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Abstract: In the inference process of existing deep learning models, it is usually necessary to process
the input data level-wise, and impose a corresponding relational inductive bias on each level. This
kind of relational inductive bias determines the theoretical performance upper limit of the deep
learning method. In the field of sleep stage classification, only a single relational inductive bias is
adopted at the same level in the mainstream methods based on deep learning. This will make the
feature extraction method of deep learning incomplete and limit the performance of the method.
In view of the above problems, a novel deep learning model based on hybrid relational inductive
biases is proposed in this paper. It is called CCRRSleepNet. The model divides the single channel
Electroencephalogram (EEG) data into three levels: frame, epoch, and sequence. It applies hybrid
relational inductive biases from many aspects based on three levels. Meanwhile, multiscale atrous
convolution block (MSACB) is adopted in CCRRSleepNet to learn the features of different attributes.
However, in practice, the actual performance of the deep learning model depends on the nonrelational
inductive biases, so a variety of matching nonrelational inductive biases are adopted in this paper to
optimize CCRRSleepNet. The CCRRSleepNet is tested on the Fpz-Cz and Pz-Oz channel data of the
Sleep-EDF dataset. The experimental results show that the method proposed in this paper is superior
to many existing methods.

Keywords: deep learning; automatic sleep stage classification; inductive biases; relational induc-
tive biases

1. Introduction

In recent years, the performance of automatic sleep stage classification algorithms
based on deep learning has gradually surpassed the performance of traditional machine
learning methods and human experts. Deep learning methods often follow the end-to-end
design concept, and emphasize the minimum prior representation and computational
assumptions [1]. This minimum prior representation and computational assumption
can be represented by inductive biases. Whether the inductive biases of the algorithm
match the problem itself in most cases directly determines whether the algorithm can
achieve good performance. Inductive biases can be divided into relational inductive
biases and nonrelational inductive biases. The relational inductive biases are the key
to determining the upper limit of the theoretical performance of the algorithm, and the
nonrelational inductive biases determine the extent to which the actual performance
reaches the theoretical performance. In deep learning, the connection of neurons reflects
the relational inductive biases, such as convolution layer of local connection and recurrent
layer of cross time step connection. The nonrelational inductive bias is reflected in other
aspects, such as activation function, standardization, data augmentation, optimization
algorithms, etc.
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Currently, deep learning-based algorithms usually use epoch-based models and
sequence-based models. The epoch represents a 20- or 30-s period of polysomnogra-
phy (PSG) data with a label. It is the smallest segment divided by human experts on
sleep signals. The epoch-based model assumes that the sleep phases are independent and
identically distributed, and uses a structure with certain relational inductive biases for
representation learning. One approach is that the epoch level signal has only locality and
translation invariance and uses convolutional neural network (CNN) for representation
learning. For example, Manzano et al. [2] used one-dimensional CNN to achieve an overall
accuracy of 68.9% on the University College Dublin Sleep Apnea Database (UCD) dataset.
Arnaud et al. [3] used one-dimensional CNN to achieve an overall accuracy of 87% for the
Sleep Heart Health Study (SHHS) dataset. Orestis et al. [4] adopted one-dimensional CNN
and then further used two-dimensional CNN to extract associated features. Adding addi-
tional relational induction biases based on locality and translation invariance can extract
simpler and more efficient features, and make the network easier to optimize. An overall
accuracy of 74% of the Fpz-Cz channel of the Sleep-EDF dataset is achieved. Zhang et al. [5]
extended CNN to the complex domain, imposed the constraint of the decision boundary
of the real and imaginary parts orthogonal to the convolution kernel, and achieved an
overall accuracy of 92% on the Harvard-MIT Division of Health Sciences and Technology
(MIT-BIH) dataset. Zhang et al. [6] used orthogonal convolution to impose orthogonal
constraints on the convolution kernel and achieved an overall accuracy of 88.4%on the
UCD dataset and 87.6% on the MIT-BIH dataset. Ahmed et al. [7] and Alexander et al. [8]
used jump connections to impose constraints on the topology and improve the information
flow and gradient flow of the network. Huy et al. [9] adopted the pooling strategy of
1-Max Pooling CNN to improve the shortcomings of ordinary pooling for information
loss and achieved an overall accuracy of 82.6% on the Sleep-EDF dataset. Although these
methods captured the differences between sleep stages to varying degrees, the hypothesis
of independent and identical distribution was difficult to establish, so this method had
natural defects.

The sequence-based model believes that physiological signals not only show different
characteristics in sleep stages, but also have state transition relationships between sleep
stages. Therefore, after the epoch-based model processing, the transformation relationship
learning algorithm between sleep stages is added to learn the salient features in sleep
stage and the implicit transformation relationship between sleep stages. Stanislas et al.
performed feature fusion of adjacent K epochs [10]. Cui et al. optimized the sequence
length based on fine granularity and achieved an overall accuracy of 92.2% for the ISRUC-
Sleep dataset [11]. Zhang et al. extracted epoch features from wearable device data, and
used Bi-LSTM to learn sequence relations [12]. Supretak et al. proposed DeepSleepNet,
which used CNN for epoch representation learning in the first stage and Bi-LSTM for
sequence learning in the second stage [13]. It achieved an overall accuracy of 82% in the
Fpz-Cz channel of the Sleep-EDF dataset and the overall accuracy rate was 79.8% in the
PZ-Oz channel. Huy et al. proposed a SeqSleepNet with two-layer Bi-GRU for sequence-
to-sequence learning and achieved an overall accuracy of 87.1% for the Montreal Archive
of Sleep Studies (MASS) dataset [14].

