metabolome and gut microbiome) and the volumes

of seven subcortical brain structures. Analyzing available summary statistics from large-
scale GWAS, we identified eleven proteins and six metabolites to have a significant

causal association with at least one subcortical structure after correcting for multiple
testing. Replication analysis using large independent exposure datasets revealed significant
associations for nine proteins and five metabolites. Heterogeneity and pleiotropy analysis
showed low to no deviation from null thus validating our associations as truly significant.
Bi-directional MR analysis for the significant associations showed no reverse causation for
any proteins or metabolites except one (C50rf38, which is an unknown protein). Finally,
enrichment analysis of the associated proteins showed significant enrichment for proteolytic
processes including endopeptidase, peptidase, and hydrolase activities. No significant causal
associations were observed between different bacterial genera in the gut microbiome and
subcortical brain structures.

The molecular functions and the roles of the different proteins identified in this analysis

as causally associated with subcortical brain volumes point to various pathways and
mechanisms that could also help explain the relationship between subcortical structures and
neuropsychiatric disorders. For example, SERPING1, which is a Plasma Protease inhibitor
is a glycosylated protein involved in the regulation of the complement cascade and has
been previously found to be associated with influencing frontal cortical thickness (Stelzer
et al., 2016; Allswede et al., 2018). The complement system itself has been implicated in
depression, schizophrenia, and other neurodegenerative disorders as well (Yi et al., 2019;
Druart and Le Magueresse, 2019). The nucleus accumbens has been an important brain
region for regulating behaviors related to schizophrenia, depression and addiction (Xu et
al., 2020; Forns-Nadal et al., 2017) and our results indicate that this regulation could

be driven by levels of SERPING1, which is causally associated with accumbens volume.
Similar relationships can also be observed for many of our identified proteins. GZMA,
which is a serine protease involved in pyroptosis (Lieberman, 2010), is also found to have
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a lower expression in patients with major depressive disorder (MDD) compared to healthy
controls (Sun et al., 2022). Patients with MDD also tend to have decreased amygdala
volume (Hamilton et al., 2008) which, based on our results, could be driven by GZMA.
Another interesting example is that of TXNDC12, which is a member of the thioredoxin
(Trx) superfamily. The Trx system is an antioxidant system that is important in maintaining
sulfhydryl homeostasis protecting against oxidative stress (Arodin et al., 2014). Studies
have pointed to the role of Trx-mediated oxidative stress in Parkinson’s disease-associated
dopaminergic neuron degeneration, thus indicating that this protein might be an important
regulator of the dopamine reward system (Garcia-Garcia et al., 2012; Liu et al., Feb. 2021).
The caudate which is part of the striatum and connected to the substantia nigra is heavily
involved in the reward system where the dopaminergic neurons are produced (Driscoll et
al., 2022). Changes in caudate volume have been found to be associated with disorders such
as anorexia and Parkinsons disease (Gupta et al., 2022; Pitcher et al., 2012). The results of
our analysis suggest that TXNDC12 could be a potential mediator of these associations and
could thus be used as a potential target for diagnosis and treatment.

Some of the proteins we identified had an established role in brain development (Park et

al., 2012; Peng et al., 2017; Solovyev, 2015). For example, the proteins we found causally
associated with hippocampus volume (in both discovery and replication) were Copine-1 and
Cardiotrophin-1. Copine 1 is a calcium dependent phospholipid binding protein and plays

a role in neuronal progenitor cell differentiation and induces neurite outgrowth (Park et

al., 2012). Similar to Copine-1, Cardiotrophin-1 is also involved in the differentiation of
neuronal stem cells via a protein kinase dependent signaling pathway (Peng et al., 2017).

Apart from these proteins, we also identified six metabolites that were causally associated
with subcortical brain volume. Previous studies have shown that these metabolites have

an important role in the functioning of the central nervous system and are also associated
with different neurological disorders involved in various functions such as antioxidation
and neuro-inflammatory responses. Antioxidants act directly to scavenge oxidizing radicals
and regenerate oxidized biomolecules in organisms to protect the brain from oxidative
stress (Lee et al., 2020). Uric acid and uridine which we found associated with subcortical
structure volume are considered key antioxidants in humans (Becker, 1993). Interestingly
high level of uric acid has been associated with increased risk of disorders such as ASD
and ADHD (Page and Coleman, 2000; Sutin et al., 2014). Both of these disorders are

also associated with reduced thalamic volume (Tamura et al., 2010; Xia et al., 2012). The
association could be potentially explained by higher levels of uric acid as seen in our results.
Additionally, both uric acid and uridine are implicated in the development of Lesch-Nyhan
syndrome which is a congenital disorder that affects brain structure and behavior of the
affected individuals (Jinnah, 2009). Other metabolites such as mannose and arachidonate
which were identified in our study have also been found to be associated with disorders like
anxiety and depression in mouse model systems (Xu et al., 2021; Larrieu and Layé, 2018;
Yu et al., 2021).

We also observed that certain proteins and metabolites such as SERPING1, ASIP, CTRB1
and 1-arachidonoyl-GPC that were significantly associated with a specific subcortical
structure were also nominally associated (p < 0.05) with other structures as well. This

Neuroimage. Author manuscript; available in PMC 2024 December 16.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Jain et al.

Page 11

could indicate that these biomarkers are important in functioning of different subcortical
brain structures and additional analysis with larger sample sizes could lead to stronger and
increased number of associations.

