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Abstract

Alterations in subcortical brain structure volumes have been found to be associated with several 

neurodegenerative and psychiatric disorders. At the same time, genome-wide association studies 

(GWAS) have identified numerous common variants associated with brain structure. In this 

study, we integrate these findings, aiming to identify proteins, metabolites, or microbes that 

have a putative causal association with subcortical brain structure volumes via a two-sample 

Mendelian randomization approach. This method uses genetic variants as instrument variables 

to identify potentially causal associations between an exposure and an outcome. The exposure 

data that we analyzed comprised genetic associations for 2994 plasma proteins, 237 metabolites, 

and 103 microbial genera. The outcome data included GWAS data for seven subcortical brain 

structure volumes including accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and 

thalamus. Eleven proteins and six metabolites were found to have a significant association with 

subcortical structure volumes, with nine proteins and five metabolites replicated using independent 

exposure data. We found causal associations between accumbens volume and plasma protease c1 

inhibitor as well as strong association between putamen volume and Agouti signaling protein. 

Among metabolites, urate had the strongest association with thalamic volume. No significant 

associations were detected between the microbial genera and subcortical brain structure volumes. 

We also observed significant enrichment for biological processes such as proteolysis, regulation of 

the endoplasmic reticulum apoptotic signaling pathway, and negative regulation of DNA binding. 

Our findings provide insights to the mechanisms through which brain volumes may be affected in 
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the pathogenesis of neurodevelopmental and psychiatric disorders and point to potential treatment 

targets for disorders that are associated with subcortical brain structure volumes.
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1. Introduction

Variations and dysfunctions of subcortical brain structures have been associated with 

numerous neurological and neuropsychiatric disorders such as Parkinson’s disease, different 

types of dementia, insomnia, schizophrenia, autism spectrum disorder (ASD), depression 

and post-traumatic stress disorder (PTSD) (Bohnen and Albin, 2011; Nir et al., 2013; 

Voineskos, 2015; van Rooij et al., 2018; Zhao et al., 2017; Emamian et al., 2021; Wang et 

al., 2021). These brain structures are involved in various functions such as mood processing, 

sensory investigations, cognitive control, memory, etc. Changes in these structures in 

individuals with psychiatric and neurological disorders could explain the phenotypic 

changes and symptoms observed and could be used as biomarkers to identify individuals 

at risk for developing the disorders (Voineskos, 2015; Zhao et al., 2017; Emamian et al., 

2021). However, it is largely unknown what molecular and biochemical processes may 

influence disease-related changes and how abnormalities of specific subcortical structures 

influence different traits and in subcortical brain structures. Understanding the relationship 

between brain volume and structure and neurological disease would help us better determine 

the underlying pathophysiological pathways. Such analysis could also be important in 

clinical practice, providing biomarkers that could be useful in disease diagnosis and patient 

management as well as helping to identify treatment targets for the various disorders 

associated with abnormalities in subcortical brain structure.

Recent large-scale multicenter studies such as the Enhancing Neuro Imaging Genetics 

through Meta-Analysis (ENIGMA) and UK Biobank (UKB) have put together neuroimaging 

and genomic data from tens of thousands of individuals and performed genome-wide 

association studies. This has led to the identification of genetic variants that are associated 

with subcortical brain structure volumes (Hibar et al., 2015; Satizabal et al., 2019; 

Thompson et al., 2020). These studies have been followed by transcriptomic and epigenomic 

analysis to identify genes and epigenetic markers associated with regional brain volumes 

(Zhao et al., 2021; Barbu et al., 2022; Jia et al., 2021). However, studies seeking to 

identify associations between regional brain volumes and other biomarkers such as proteins, 

metabolites and the microbiome are limited.