Although the current epoch-based model and sequence-based model have made some
progress, the epoch-based model needs to have a strong assumption of independent and
identical distribution between epochs, which makes it impossible to obtain the potential
connections between epochs. Due to the insufficient detail in the division of signal levels in
the model, the information contained in the signals at the same level is very complicated.
It is difficult to completely extract the information using only a single relational inductive
bias. For example, the signal divided into fragments contains time-varying characteristics,
and the simple translation invariance relationship induction bias cannot obtain all of its
information. Therefore, a hybrid relational inductive biases network is proposed in this
paper. It is called CCRRSleepNet. Specifically, in the sequence-based model, this paper
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further subdivides the physiological signal into three levels in the time domain, frame,
epoch, and sequence, as shown in Figure 1.

Figure 1. Time domain level division of physiological signals.

In Figure 1, the signal divided by the red vertical line is an epoch; 30-s PSG data are
adopted in this paper. An epoch can continue to be divided into frames (green vertical line
segmentation), and all epochs constitute a sequence. The EEG signal is a nonstationary
and nonlinear random signal. A simple processing strategy is to treat the EEG signal
as composed of very small stationary periodic signals (i.e., frames). This paper divides
the signal into frames and uses the translational invariance relational inductive biases to
learn time-invariant features. The time-invariant relational inductive biases are used to
learn the time-varying features between frames. A complete sequence contains multiple
30-s epochs, which requires the use of time-invariant relationship induction bias to learn
the transformation relationship between different epochs, that is, the latent change law
between sleep states.

More detailed levels are conducive to applying matching and simple relational induc-
tive biases on each level, and the corresponding features are easy to extract. However, there
are still two problems: first, the time domain hierarchical division does not carry out feature
decomposition, so a single structure cannot obtain all the useful information. Second, even
for the same feature type, there is a parameter selection problem when the corresponding
structure is used. The performance difference caused by different parameters is very large.
For example, the size of the convolution kernel of CNN directly affects the acquisition of
signal features. Therefore, a variety of relational inductive biases hybrid methods at the
same level are adopted in this paper, and time-varying and time-invariant features in the
signal are extracted to the maximum extent. Multiscale atrous convolution block (MSACB)
was used to enhance the capability of CNN to extract complex signal features.

The nonrelational inductive biases determine whether the algorithm can reach the
theoretical optimal value. Deep learning algorithms are data-driven. If the true distribution
of the training data and the test data is quite different, it will cause serious overfitting
problems. There are some problems in terms of sleep signals: (1) The number of samples
among different classes is extremely unbalanced; (2) there is a significant difference in
the difficulty of distinguishing among similar samples; (3) the number of transformation
relationships between state transitions is unbalanced. In order to solve the above prob-
lems, a method based on sequence sampling is proposed to balance the state transition
relationship. The focal loss [15] function is used to solve class imbalances and mine difficult
samples. In addition, the Mish activation function [16] is more tolerant of the negative
values of the signal. The AMSGrad optimizer is adopted to distinguish the contributions
of different batches.

In summary, the contributions of this paper include the following:

• An end-to-end hybrid relational inductive biases network, CCRRSleepNet, is pro-
posed, which is used for automatic sleep stage classification. It can alleviate the
algorithm performance ceiling caused by insufficient feature extraction methods.

• A multiscale atrous convolution block (MSACB) is proposed, which uses fewer pa-
rameters and enhances the ability to extract complex signal features.

• A variety of nonrelational inductive biases are used to optimize the network. A
sequence-based sampling method is used to balance the transition between sleep
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states. The focal loss function is used to alleviate the challenges of class imbalances
and difficult samples. A nonmonotonic, overall smooth Mish activation function that
allows a small number of negative values to pass through is used. It can stabilize the
training process. Experiments show that these methods can improve the performance
or network training process.

• The proposed model uses a single channel EEG as input, and EEG does not require
any processing. Experiments show that the proposed method has significant effects
on Fpz-Cz and Pz-Oz channels of Sleep-EDF datasets.

2. Methods
2.1. Relational Inductive Biases

To solve the problem of incomplete feature extraction in automatic sleep stage clas-
sification tasks, a hybrid relational inductive biases network called CCRRSleepNet is
proposed, as shown in Figure 2. Our open-source code can be found here: https://github.
com/nengwp/CCRRSleepNet (accessed on 2 April 2021).

Figure 2. Overall architecture of CCRRSleepNet network. Conv is convolution, MSACB is multiscale
atrous convolution block, GAP is global average pooling, Bi-GRU is two-way GRU network, Bi-LSTM
is two-way LSTM network, Fc is full connection, and add means point-by-point addition.