No significant associations were obtained between microbiome and the subcortical brain
structures, but several nominal associations were observed. This could be due the larger
impact of environment on microbiome levels and potentially a larger study that captures
greater level significant genomic variations associated with microbiome is needed. We
should also note that the microbiome GWAS study used is based on a trans-ancestry sample
while the brain volume GWAS studies are only European and hence there could be a loss of
power in the MR analysis.

There are certain limitations of this study. First, there were very few or no genome-wide
significant SNPs to be used as instrument variables for many biomarkers in the MR analysis.
To address this, we used a more exploratory threshold of 1e-05 for selecting genetic
instruments, like previously done in multiple previous studies (Zhang et al., 2022; Wootton
etal., 2022; Choi et al., 2019; Sanna et al., 2019). We evaluated the strength for these
genetic instruments using different statistical methods and found that they were valid for
MR analysis. Second, the proteins and metabolites were quantified in the plasma for the
GWAS analysis, which is a natural choice for biomarker-focused applications considering its
convenience; however, we do not know whether these biomarkers would have had similar
levels in specific brain regions, because of the existence of the blood-brain-barrier. To
address this, we checked for the expression and presence of the different proteins and
metabolites in the CNS. We found that most of them are highly expressed in different parts
of the brain (Uhlén et al., 2015) and play an important role in its development and function
(Supplementary Table 9). We would also like to point out that, we performed an MR

study and identified several statistically causal risk factors associated with the subcortical
brain volume, but these findings need further biological validation using experimental
verification in cells and model systems. Based on statistical analysis, our study points to

the most reliable targets for downstream investment, analysis and experimental validation
and provides novel insights into the physiology of brain structures.

In conclusion, we identified several proteins and metabolites that are causally associated
with the volume of subcortical brain structures. Our study highlighted the role of proteolytic
and anti-oxidative components in the development and functioning of the brain. The
biomarkers we identified could mediate the relationship between subcortical structures and
different neurological and neuropsychiatric disorders. The results of these analysis highlight
the importance of plasma proteins and metabolites as potential biomarkers and could help in
early detection of neurological disorders and even subcortical changes. Future analysis could
examine other characteristics of the brain such as neuronal activity, gray matter volume, and
white matter connectivity which could further improve our understanding of the functioning
of the central nervous system and its association to disease. The results of this study not
only provide novel insight for understanding subcortical brain structure, but also help in
uncovering potential diagnostic markers and drug targets for the many disorders that are
associated with changes in brain structures.
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Fig. 1.

Study overview and design for MR analysis. SNP information for exposures and outcomes
were extracted from GWAS summary statistics for each feature. B2 is the causal association
of interest (Effect of Biomarkers on seven different subcortical brain structure volumes),
estimated using B2 =B1/B3. B1 and B3 are the direct associations of the genetic variants on
the exposure (biomarkers) and outcomes (subcortical structures) obtained from the GWAS
studies. We also assume that the SNP instrument selected acts on the outcome only through

exposure and not through any confounders. IVW: Inverse Variance Weighted.
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Significant causal associations between plasma proteins and subcortical brain structure

volumes as uncovered via MR analysis. The Proteins were the exposures and the subcortical
structures’ volume as outcomes. The associations were significant after FDR corrections for
multiple testing.
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Significant causal associations between metabolites and subcortical brain structure volumes
as uncovered via MR analysis. The metabolites were the exposures and the subcortical
structures’ volume as outcomes. The associations were significant after FDR corrections for
multiple testing.
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various enriched Gene Ontology terms and the proteins associated with each term are shown

in ellipses.
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Table 3

Replication Analysis. The table shows the results of MR analyzes using independent exposure data for the
significant (A) proteins and (B) metabolites and subcortical brain structure volume as outcomes. The Adj_P
column refers to FDR corrected p-value for the associations. (*) indicates significant after multiple testing
correction.

Exposure Outcome Beta SE P value Adj_P

(3A) Proteins

SERPING1 Accumbens 4.79 0.76 3.27E-10  1.63E-09*
GZMA Amygdala 11.632 4.58 0.01487 0.01652*
TMPRSS11D Caudate -38.07 8.47 6.95E-06  1.39E-05*
TXNDC12 Caudate 11.89 2.38 6.17E-07  2.05E-06*
C5orf38 Hippocampus -21.94 527  3.10E-05 5.17E-05*
CPNE1 Hippocampus  -17.66 3.75 2.54E-06  6.34E-06*
CTF1 Hippocampus  -24.02 6.63 2.91E-04 4.16E-04*
VIMP Hippocampus  -6.25 10.99 0.56970 0.56970
ASIP Putamen -32.17 3.85 6.83E-17  6.83E-16*
CTRB1 Thalamus 10.79 3.83 0.00483 6.04E-03*
(3B) Metabolites

Uridine Amygdala 21.45 8.19 0.01277 0.01533*
Avrachidonate Amygdala -13.542 4.44 0.004277  0.00641*
Mannose Caudate 37.32 10.23  2.63E-04  7.9E-04*
1-Arachinoyl-GPC ~ Thalamus 30.46 7.12 1.90E-05 1.1E-04*
N-Acetylornithine ~ Thalamus 2.97 6.71 0.65824 0.65824
urate Thalamus -44.60 12.69 4.39E-04 8.8E-04*
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