Here, we seek to address this gap, exploring the role of the proteome, metabolome, 

and microbiome in mediating brain structure changes which could lead to neurological 

disease. Proteins are the final product of gene expression and are an important intermediary 

phenotype that can provide insight into the cellular processes and functions that influence 

human biology and disease pathophysiology (Geyer et al., 2016). On the other hand, 

metabolites are small molecules that are a product and intermediates of cellular metabolism 
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and play a pivotal role in cellular and physiological processes (Nath et al., 2017; Miles 

and Calder, 2015). The observed levels of such metabolites in biofluids can elucidate these 

processes. Finally, the human microbiota plays an important role in the fermentation of 

non-digestible substrates as well as providing protection against foreign pathogens (Gilbert 

et al., 2018; Valdes et al., 2018). A number of studies have found that changes in the level 

of different proteins, metabolites and the composition of the gut microbiome are associated 

with different metabolic, immunological as well as neurological disorders (Yang et al., 2021; 

Mofrad et al., 2022; Sabatine et al., 2005; Vijay and Valdes, 2022). The importance of 

the level of different metabolites such as glucose, lactate and pyruvate in the cerebrospinal 

fluid (CSF) is well known and they are established biomarkers to study inflammation 

and malignancies in the brain (Zhang and Natowicz, 2013). Numerous studies have been 

performed to determine metabolic biomarkers of neurological diseases such as Alzheimers 

Disease and most of the results indicate changes in biochemical pathways related to the 

energy metabolism, amino acids linked to the glucogenic and ketogenic energy metabolism 

among others (Quintero Escobar et al., 2021). The gut-brain axis (GBA), which consists of 

bidirectional communication between the central and the enteric nervous system is heavily 

influenced by the gut microbiota (Carabotti et al., 2015), establishing the importance of the 

microbiome in neurological functions and disorders. Experimental studies and systematic 

analyzes have shown that changes in gut microbiota exert significant effects on CNS 

and immune cells (change in immune response, altered synapse formation and disrupted 

maintenance of the CNS), and have been associated to various disorders such as Multiple 

Sclerosis, Alzheimers, Parkinsons and Autism among others (Park and Kim, 2021).

Although the levels of these biomarkers in the body (especially metabolites and gut 

microbiome) are heavily influenced by environmental factors such as diet, medication 

and lifestyle (Rothschild et al., 2018; Maier and Typas, 2017; Bermingham et al., 2021; 

Nicholson et al., 2011), twin and family-based studies show that genetics also play an 

important role and they are highly heritable (Hagenbeek et al., 2020; Goodrich et al., 2016, 

2014). With advancements in profiling methods, large-scale studies can measure the levels 

of thousands of proteins and the various metabolites circulating in the blood and identify 

genetic variants which influence the level of these biomarkers (Geyer et al., 2016; Shin et 

al., 2014; Sun et al., 2018). Genome-wide association studies have also been performed to 

identify genetic variants that are associated with the composition of various bacterial taxa 

in the gut microbiome (Kurilshikov et al., 2021). With results from these multi-omic studies 

at hand, there is the opportunity to investigate potential causal associations between such 

biological markers and subcortical brain structure volumes, using a two-sample Mendelian 

randomization (MR) approach.

MR analysis is a genetic epidemiological method that can help to determine putative causal 

associations between an exposure and an outcome using genetic variants as instrument 

variables (Emdin et al., 2017; Sanderson et al., 2022). The method is conceptually similar 

to a randomized controlled trial which is based on the idea that the individuals receiving 

the treatment/drug (the instrument variable) are assigned randomly to the different groups 

(Hariton and Locascio, 2018). Similarly, in MR studies, the SNPs are randomized by nature, 

assigned to offspring before birth and are not confounded by any environmental factor - 

thus satisfying the requirement of a randomized trial (Sanderson et al., 2022; Swanson 
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et al., 2017). This method is very powerful and can use the vast number of publicly 

available results of GWAS to identify causal associations between different exposures and 

outcomes. Indeed, studies undertaking this approach have identified causal associations 

between proteins and disorders such as depression, anorexia, ASD, and many others (Yang 

et al., 2021; Wingo et al., 2021; Yang et al., 2022a, 2022b). MR studies have also uncovered 

associations between the gut microbiome and autoimmune and cardiovascular disorders 

(Xu et al., 2022; Zhang et al., 2022). MR studies for brain structures have also found 

causal associations between subcortical brain structure and neurological conditions like 

schizophrenia, anorexia, depression, and other disorders (Wootton et al., 2022; Walton et 

al., 2019; Shen et al., 2020; Wu et al., 2021). However, so far, no studies have examined 

associations between the different biomarkers and metrics of subcortical brain structures.