CCRRSleepNet is an end-to-end network, which is composed of three parts: (a) Frame-
level convolutional neural network: this part mainly extracts some low-level time-invariant
features of the signal, such as amplitude, skewness, slope, phase, and other basic attributes;
(b) Epoch-level hybrid neural network: a mixture of a convolutional neural network and
a recurrent neural network. It is used to extract advanced time-invariant features and
advanced time-varying features in signals. (c) Sequence-level recurrent neural network:
uses the recurrent neural network to obtain the transformation relationship between sleep
stages. It optimizes the sleep stages based on the sequence relationship. In summary, the
network is a hybrid of frame-level CNN, epoch-level CNN/Recurrent neural network

https://github.com/nengwp/CCRRSleepNet
https://github.com/nengwp/CCRRSleepNet
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(RNN), and sequence-level RNN. The network structure can be abbreviated as C-C/R-R.
Further abbreviated and related to the task. The network can be called CCRRSleepNet. The
input of the model is an unprocessed sleep signal. Although the experiment in this paper
uses a single-channel signal, the model in this paper supports multichannel signals and
supports different sampling rates.

2.1.1. Frame-Level Convolutional Neural Network

The nonstationary time-varying EEG signal can be regarded as composed of many
very small periodic stationary subsignals, so the time-varying characteristics of the signal in
one frame can be ignored. Firstly, the frame-level CNN uses two very different convolution
kernels to obtain signal characteristics at different frequencies. The size of the convolution
kernel is related to the sampling rate of the signal and the effective frequency of the EEG;
25 and 100 are adopted in this paper. For convolution kernels of different sizes, a positive
correlation step size is used to reduce unnecessary computation, and then the max-pool
is performed. In the two branches, the product of the pool kernel size and the step size
of the previous convolution are equal. After concatenating the features of CNN from
different branches, a dropout with a keep rate of 0.5 is used to prevent overfitting. Secondly,
multiscale atrous convolution block is used to extract features. MSACB uses convolution
layers with different receptive field sizes and depths to fully extract various frequency
components and features of different difficulty in sleep signals. As shown in Figure 3,
MSACB has four branches, the number of layers of the branches increases sequentially, and
the receptive field is expanded by using atrous convolution in the process of increasing.
The convolution layer with a convolution kernel size of 1 adds a layer of nonlinear ability,
and uses very few parameters and little computation. Atrous convolution can achieve a
larger receptive field with fewer convolution parameters and less computation.

Figure 3. Multiscale atrous convolution block. Where r represents the dilated rate, and N represents
the number of channels.

It should be noted that the problem of frame-level segmentation is a very important
issue. First, a simple strategy is to continue to segment the epoch with 30 s, and then
perform feature extraction for each segmented subepoch (i.e., frame), but this means that
the correlation of the signal is simultaneously cut. To alleviate this problem, the window
function method with overlap ratio in frequency domain analysis methods such as wavelet
transform can be adopted. However, it requires manual repeated confirmation to achieve
a more appropriate overlap rate. This is inconsistent with the original intention of deep
learning. In this paper, a convolution layer with step size to replace it is used. As the
convolution is local, which reflects the idea of frame division, the step size represents the
overlap rate to some extent. Therefore, although the frame-level CNN extracts features for
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the frame level, the results are no different from traditional convolution in terms of the
form of expression.

After the frame-level CNN processing, the features are extracted at the frame level.
These features will be input into the epoch level, and used to learn different advanced
features, such as time-invariant signal and time-varying signal. The frame-level features
are transformed by a CNN with convolution kernel size of 1 and the global average pooling
(GAP) is sent to the sequence level. This means that the frame level information also plays
an important role in the final classification results. In addition, this residual connection
also enables the gradient of the backpropagation to directly supervise the training of the
frame-level CNN.

2.1.2. Epoch-Level Hybrid Neural Network

The feature of signal at epoch level is very complex, so it is necessary to extract it
with a hybrid neural network. For time-invariant features, a very simple single-layer CNN
is used for feature extraction. For time-varying features, single-layer Bi-GRU is used for
feature extraction. Specifically, the features from the frame level are divided into CNN
branches and RNN branches learning time-invariant features and time-varying features,
respectively. For each branch, firstly, a convolution with 128 channels and convolution
kernel size of 1 is performed. The purpose of this method is to transform the frame-level
features into epoch-level features, and a different transformation is needed for the CNN
branch and RNN branch. Secondly, the max-pool is performed for CNN branches, while
the avg-pool is used for RNN. The reason is that the max-pool is nonlinear, while the
avg-pool is smooth. This means that the CNN tends to find the most favorable features
for the results, while RNN stores more details for each feature, which is very important
for time-varying features. Then, the CNN branch is convolved by the convolution kernel,
with the size of the convolution kernel is set to 3 and the number of channels is set to 1024.
Finally, the global average pooling (GAP) is used to prevent overfitting and each channel is
given more explicit feature meaning. For the RNN branch, Bi-GRU with 512 hidden units
is adopted, and the last time step of Bi-GRU is used as output.

2.1.3. Sequence-Level Recurrent Neural Network

The 30-s sleep signals divided at the sequence level contain almost all possible time-
invariant properties, so the time-invariant features in the signal are no longer repeated
learning at the sequence level. There is a close correlation between sleep stages, which is
key to exploring the classification of sleep stages. The 1024 features from the frame level
and the 2048 features from the epoch level (including 1024 features from the epoch-level
CNN and 1024 features from the epoch-level RNN) are concatenated, and a two-layer Bi
LSTM with 512 hidden units is used to capture this potential relationship. That is to say, the
forward LSTM and the backward LSTM are used to obtain information from the past and
the future, respectively. The input from the epoch level is transformed by a full connection
with 1024 hidden units, and then added point by point with the output of LSTM to form the
residual connection. The final features are classified through a single-layer full connection,
and the classification probability value is output through the softmax function. To prevent
overfitting, a dropout policy with a keep rate of 0.5 is added to each stage.

2.2. Nonrelational Inductive Biases

Nonrelational inductive biases determine whether the learning algorithm can achieve
the theoretical best performance. The learning algorithm expects unbiased data for learning,
but there is a serious imbalance in sleep data. This imbalance can be divided into three
types: (1) The sample number of sleep stage is imbalance; (2) the learning difficulty of
samples in the sleep stage is inconsistent, including samples between classes and samples
within classes; and (3) the number of state transition relationships between sleep stages
is unbalanced. For class sample imbalance, downsampling, upsampling, and generative
methods are often used, but these methods bring risks of underfitting, overfitting, and



Brain Sci. 2021, 11, 456 7 of 15

additional computational overhead, respectively. The inconsistency of sample learning
difficulty in the sleep stage is reflected in two aspects: (a) Among the samples in the
difference classes. For example, the N1 stage is often misclassified. The reason is that the
N1 stage is a transitional stage, which has some features in common with the stages before
and after the transition. In addition, the N1 stage occurs during a short period and the
number is small, so the N1 stage is a difficult sample. (b) The difficulty between samples
within a class is different, mainly affected by the significance of features within the class
and noise. In this paper, focal loss function is used to solve the problem of class imbalance
and inconsistent learning difficulty at the same time. Specifically, focal loss is defined as in
Equation (1):

FL(p) = −αy(1− p)γ log(p). (1)

In Equation (1), p is the prediction probability vector, y is the real label vector, α
controls the imbalance between classes, and γ controls the difficulty of learning. First, α is
the weight coefficient between classes, usually the inverse of the occurrence frequency of
the class. γ represents the learning difficulty factor. When a simple sample can be correctly
classified, the prediction probability is greater than 0.5. Although the loss of a single
simple sample is small, there are a large number of simple samples. The accumulated
loss dominates the entire gradient descent process. The γ factor can make the loss of
simple samples very small, so that a small number of difficult samples with large losses
can dominate the optimization process of the entire network.

Another important issue is the imbalance in the number of state transition relation-
ships between sleep stages. The duration of sleep state is usually greater than the 30-s data
divided by experts, at least 1-2 min, and at most several hours, such as W stage. Dividing
sleep data into 30-s stages will result in an enhanced transformation relationship, especially
when it contains a large number of W stages. Therefore, balancing the number of state
transformation relationships is an important means to maintain the true distribution of
data and stabilize the training process. A simple method based on sequence sampling is
adopted in this paper. First, it performs random downsampling according to the sequence
label, so that all classes have the same value, which is equal to the number of the least class
multiplied by the sampling factor. The sampling factor is used to control the degree of
overlap when the signal is upsampled. Secondly, neighborhood upsampling is performed
on these signals: that is, for each signal, multiple epochs in the neighborhood of this signal
are randomly intercepted, where the neighborhood length is generally the sequence-level
length. After such sampling, the conversion relationship between states can be balanced.
Note that the number of classes and the number of state conversion relationships are not
absolutely balanced, but this is more in line with the real distribution. Blindly treating the
transformation relationship equally will introduce new imbalances.

Inappropriate activation functions may cause problems such as an exploding gradient
or vanishing gradient. The signal is more sensitive to negative values, but the current
mainstream Relu activation function directly crops negative values, resulting in a certain
amount of information loss. Therefore, the Mish activation function is adopted in this
paper, which is defined as in Equation (2):

f (x) = x× tanh(log(1 + ex)). (2)

The activation functions of Mish and Relu are compared in Figure 4. The Mish function
has the advantages of being nonmonotonic, passing negative values, and being smooth.
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Figure 4. Comparison of Mish and Relu activation functions.

The experiment in this paper adopts a two-stage training method. First, the frame-
level and epoch-level networks are pretrained, and then this part is learned with a smaller
learning rate, while the sequence-level part is learned with a larger learning rate. The
reason is that the epoch signals need to be trained on the assumption of independent and
identical distribution. If the strategy of simultaneous training is used, this assumption
will not be satisfied. If there is a problem with the optimization method of the learning
algorithm, it may not reach a global minimum but converge to a local minimum. Therefore,
it is necessary to decay the weight of the learning rate, and the AMSGrad optimizer is
adopted with different contributions for each batch.

Overfitting is an important challenge for learning algorithms. A variety of methods are
adopted to alleviate overfitting in this paper. (1) Data augmentation in the pretraining stage.
Specifically, random horizontal cyclic shift and random mirror inversion are performed on
the signal. This is an important method to alleviate the overfitting of the CNN, but it is
not used in the second stage of training. (2) Dropout to prevent overfitting. This means
that the model needs to learn more robust features. (3) Global average pooling is adopted
to reduce the dimensionality of features in the last layer of the CNN. Traditional fully
connected methods are not adopted to avoid overfitting, and to make each convolutional
channel learn more univocal features. (4) L2 regularization is applied on the first layer
of convolution at the frame level to prevent oversensitivity to sample changes due to
overlarge learned parameter values.