In this study, we sought to better understand the mechanisms and mediators that lead to 

the observed associations between brain structures and neurological and neuropsychiatric 

disease. In a systems biology approach, we integrated multi omic data with GWAS for 

subcortical brain volumes and employed a two-sample MR approach to ask if proteome, 

metabolome, and microbiome could be causally associated with volume of different 

subcortical brain structures. The central hypothesis of our study was that specific genetic 

variants influence subcortical brain volumes by altering levels of different biomarkers from 

the proteome, metabolome, or microbiome.

2. Methods

2.1. Ethics statement

Only publicly available deidentified summary data was used in this study.

2.2. Study design and datasets

We applied a two-sample MR analysis to determine and identify causal associations between 

three multi-omic datasets (plasma proteome; metabolome; microbiome) and seven different 

subcortical brain structure volumes (accumbens, amygdala, caudate, hippocampus, pallidum, 

putamen, and thalamus) using genetic variants as instrument variables. Fig. 1 shows the 

overall design of the analysis. The basic principle of MR is that SNPs (genetic instruments), 

which are significantly associated with modifiable exposure, would be causally associated 

with the exposure-related outcome. Three important assumptions are required for a valid 

genetic instrument and MR analysis. First, the instrument must be causally related to the 

exposure. Second, it must be independent of any confounders; and, finally, it should only 

be associated with the outcome through the exposure. In our current study, the genetic 

instruments for the different exposures were obtained from large-scale GWAS studies for 

each of the different omic datasets (information on these studies is shown in Supplementary 

Table 1). Overall, we obtained GWAS data on 2994 plasma proteins, 237 blood metabolites 

and 103 microbial genera (Shin et al., 2014; Sun et al., 2018; Kurilshikov et al., 2021). 

Our outcome dataset included the GWAS summary statistics for the seven subcortical brain 

structure volumes (adjusted for intracranial volume) obtained from the ENIGMA consortium 

(Hibar et al., 2015). All participants in all cohorts in the different GWAS studies gave 
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written informed consent and the sites involved obtained approval from local research ethics 

committees or Institutional Review Boards.

2.3. Selection of genetic instruments

The first step to performing MR analysis is the selection of instrument variables. We 

used a threshold of nominal significance (P < 1 × 10−5) to select SNPs from the GWAS 

summary statistics for each of the exposure variables. Ideally, genome-wide SNPs (P < 

5 × 10−8) are used for MR analysis but a relatively relaxed threshold for the genetic 

instruments has been previously used in MR investigations when there were no or only a 

few genome wide SNPs available (Yang et al., 2022a, 2022b; Choi et al., 2019; Sanna et 

al., 2019). To select independent SNPs, we performed LD clumping using PLINK2 with 

an r2 threshold of 0.01 within a 500 kb window using the 1000 Genomes European dataset 

as the reference panel (Auton et al., 2015). The next steps of the analysis were performed 

using the TwoSampleMR package in R (Hemani et al., 2018). Once the independent SNPs 

were selected, we harmonized the exposure and outcome datasets to match the effect alleles, 

obtained the SNP effects and corresponding standard errors, and removed ambiguous SNPs 

with intermediate allele frequencies. In cases where a SNP was not available in the outcome 

dataset, a proxy SNPs with high LD with main SNP was used (LD at r2 > 0.8) for the 

analysis. No overlap was present between the outcome data and the reference LD data 

used. We then evaluated the instrument strength of each of the exposures by estimating 

the proportion of variance explained by the SNPs (R2) and the F-statistic for each of 

the variables (Brion et al., 2013). Typically, an F statistic >10 is considered sufficiently 

informative for MR analysis (Burgess et al., 2013). We extracted a range of seven to 84 

SNPs for the proteome data with an average R2 of 21 % and the minimum F statistic was 

20.56. The number of SNPs for the metabolites ranged from three to 241 with an average 

R2 of 13.1 % and a minimum F statistic of 20.52. Finally, for the various microbial genera 

we extracted 3 to 22, with an average R2 of 3.2 % and the lowest F-statistic of 20.46.The 

number of instrument variables, R2 and F-statistics for each individual biomarker is shown 

in Additional file 1.