3. Dataset and Experimental Settings
3.1. Dataset

Polysomnography (PSG) is a multiparameter measuring instrument that can record
a variety of physiological signals at the same time, such as electroencephalogram (EEG),
electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), etc. The PSG
data are collected by placing many electrodes and sensors on the patient’s body in the sleep
laboratory; these have multiple advantages such as accurate, comprehensive, low-noise,
etc. According to the American Academy of Sleep Medicine (AASM) rules [17], PSG data
can be divided into five stages: wakefulness (W), rapid eye movement (REM), non-REM 1
(N1), non-REM (N2), and non-REM 3 (N3).

The Sleep-EDF database [18] is often used for benchmark testing of automatic sleep
stage classification algorithms. A sleep-cassette subset was published in 2013 by the
Sleep-EDF database, containing 39 records from 20 subject. Overnight polysomnographic
sleep records from healthy Caucasians aged 25–101 years who did not take sleep-related
medications are collected in this subset. Sleep phases in this database were initially labeled
by experts according to the R&K standard [19]. S3 and S4 are combined into N3 to comply
with the AASM rules in this paper. The EEG data in this database contain Fpz-Cz and
Pz-Oz channels with sampling rates of 100 Hz. In this paper, channel Fpz-Cz and channel
Pz-Oz are used, and no data preprocessing is involved. The data are divided according to
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the subjects to ensure that the data of the same subjects do not appear in the training set
and the test set at the same time. In order to make a fair and objective comparison with
previous studies, W stage data from 30 min before and after sleep are selected. The sample
distribution of the Sleep-EDF dataset is listed in Table 1.

Table 1. Sample distribution of Sleep-EDF dataset.

Dataset W N1 N2 N3 REM Total

Sleep-EDF 7927 2804 17,799 5703 7717 41,950
W means wakefulness, REM means rapid eye movement, N1 means non-REM 1, N2 means non-REM 2, N3 means
non-REM 3.

As shown in Table 1, the number of different sleep stage samples in the sleep EDF
dataset is unbalanced. The neural network updates the weight by optimizing the objective
function. In the process of optimization, the contribution of the samples in the high-quantity
class and the small quantity class to the optimization objective is the same. However,
because the number of samples in the high-quantity class is far more than that in the
small-quantity class, the final classification boundary is more inclined to the high-quantity
class. This offsets the classification boundary and the final classification performance of the
network declines. In this paper, the focal loss function is adopted to adjust the contribution
of samples to the optimization objective to alleviate the imbalance problem.

3.2. Experimental Settings

The k-fold cross-validation scheme was adopted for experiments. Firstly, the data
belonging to the same individual in the sleep EDF dataset is divided into a whole, and
then the data of all individuals are divided into κ subsets. In other words, a subset may
contain multiple individual data, and the same individual data will only exist in one subset,
so that the data of the same individual will not appear in both the training set and the
test set at a certain compromise. The κ-th subset was used for testing, and the rest were
used as training data. The experiment was repeated k times. Finally, all test results were
combined to calculate the final performance. In order to make a fair comparison with
other studies, κ was set to 20. The model proposed in this paper used a two-stage training
method. First pretraining was performed on the frame-level and epoch-level subnetworks,
and then fine-tuning was performed on the entire network. The focal loss function and
AMSGrad optimizer were adopted in both stages, where λ, beta1, and beta2 were set to 2,
0.9, and 0.99, respectively. The learning rate decay strategy was used in both stages. In the
pretraining stage, the initial learning rate was set to 10−3. The learning rate was reduced
to 10−4 after 40 iterations in the training set, and the pretraining was completed after the
next 40 iterations. A fixed learning rate of 10−6 was set on the subnetwork part of the
fine-tuning stage. The initial learning rate was set to 10−3 on the sequence-level part, and
then attenuation was performed to 10−4, 5 × 10−5, and 10−5, respectively, every 10 rounds.
The batch size was set to 256 in the pretraining stage and 10 in the fine-tuning stage. In
order to compare with the DeepSleepNet method, we set the sequence length to 25 epochs.
The experimental environment was the TensorFlow deep learning framework based on
the Ubuntu operating system. Nvidia GeForce GTX 2080Ti GPU was used for accelerated
training. It only takes about 40 min to complete the 1-fold training. Compared with other
methods such as DeepSleepNet, SeqSleepNet, and U-time [20] that require several hours of
training with the same configuration, the method in this paper has a huge advantage.

4. Experimental Results and Analysis
4.1. Experimental Results

Fpz-Cz channel and Pz-Oz channel data were adopted to conduct experiments r.
In order to comprehensively evaluate the CCRRSleepNet model, a variety of different
evaluation indicators were adopted. The evaluation indicators on the per-class level
included precision (Pre), recall (Re), and F1-score (F1). The evaluation indicators on
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the overall level included macro-averaging F1-score (MF1), overall accuracy (ACC), and
Cohen’s Kappa coefficient (κ). The experimental results will be introduced and analyzed
according to these evaluation indicators.

Table 2 shows the experimental results based on the Fpz-Cz channel data. The table
includes a confusion matrix obtained through 20-fold cross-validation, as well as precision
(Pre), recall (Re), and F1-score (F1) values for each class. The row label corresponds to the
real class, and the column corresponds to the predicted class in the confusion matrix.