2.4. Two sample MR analysis and statistical validation

We used the inverse variance weighted (IVW) method of MR analysis to estimate the 

association between the different exposures and outcomes. The method provides a high-

power estimate and assumes that all the genetic instruments used for the analysis are 

valid. Significant associations of protein, metabolites and microbiomes with the different 

subcortical brain structures were identified after adjusting for multiple testing using the 

Benjamini-Hochberg false discovery rate (FDR) threshold of 0.05. We then performed 

downstream validation using other methods of MR estimation, heterogeneity analysis and 

pleiotropy analysis for the significant associations. Two methods - the weighted median 

method and MR-Egger method - were adopted as alternate methods to evaluate the 

robustness of causality and detect pleiotropy. These methods are useful to validate the 

results of the MR analysis in case we use SNPs that do not satisfy the assumptions for 

the analysis. The weighted median method provides a consistent estimate if less than 50 

% of the SNPs were invalid instruments (Bowden et al., 2016) and the MR-Egger method 

was useful when up to 100 % of the SNPs came from invalid instruments (Bowden et 
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al., 2015). Cochran’s Q test was performed to test for heterogeneity, and pleiotropy was 

tested by performing an MR-Egger Intercept test and a leave-one out analysis. We used the 

Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method to 

test for horizontal pleiotropy and detect any outliers in our analysis (Verbanck et al., 2018). 

Briefly the method performs a global test for pleiotropy and if significant the outlier SNPs 

are reported, which can then be removed, and the analysis is repeated without them. The 

directionality test to validate whether the genetic instruments were acting on the outcome 

through the exposure was tested using the MR Steiger directionality test, which calculates 

the variance explained in the exposure and the outcome by the instrumenting SNPs, and 

tests if the variance in the outcome is less than the exposure (Hemani et al., 2017). We also 

performed reverse MR analysis with the subcortical brain structure volume as exposure and 

the biomarkers as outcomes. This allows us to evaluate if there were any feedback loops 

between the brain structures and biomarker levels which could lead to false positive results. 

We used the same thresholds to select the genetic instruments from the GWAS studies of the 

subcortical structures and used the IVW method to estimate the association.

2.5. Replication analysis

To validate the significant associations identified in our analysis, we obtained independent 

exposure data for the different biomarkers. For our replication tests we used proteome data 

from a study of 5368 European individuals (Gudjonsson et al., 2022) and metabolome data 

from a study of 8871 European individuals (Chen et al., 2023). We then used the same 

thresholds for instrument selection as described above and performed MR-IVW analysis to 

test whether the associations are significant in an independent analysis.

2.6. Functional enrichment analysis

Functional enrichment analysis was performed using the gProfiler tool (Raudvere et 

al., 2019). We tested for enrichment across different gene ontology terms, KEGG and 

reactome pathway databases, protein complexes and human phenotype ontology databases. 

A Bonferroni threshold was used to correct for multiple testing for all pathways tested. The 

pathway and enrichment analysis for metabolites was performed using the MetaboAnalyst 

platform (Pang et al., 2021).

3. Results

3.1. Investigating the causal association between proteome and subcortical brain 
structures

Using two sample MR analysis, we tested for potentially causal associations between 2994 

proteins and seven subcortical brain volumes (Additional file 2). Eleven proteins showed 

significant causal association with one of the subcortical brain structures as shown in 

Fig. 2 and Supplementary Table 2. Agouti Signaling Protein (ASIP) had the strongest 

association with putamen volume, with increase in the protein expression resulting in 

decrease in putamen volume (Beta: 28, p-value: 1.2 × 10−8). Plasma protease C1 inhibitor 

(SERPING1) and Secretoglobin family 1C member 1 (SCGB1C1) were both found to 

be causally associated with accumbens volume, with the increase in expression of these 

proteins being associated with increase in the volume of accumbens (Beta: 6.3–9.7, p-
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value: 3 × 10−5 - 6.9 × 10−7). Increase in Granzyme A (GZMA) levels was found to 

be significantly associated with increase in amygdala volume (Beta: 17, p-value: 1.43×10–

5). Two proteins had a significant causal association with caudate volume. Increase 

in Thioredoxin domain containing protein 12 (TXNDC12) levels was associated with 

increase in caudate volume (Beta: 11.7, p-value: 2.3 × 10−6), whereas Transmembrane 

protease serine 11D (TMPRSS11D) had a negative association (Beta: −26.8, p-value: 7.1 

× 10−7). For the hippocampus, we found four proteins significantly associated and all of 

them had a negative association with volume of hippocampus. These included Copine-1 

(CPNE1), Cardiotrophin-1 (CTF1), Selenoprotein S (VIMP) and Protein CEI (C5orf38) 

(Beta: −21.2 to −25.9, p-value: 4.9 × 10−5 - 9.8 × 10−7). Finally, we found that increases 

in Chymotrypsinogen B (CTRB1) were significantly associated with decrease in the volume 

of thalamus (Beta: −23.9, p-value: 1.4 × 10−5). No proteins were found to be significantly 

associated with pallidum volume after multiple testing corrections.