Table 2. Performance of CCRRSleepNet on Fpz-Cz channel.

Predicted Per-Class Performance (%)

W N1 N2 N3 REM Pre Re F1

W 6761 781 183 21 181 93.06 85.29 89.01
N1 250 1582 579 4 389 47.77 56.42 51.73
N2 184 635 15,638 507 835 86.65 87.86 87.25
N3 19 8 747 4919 10 90.24 86.25 88.20

REM 51 306 900 0 6460 82.03 83.71 82.86
Bold represents the number that is correctly classified.

As shown in Table 2, the value on the diagonal position of the confusion matrix is
much higher than the other values in the row and column of the value. This shows that the
CCRRSleepNet model in this paper is effective. From the value of the evaluation indicators,
it can be seed that the F1 scores of W, N2, and N3 stages are all above 87, and the F1 score of
82.86 is obtained in the REM stage. At the same time, it should be noted that the N2 stage
and the REM stage are easily confused in classification. This may be due to some common
features in the two stages. The classification of the N1 stage has always been a difficulty in
the automatic sleep stage classification task, and the evaluation indicators are relatively
low. On the one hand, the number of samples available for training in the N1 stage is small.
Another factor is that the N1 stage is a transitional stage. It has multiple features before
and after the transition stage, which increases the difficulty of the classification.

Table 3 shows the experimental results based on the Pz-Oz channel data, mainly
including the relevant confusion matrix data and the corresponding evaluation indicators
values. It is not difficult to see that the experimental results based on the Pz-Oz channel
data and the experimental results based on the Fpz-Cz channel data in Table 2 show similar
rules. The difference is that the experimental results based on Pz-Oz channel data have
declined in terms of classification performance. This may have been caused by the different
coupling degree between the electrode positions corresponding to different channels and
the sleep area of the brain, because the same phenomenon has also appeared in other
related studies.

Table 3. Performance of CCRRSleepNet on Pz-Oz channel.

Predicted Per-Class Performance (%)

W N1 N2 N3 REM Pre Re F1

W 6728 824 105 13 257 87.18 84.87 86.01
N1 495 1313 532 17 447 37.33 46.83 41.54
N2 179 821 14,915 1066 818 85.97 83.80 84.87
N3 19 22 1028 4631 3 80.74 81.20 80.97

REM 296 537 770 9 6105 80.01 79.11 79.56
Bold represents the number that is correctly classified.

The proposed model is compared with related research in this paper, as shown in
Table 4.
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Table 4. Comparison of CCRRSleepNet with other methods.

Methods Architecture
Test

Epochs
EEG

Channel
Overall Performance Per-Class Performance (F1)
ACC MF1 κ W N1 N2 N3 REM

U-Time [20] C 41,950 Fpz-Cz - 79 - 87 52 86 84 84
IITNet [21] C-R 42,308 Fpz-Cz 84.0 77.7 0.78 87.9 44.7 88.0 85.7 82.1

DeepSleepNet [13] C-R 41,950 Fpz-Cz 82.0 76.9 0.76 84.7 46.6 85.9 84.8 82.4
TinySleepNet * [22] C-R 41,950 Fpz-Cz 83.6 78.7 0.77 86.8 49.9 87.4 86.4 80.6
Tsinalis et al. [23] - 37,022 Fpz-Cz 78.9 73.7 - 71.6 47.0 84.6 84.0 81.4
Tsinalis et al. [4] C 37,022 Fpz-Cz 74.8 69.8 - 65.4 43.7 80.6 84.9 74.5
Zhu et al. [24] C 42,269 Fpz-Cz 82.8 77.8 - 90.3 47.1 86.0 82.1 83.2

CCRRSleepNet C-C/R-R 41,950 Fpz-Cz 84.29 79.81 0.78 89.01 51.73 87.25 88.20 82.86

DeepSleepNet [13] C-R 41,950 Pz-Oz 79.8 73.1 0.72 88.1 37 82.7 77.3 80.3
Sun et al. [25] C 18,815 Pz-Oz 81.0 73.6 - 85.6 24.9 88.9 79.2 86.3

CCRRSleepNet C-C/R-R 41,950 Pz-Oz 80.31 74.59 0.73 86.01 41.54 84.87 80.97 79.56

Bold denotes the best performance. C represents the CNN framework, C-R represents the frame or epoch level CNN sequence level RNN
framework, and C-C/R-R represents CCRRSleepNet. The numbers in bold indicate the best performance indicators of all methods on the
corresponding channel; * indicates reproducible performance.

U-time [20] draws on the u-net model in the field of image segmentation. The sleep
classification task is treated as a classic segmentation task, and the dice loss function is
used. It has achieved good performance in multiple datasets, but CNN cannot have good
memory for long time sequence. IITNet [21] is an intra- and interepoch temporal context
network, which extracts the features of subepochs. ResNet50 and Bi-LSTM are used to learn
network features, but ResNet50 has a very large number of parameters. DeepSleepNet
is a representative research that uses the CNN-RNN framework, but it cannot extract
detailed features in the sleep stage. TinySleepNet [22] is an improvement and upgrade to
DeepSleepNet; a data enhancement scheme and simpler network framework are adopted.
The results of this method in Table 4 are reproduced based on the original paper code on
the half-hour W stage data before and after sleep dataset. Tsinalis et al. [23] performed
feature extraction, which requires manual feature design. Zhu et al. [24] used the attention
mechanism to improve the CNN network. Tsinalis et al. [4] and Sun et al. [25] adopted
the basic strategy of convolutional pooling for feature extraction without considering the
relationship between states. Compared with other studies, CCRRSleepNet has achieved
the highest performance or sub-high performance on multiple indicators. The results on
the Fpz-Cz channel and u-time are basically same in the N1 stage, but the REM stage is
the second highest. This is because u-time has carried out the data processing strictly,
including quality control and other methods. Compared with [25] on the Pz-Oz channel,
the performances in the N2 and REM stages are the second highest. However, the model in
this paper increased by 16.64% in the N1 stage, which shows that the model in this paper is
more robust. In addition, the authors of [25] did not perform experiments on the complete
dataset, so there is a certain experimental deviation. In general, the method proposed in
this paper has achieved better performance on both channels.

4.2. Ablation Experiment

In order to further verify the impact of relational inductive bias on sleep stage clas-
sification, ablation experiments are carried out to determine whether the model includes
epoch-level CNN and epoch-level RNN. For the impact of frame-level CNN and sequence-
level RNN on the network, many studies have shown their effectiveness, so no verification
was made in this paper. In cases where the other experimental settings are consistent,
the experimental results are as shown in Table 5. The table contains the corresponding
performance of the network and its improvement compared to the baseline.
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Table 5. The impact of relational inductive biases on network performance.

Relational
Inductive Biases Epoch-Level CNN Epoch-Level RNN ACC/Up MF1/Up κ/Up

C-R 81.78/baseline 75.82/baseline 0.75/baseline
C-C-R

√
83.16/1.38 77.14/1.32 0.76/0.01

C-R-R
√

83.59/1.81 79.02/3.20 0.77/0.02
C-C/R-R

√ √
84.29/2.51 79.81/3.99 0.78/0.03

Bold denotes the best performance.

In Table 5, C-R means Frame-level CNN and Sequence-level RNN only; C-C-R means
Frame-level CNN, Epoch-level CNN and Sequence-level RNN; C-R-R means Frame-level
CNN, Epoch-level RNN, and Sequence-level RNN; and C-C/R-R means CCRRSleepNet.
The network performance without epoch-level CNN and epoch-level RNN is used as
a baseline for comparison in this paper. When the epoch-level CNN or RNN is added,
the network performance is improved. This indicates that the features extracted by the
epoch-level CNN and the epoch-level RNN are beneficial to the classification results. When
epoch-level CNN and epoch-level RNN are added at the same time, the value of promotion
is higher than when adding only one of them. This means that they have extracted different
features. However, the value of the boost is not as large as the sum of the two individual
boost values. This indicates that these two have some common features. These common
features may consist of low-level features of the signal and noise. In addition, the epoch-
level RNN has a higher increased value than the epoch-level CNN, because the frame-level
CNN and the epoch-level CNN use the same type of relational inductive biases. To learn
more abundant features for downstream tasks, matching relational inductive biases must be
applied to the signal. This shows that “matching” means not only that different relational
inductive biases are required to match at the same level of the signal, but also that the same
kind of relational inductive biases must be matched with their own hyperparameters at
different levels of the signal.

In order to explore the impact of nonrelational inductive biases on sleep stage classi-
fication, a comparative experiment on focal loss function and sequence-based sampling
method was carried out. Since the training process of this model is unstable when the Relu
activation function is used, no relevant comparison was made. The experimental results
are shown in Table 6.

Table 6. The impact of nonrelational inductive biases on network performance.

Focal Loss Class Balance State Transformation Relationship Balance MF1

74.34√
78.75√ √
79.21√
79.46√ √
79.81√ √ √
79.66

Bold denotes the best performance.

In Table 6, when focal loss is not checked, the cross-entropy loss function is used.
Class balance refers to random upsampling of classes in the pretraining stage, and state
transformation relationship balance refers to sequence-based sampling of data in the
fine-tuning stage.

Through experimental comparison, we found that the network performance is more
significantly improved by focal loss than by cross entropy loss. When the sequence-based
sampling method is added to balance out the sleep state conversion relationship, perfor-
mance is also improved. When class balance is not performed, the performance declines
significantly if using the cross-entropy loss. This indicates that the nonrelational inductive
biases of mismatch cause the neural network to fail to enter the optimal convergence
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point. We also found that, when all of the above strategies are used, the best results are
not achieved. This may be due to the overfitting caused by the upsampling operation. In
addition, the class balance will increase the training cost due to the use of upsampling.

4.3. Relational Inductive Biases Analysis

Different relational inductive biases are used in existing frameworks to extract the
features of physiological signals, but they do not use matching relational inductive biases at
all levels of the signal. This will lead to incomplete information extraction. The CCRRSleep-
Net proposed in this paper adopts matching relational inductive biases for all levels of
physiological signals, and the extracted features are more complete. Table 7 shows the
relational inductive biases applied in these levels and the corresponding features extracted.

Table 7. Relational inductive biases of CCRRSleepNet model.