Interestingly, we observed that certain proteins such as SERPING1, CTRB1 and ASIP where 

nominally associated (p< 0.05) with other subcortical brain structures as well in similar 

direction as their primary associations (Supplementary Fig. 1).

3.2. Investigating causal association between metabolome and subcortical brain 
structures

We proceeded to test for potentially causal association between metabolites and subcortical 

brain structure (Additional file 3). We found six metabolites to be significantly associated 

with one of the subcortical brain structure volumes (Supplementary Table 3 and Fig. 3). 

Among these, two metabolites had a causal association with amygdala volume. These 

included uridine levels which had a positive association (Beta: 255.9, p-value: 1.44×10−4) 

and Arachidonate which had a negative association with amygdala volume (Beta: −110.4, 

p-value: 2.54×10−4). We also found three metabolites significantly associated with thalamus 

volume which were Urate (Beta: −458.7, p-value: 3.7 × 10−5), 1-arachidonoyl-GPC (Beta: 

269.7, p-value: 1.1 × 10−4) and N-acetylornithine (Beta: 72.4, p-value: 5.6 × 10−4). Increase 

in mannose levels was found to be causally associated with increase in caudate volume 

(Beta: 244.7, p-value: 5.5 × 10−5). We also observed that Uridine, N-acetylornithine and 

1-arachidonoyl-GPC were nominally associated (p < 0.05) with other subcortical structures 

as well (supplementary Fig. 2).

3.3. Investigating causal association between microbiome and subcortical brain 
structures

Here, we pursued MR analysis between 103 microbial genera as exposure and subcortical 

structure as outcome. Although our analysis did not reveal any significant associations after 

multiple testing corrections (Additional file 4), 28 associations were found to be nominally 

significant (p < 0.05) (Supplementary Figs. 3 and 4) between microbiome and brain volume. 

The strongest association was observed for Erysipelatoclostridium and Amygdala volume 

(Beta: 29, p-value: 1.1 × 10−3).
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3.4. Heterogeneity, sensitivity and pleiotropy analyzes

To determine the robustness and the validity of our results, we performed downstream 

statistical analysis to further increase the confidence in the observed associations. For all 

the significant associations identified in the primary analysis, we repeated the MR analysis 

using other methods such as the weighted median method and the MR-Egger method. We 

found that the associations were largely consistent with effects in the same direction and 

a significant p-value for the proteins (Supplementary Table 4). The MR-Egger estimate 

between the metabolites and subcortical brain volumes was found to be non-significant 

(Supplementary Table 5). We then determined if there was any heterogeneity in the genetic 

instruments used by calculating the Cochran’s Q statistic and found little to no evidence 

of heterogeneity (p-value: 0.094–0.99) for all proteins and metabolites (Table 1A and B). 

Following this, we tested for pleiotropy of SNPs between exposure and outcome using 

the Egger intercept test and leave one out analysis. We found no evidence of pleiotropy 

(Egger Intercept p-value: 0.06–0.95) and leave one out analysis showed that removing any 

SNP did not greatly affect the association (Table 1 and additional file 5). Additionally, the 

MR-PRESSO test showed that there was no horizontal pleiotropy in the genetic instruments 

(global test p > 0.05) used and thus no outliers were present in the analysis (Table 1). 

One of the assumptions of MR is that the instruments influence the exposure first and then 

the outcome through the exposure. To evaluate this, we used the MR-Steiger test which 

calculates the variance explained in the exposure and the outcome by the instrumenting 

SNPs, and tests if the variance in the outcome is less than the exposure. The test showed that 

for all the proteins and metabolites that had significant associations with subcortical volume, 

the variance of the genetic instruments in the exposure is always greater than the outcome - 

thus validating the assumption of MR (Supplementary Tables 6 and 7).