Level Submodule Relational Inductive Biases Extract Features

Frame CNN Space invariance Basic attributes
Epoch CNN Space invariance Time-varying features
Epoch RNN Time invariance Time-invariant features

Sequence RNN Time invariance State transition relationship

Frame-level CNN uses a smaller convolution kernel to extract the basic properties of
the signal, such as amplitude, phase, and slope. Epoch-level CNN uses a larger convolution
kernel to extract waveform features in the signal, such as K-complex, spindle, and various
rhythms. The epoch-level RNN learns the time-varying features among the basic attributes
in different time periods of the frame level. Finally, the basic attributes from the frame-level
CNN, the waveform features from the epoch-level CNN, and the time-varying features
from epoch-level RNN are aggregated and used as the sequence-level input, and the
sequence-level RNN is used to learn the transformation relationship of the sleep state.
Deep learning uses relational induction bias for effective learning, but it is difficult for
humans to fully and effectively explain the knowledge they have learned. For example,
how the weight of deep learning is directly related to neuroscience theory. Nevertheless, the
knowledge extracted by deep learning has this inevitable connection with the knowledge
used by humans, but this connection is currently not completely clear. It is precisely
because this method that humans cannot fully understand for the time being can discover
potential knowledge that is temporarily unknown to humans, so it can replace humans to
complete tasks that humans consider to be very complicated.

It should be pointed out that CCRRSleepNet does not need to strictly follow the con-
struction method of this paper. This allows for the use of task-related relational inductive
biases in different submodules and their extensions. Therefore, the CNN or CNN-RNN
model used in many other studies can also be considered a special simplified structure
of CCRRSleepNet. At the same time, the CCRRSleepNet model provides a new way to
construct a network structure for sequential signal processing.

5. Discussions

This paper designs a hybrid relational induction bias network CCRRSleepNet for
sleep stage classification. The results show that the model can be applied to different
EEG channels (Fpz-Cz and Pz-Oz) without changing the model structure and training
algorithm. On the Sleep-EDF dataset, compared with the most advanced deep learning
methods, it has achieved higher performance. It is verified by ablation experiments that
the increased relational induction biases and non-relational induction biases can improve
performance to varying degrees. Although the method proposed in this paper improves
certain performance, our model still suffers from some limitations. First of all, the model
only applies to the specific channels they have been trained on. We have tried using
different channels of signals for training and testing, but the classification accuracy has
dropped by about 10%. Although this performance gap can be reduced by fine-tuning,
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it is still slightly lower than the performance of training directly from scratch. Secondly,
the model has been tested on a relatively small data set at present, and further research is
needed. The Sleep-EDF dataset is a benchmark dataset for sleep stage classification, but
it cannot represent all human sleep states. Especially the correlation between sleep and
age is very high, and the data collected in this dataset only includes adults aged 25–34.
Therefore, whether our model applies to other age groups still needs further research.
Finally, like most papers focusing on deep learning technology, this paper is difficult to
fully and effectively explain the knowledge it has learned. Nevertheless, the knowledge
extracted by deep learning objectively reflects the inherent characteristics of neuroscience.
It can provide further analysis support for scholars who focus on neuroscience research.

In practical applications, the proposed model can classify sleep stages only by collect-
ing EEG signals at the same location. There are differences between real-world data and
datasets, which can be fine-tuned to improve the suitability of the dataset or pre-training
with larger datasets. In addition, this paper used 20-fold cross-validation to make a fair
comparison with previous studies. In practice, three ways can be used to infer: (1) A fold
weight file is directly used, because the training data and test data belong to the same
distribution dataset in theory; (2) To improve the robustness of the model, all the data of
the dataset can be used to train as a weight file for actual testing; (3) Multiple weight files
can be used for integration. This paper will provide the open-source code of the model and
a folded weight file on both channels for practical application.

6. Conclusions

A deep learning framework CCRRSleepNet for sleep stage classification is designed
in this paper by introducing some inductive biases that match the task. By adding a frame-
level CNN and an epoch-level RNN, more detailed relational inductive biases that match
the task are introduced, which enhances the characterization ability of the network and
effectively alleviates the performance limitation problem caused by the incompleteness
of the feature extraction method. To further expand the feature extraction range and
nonlinear ability of CNN, the MSACB is proposed, which can effectively improve the
feature extraction ability of the network without significantly increasing the network
parameters. At the same time, nonrelational inductive biases strategies are adopted in
this paper such as data enhancement, data balance, activation function, optimization
method, learning rate strategy, and loss function, which are more in line with sleep signals.
The model proposed in this paper is tested on the Sleep-EDF dataset. In the Fpz-Cz
channel without any preprocessing, an overall accuracy rate of 84.29%, an MF1 score of
79.81, and a Cohen’s Kappa coefficient of 0.78 have been achieved. In the Pz-Oz channel
without any preprocessing, an overall accuracy rate of 84.29%, an MF1 score of 74.59, and a
Cohen’s Kappa coefficient of 0.73 have been achieved. The method proposed in this paper
surpasses almost all existing advanced classification methods. At the same time, ablation
experiments are conducted on CCRRSleepNet to verify the effect of the matching degree of
relational inductive biases and non-relational inductive biases on the model performance.
In summary, the CCRRSleepNet model in this paper has superior classification performance
in sleep stage classification tasks, and the model construction method proposed in this
paper also provides a new option for solving timing signal problems.
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