3.5. Reverse Mendelian randomization analysis

We performed the MR analysis with the subcortical brain structure volumes as exposure and 

the significantly associated biomarkers as outcomes. The results showed that for all proteins 

except C5orf38, there was no reverse causation observed in our analysis (Table 2A), thus 

indicating the causal effects of the proteins on the subcortical brain volume were statistically 

robust and not false positives. No reverse association was found between subcortical brain 

volume and the six metabolites as well (Table 2B).

3.6. Replication analysis

We validated our significant biomarker – subcortical structure volume associations using 

independent exposure data (Gudjonsson et al., 2022; Chen et al., 2023) and performed 

MR-IVW analysis. The results showed that nine proteins (out of the ten tested – one was 

not available in the dataset) (Table 3A) and five (out of six) metabolites (Table 3B) were 

associated (FDR p-value < 0.05) with the subcortical brain structure volume, thus providing 

additional confirmations for our findings.
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3.7. Functional enrichment analysis

Analysis of the associated proteins using the g:Profiler platform revealed significant 

enrichment for various Gene Ontology terms after adjusting for multiple testing (Fig. 4 

and Supplementary Table 8).

These included molecular functions such as endopeptidase activity, peptidase activity and 

hydrolase activity. We also observed significant enrichment for biological processes such 

as proteolysis, regulation of the endoplasmic reticulum apoptotic signaling pathway and 

negative regulation of DNA binding. Most of the proteins were enriched in the extracellular 

regions of the human system. No significant enrichment was observed for the metabolites 

across all metabolic pathways.

4. Discussion

Here, pursuing a systems biology, multi-omic approach, we sought to provide insights 

into the mechanisms and mediators that underlie known associations of brain structures 

and neuropsychiatric disease. To do this, we performed a two-sample MR analysis to 

identify potentially causal associations between the genetically predicted levels of different 

biomarkers (plasma proteome, blood metabolome and gut microbiome) and the volumes 

of seven subcortical brain structures. Analyzing available summary statistics from large-

scale GWAS, we identified eleven proteins and six metabolites to have a significant 

causal association with at least one subcortical structure after correcting for multiple 

testing. Replication analysis using large independent exposure datasets revealed significant 

associations for nine proteins and five metabolites. Heterogeneity and pleiotropy analysis 

showed low to no deviation from null thus validating our associations as truly significant. 

Bi-directional MR analysis for the significant associations showed no reverse causation for 

any proteins or metabolites except one (C5orf38, which is an unknown protein). Finally, 

enrichment analysis of the associated proteins showed significant enrichment for proteolytic 

processes including endopeptidase, peptidase, and hydrolase activities. No significant causal 

associations were observed between different bacterial genera in the gut microbiome and 

subcortical brain structures.

The molecular functions and the roles of the different proteins identified in this analysis 

as causally associated with subcortical brain volumes point to various pathways and 

mechanisms that could also help explain the relationship between subcortical structures and 

neuropsychiatric disorders. For example, SERPING1, which is a Plasma Protease inhibitor 

is a glycosylated protein involved in the regulation of the complement cascade and has 

been previously found to be associated with influencing frontal cortical thickness (Stelzer 

et al., 2016; Allswede et al., 2018). The complement system itself has been implicated in 

depression, schizophrenia, and other neurodegenerative disorders as well (Yi et al., 2019; 

Druart and Le Magueresse, 2019). The nucleus accumbens has been an important brain 

region for regulating behaviors related to schizophrenia, depression and addiction (Xu et 

al., 2020; Forns-Nadal et al., 2017) and our results indicate that this regulation could 

be driven by levels of SERPING1, which is causally associated with accumbens volume. 

Similar relationships can also be observed for many of our identified proteins. GZMA, 

which is a serine protease involved in pyroptosis (Lieberman, 2010), is also found to have 
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a lower expression in patients with major depressive disorder (MDD) compared to healthy 

controls (Sun et al., 2022). Patients with MDD also tend to have decreased amygdala 

volume (Hamilton et al., 2008) which, based on our results, could be driven by GZMA. 

Another interesting example is that of TXNDC12, which is a member of the thioredoxin 

(Trx) superfamily. The Trx system is an antioxidant system that is important in maintaining 

sulfhydryl homeostasis protecting against oxidative stress (Arodin et al., 2014). Studies 

have pointed to the role of Trx-mediated oxidative stress in Parkinson’s disease-associated 

dopaminergic neuron degeneration, thus indicating that this protein might be an important 

regulator of the dopamine reward system (Garcia-Garcia et al., 2012; Liu et al., Feb. 2021). 

The caudate which is part of the striatum and connected to the substantia nigra is heavily 

involved in the reward system where the dopaminergic neurons are produced (Driscoll et 

al., 2022). Changes in caudate volume have been found to be associated with disorders such 

as anorexia and Parkinsons disease (Gupta et al., 2022; Pitcher et al., 2012). The results of 

our analysis suggest that TXNDC12 could be a potential mediator of these associations and 

could thus be used as a potential target for diagnosis and treatment.

Some of the proteins we identified had an established role in brain development (Park et 

al., 2012; Peng et al., 2017; Solovyev, 2015). For example, the proteins we found causally 

associated with hippocampus volume (in both discovery and replication) were Copine-1 and 

Cardiotrophin-1. Copine 1 is a calcium dependent phospholipid binding protein and plays 

a role in neuronal progenitor cell differentiation and induces neurite outgrowth (Park et 

al., 2012). Similar to Copine-1, Cardiotrophin-1 is also involved in the differentiation of 

neuronal stem cells via a protein kinase dependent signaling pathway (Peng et al., 2017).

Apart from these proteins, we also identified six metabolites that were causally associated 

with subcortical brain volume. Previous studies have shown that these metabolites have 

an important role in the functioning of the central nervous system and are also associated 

with different neurological disorders involved in various functions such as antioxidation 

and neuro-inflammatory responses. Antioxidants act directly to scavenge oxidizing radicals 

and regenerate oxidized biomolecules in organisms to protect the brain from oxidative 

stress (Lee et al., 2020). Uric acid and uridine which we found associated with subcortical 

structure volume are considered key antioxidants in humans (Becker, 1993). Interestingly 

high level of uric acid has been associated with increased risk of disorders such as ASD 

and ADHD (Page and Coleman, 2000; Sutin et al., 2014). Both of these disorders are 

also associated with reduced thalamic volume (Tamura et al., 2010; Xia et al., 2012). The 

association could be potentially explained by higher levels of uric acid as seen in our results. 

Additionally, both uric acid and uridine are implicated in the development of Lesch-Nyhan 

syndrome which is a congenital disorder that affects brain structure and behavior of the 

affected individuals (Jinnah, 2009). Other metabolites such as mannose and arachidonate 

which were identified in our study have also been found to be associated with disorders like 

anxiety and depression in mouse model systems (Xu et al., 2021; Larrieu and Layé, 2018; 

Yu et al., 2021).

We also observed that certain proteins and metabolites such as SERPING1, ASIP, CTRB1 

and 1-arachidonoyl-GPC that were significantly associated with a specific subcortical 

structure were also nominally associated (p < 0.05) with other structures as well. This 
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could indicate that these biomarkers are important in functioning of different subcortical 

brain structures and additional analysis with larger sample sizes could lead to stronger and 

increased number of associations.

No significant associations were obtained between microbiome and the subcortical brain 

structures, but several nominal associations were observed. This could be due the larger 

impact of environment on microbiome levels and potentially a larger study that captures 

greater level significant genomic variations associated with microbiome is needed. We 

should also note that the microbiome GWAS study used is based on a trans-ancestry sample 

while the brain volume GWAS studies are only European and hence there could be a loss of 

power in the MR analysis.

There are certain limitations of this study. First, there were very few or no genome-wide 

significant SNPs to be used as instrument variables for many biomarkers in the MR analysis. 

To address this, we used a more exploratory threshold of 1e-05 for selecting genetic 

instruments, like previously done in multiple previous studies (Zhang et al., 2022; Wootton 

et al., 2022; Choi et al., 2019; Sanna et al., 2019). We evaluated the strength for these 

genetic instruments using different statistical methods and found that they were valid for 

MR analysis. Second, the proteins and metabolites were quantified in the plasma for the 

GWAS analysis, which is a natural choice for biomarker-focused applications considering its 

convenience; however, we do not know whether these biomarkers would have had similar 

levels in specific brain regions, because of the existence of the blood-brain-barrier. To 

address this, we checked for the expression and presence of the different proteins and 

metabolites in the CNS. We found that most of them are highly expressed in different parts 

of the brain (Uhlén et al., 2015) and play an important role in its development and function 

(Supplementary Table 9). We would also like to point out that, we performed an MR 

study and identified several statistically causal risk factors associated with the subcortical 

brain volume, but these findings need further biological validation using experimental 

verification in cells and model systems. Based on statistical analysis, our study points to 

the most reliable targets for downstream investment, analysis and experimental validation 

and provides novel insights into the physiology of brain structures.

In conclusion, we identified several proteins and metabolites that are causally associated 

with the volume of subcortical brain structures. Our study highlighted the role of proteolytic 

and anti-oxidative components in the development and functioning of the brain. The 

biomarkers we identified could mediate the relationship between subcortical structures and 

different neurological and neuropsychiatric disorders. The results of these analysis highlight 

the importance of plasma proteins and metabolites as potential biomarkers and could help in 

early detection of neurological disorders and even subcortical changes. Future analysis could 

examine other characteristics of the brain such as neuronal activity, gray matter volume, and 

white matter connectivity which could further improve our understanding of the functioning 

of the central nervous system and its association to disease. The results of this study not 

only provide novel insight for understanding subcortical brain structure, but also help in 

uncovering potential diagnostic markers and drug targets for the many disorders that are 

associated with changes in brain structures.
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Fig. 1. 
Study overview and design for MR analysis. SNP information for exposures and outcomes 

were extracted from GWAS summary statistics for each feature. B2 is the causal association 

of interest (Effect of Biomarkers on seven different subcortical brain structure volumes), 

estimated using B2 =B1/B3. B1 and B3 are the direct associations of the genetic variants on 

the exposure (biomarkers) and outcomes (subcortical structures) obtained from the GWAS 

studies. We also assume that the SNP instrument selected acts on the outcome only through 

exposure and not through any confounders. IVW: Inverse Variance Weighted.
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Fig. 2. 
Significant causal associations between plasma proteins and subcortical brain structure 

volumes as uncovered via MR analysis. The Proteins were the exposures and the subcortical 

structures’ volume as outcomes. The associations were significant after FDR corrections for 

multiple testing.
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Fig. 3. 
Significant causal associations between metabolites and subcortical brain structure volumes 

as uncovered via MR analysis. The metabolites were the exposures and the subcortical 

structures’ volume as outcomes. The associations were significant after FDR corrections for 

multiple testing.
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Fig. 4. 
Enrichment analysis of proteins using the g:Profiler tool. The rectangles correspond to the 

various enriched Gene Ontology terms and the proteins associated with each term are shown 

in ellipses.
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Table 3

Replication Analysis. The table shows the results of MR analyzes using independent exposure data for the 

significant (A) proteins and (B) metabolites and subcortical brain structure volume as outcomes. The Adj_P 

column refers to FDR corrected p-value for the associations. (*) indicates significant after multiple testing 

correction.

Exposure Outcome Beta SE P value Adj_P

(3A) Proteins

SERPING1 Accumbens 4.79 0.76 3.27E-10 1.63E-09*

GZMA Amygdala 11.632 4.58 0.01487 0.01652*

TMPRSS11D Caudate −38.07 8.47 6.95E-06 1.39E-05*

TXNDC12 Caudate 11.89 2.38 6.17E-07 2.05E-06*

C5orf38 Hippocampus −21.94 5.27 3.10E-05 5.17E-05*

CPNE1 Hippocampus −17.66 3.75 2.54E-06 6.34E-06*

CTF1 Hippocampus −24.02 6.63 2.91E-04 4.16E-04*

VIMP Hippocampus −6.25 10.99 0.56970 0.56970

ASIP Putamen −32.17 3.85 6.83E-17 6.83E-16*

CTRB1 Thalamus 10.79 3.83 0.00483 6.04E-03*

(3B) Metabolites

Uridine Amygdala 21.45 8.19 0.01277 0.01533*

Arachidonate Amygdala −13.542 4.44 0.004277 0.00641*

Mannose Caudate 37.32 10.23 2.63E-04 7.9E-04*

1-Arachinoyl-GPC Thalamus 30.46 7.12 1.90E-05 1.1E-04*

N-Acetylornithine Thalamus 2.97 6.71 0.65824 0.65824

urate Thalamus −44.60 12.69 4.39E-04 8.8E-04*
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