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Abstract
The use of next-generation sequencing (NGS) data sets has increased dramatically 
over the last decade, but there have been few systematic analyses quantifying the ac-
curacy of the commonly used variant caller programs. Here we used a familial design 
consisting of diploid tissue from a single lodgepole pine (Pinus contorta) parent and the 
maternally derived haploid tissue from 106 full-sibling offspring, where mismatches 
could only arise due to mutation or bioinformatic error. Given the rarity of muta-
tion, we used the rate of mismatches between parent and offspring genotype calls to 
infer the single nucleotide polymorphism (SNP) genotyping error rates of FreeBayes, 
HaplotypeCaller, SAMtools, UnifiedGenotyper, and VarScan. With baseline filtering 
HaplotypeCaller and UnifiedGenotyper yielded more SNPs and higher error rates by 
one to two orders of magnitude, whereas FreeBayes, SAMtools and VarScan yielded 
lower numbers of SNPs and more modest error rates. To facilitate comparison be-
tween variant callers we standardized each SNP set to the same number of SNPs 
using additional filtering, where UnifiedGenotyper consistently produced the smallest 
proportion of genotype errors, followed by HaplotypeCaller, VarScan, SAMtools, and 
FreeBayes. Additionally, we found that error rates were minimized for SNPs called 
by more than one variant caller. Finally, we evaluated the performance of various 
commonly used filtering metrics on SNP calling. Our analysis provides a quantitative 
assessment of the accuracy of five widely used variant calling programs and offers 
valuable insights into both the choice of variant caller program and the choice of filter-
ing metrics, especially for researchers using non-model study systems.
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1  |  INTRODUC TION

The decreasing cost and ease of producing short-read next-
generation sequencing (NGS) data sets has transformed our 
understanding of organismal diversity across the tree of life. Next-
generation sequencing offers new opportunities to empirically test 
both basic and applied hypotheses relating to the molecular ecology 
and evolutionary genetics within and among populations. However, 
transforming abundant raw sequence data into biologically meaning-
ful genetic data is nontrivial. Genotyping errors can be introduced at 
several steps of NGS data analysis, which by extension may induce 
biases in subsequent inference. This becomes particularly problem-
atic in non-model organisms with large and complex genomes and 
fragmented genome assemblies. While SNP errors may be less of an 
issue for window-based approaches like genome scans, where errors 
add noise to estimating statistics of interest (e.g., mean FST), they are 
probably more problematic for analyses that depend on estimating 
the site frequency spectrum (SFS; e.g., Lapierre et al., 2017) or the 
number of singleton alleles (Field et al., 2016). Whatever the appli-
cation, it is clear that understanding the performance and sources 
of biases and errors from such tools is critical for the success of any 
NGS-based project.

Various open-source programs have been developed to iden-
tify genomic variants, such as single nucleotide polymorphisms 
(SNPs) or insertions and deletions (indels), from short read data. 
Commonly used programs include Freebayes (Garrison & Marth, 
2012), HaplotypeCaller and UnifiedGenotyper from the Genome 
Analysis Tool Kit (Van der Auwera & O’Connor, 2020), SAMtools (Li 
et al., 2009), and VarScan (Koboldt et al., 2012), which are widely 
used in NGS-based projects in both model and non-model systems. 
However, it is often difficult to know a priori how well a given tool 
will perform given the genomic resources available for any partic-
ular study organism, or how the study design will interact with the 
underlying assumptions of such tools, which are often benchmarked 
with model organism data.

Several studies comparing variant calling programs exist in the 
literature (Bian et al., 2018; Chen et al., 2019; Cornish & Guda, 2015; 
Hwang et al., 2015; Sandmann et al., 2019). Most aim to test pro-
gram efficiency (Hwang et al., 2015) or to evaluate estimations of 
the precision and sensitivity of the variant calling tools (Sandmann 
et al., 2019), and are often conducted with human genomic data 
(Bian et al., 2018; Cornish & Guda, 2015; Sandmann et al., 2019). 
These studies often conclude that there are substantial differences 
in precision and sensitivity across tools which depend in large part 
on aspects of the data such as sample size and coverage as well as 
the genomic resources available (Cornish & Guda, 2015; Sandmann 
et al., 2019, but see Bian et al., 2018). As genome-scale data sets are 
now common for non-model organisms with limited or fragmented 
reference genomes, it is necessary to expand upon these studies to 
understand and establish best practices for systems where genomic 
resources are limited.

Conifers are non-model organisms with genomes recalcitrant to 
chromosome-scale assembly, especially under budgetary constraint. 

For instance, conifers often have exceptionally large genomes (20–
40 Gbp; Neale et al., 2017) with histories of whole-genome duplica-
tion (Zheng et al., 2015), gene family expansion (Scott et al., 2020; 
De La Torre et al., 2014), transposable element dynamics (Scott 
et al., 2020; Wang et al., 2020; Yi et al., 2018), and extensive repeat 
regions (Wegrzyn et al., 2014). These complexities present a major 
challenge for NGS data analysis and downstream hypothesis testing 
in conifers (Lind et al., 2022; Shu & Moran, 2020). Such challenges 
can be alleviated by quantifying the accuracy of SNP calling when 
using the above-mentioned variant calling tools. High-quality data-
bases exist for model organisms to calibrate existing programs and 
account for biases in the data, yet such resources remain elusive for 
many non-model organisms. A unique biological attribute of conifer 
reproduction, however, offers us the opportunity to assess the ge-
notyping accuracy of these variant calling tools and to do so in a non-
model system. Fertilized conifer seeds contain a megagametophyte, 
a cluster of haploid tissue surrounding the embryo and supplying it 
with nutrients. This megagametophyte haploid tissue only contains 
the maternal contribution of the offspring DNA and has been used 
to advantage in linkage mapping (Bernhardsson et al., 2019; Neves 
et al., 2014; Pavy et al., 2017) for example, as the phase is already 
resolved. By leveraging this information for a set of related individu-
als (i.e., full-sibling megagametophyte tissues and the maternal tree), 
we can gain insight into the accuracy of genotype calls by quanti-
fying concordance between the haploid and parental genotypes. 
Given that the offspring haploid genotype at any given locus could 
only have been inherited from a single source, if we assume no de 
novo mutation, then any discordance between the haploid offspring 
genotype calls and the maternal genotype call must have come as a 
result of genotyping error.

Here, we used a familial design consisting of diploid tissue from a 
single lodgepole pine (Pinus contorta) parent and the maternally de-
rived megagametophyte haploid tissue from 106 full-sibling offspring 
to evaluate similarities and differences among SNP sets generated 
from FreeBayes, HaplotypeCaller, Samtools, UnifiedGenotyper, and 
VarScan. We used the rate of mismatches between parent and off-
spring genotype calls to infer the genotype error rate of each variant 
caller, given the rarity of mutation within one generation and de-
scribe how the number of SNPs and proportion of genotyping er-
rors behave under varying threshold levels for the most commonly 
used quality metrics during filtering steps. Our results shed light on 
how the choice of variant calling program can affect the result and 
interpretation of genomic analyses in non-model organisms lacking 
extensive genomic resources.

2  |  MATERIAL S AND METHODS

2.1  |  Sample preparation and DNA extraction

Our sample data came from a Pinus contorta linkage mapping pop-
ulation consisting of two parental trees located in Bulkley Valley, 
British Columbia, Canada and the 106 F1  seeds from a single 
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outcross, provided to us by the University of British Columbia 
(https://coada​ptree.fores​try.ubc.ca). Needles were collected from 
the parental trees and stored at –20°C prior to DNA isolation. The 
F1 seeds were hydrated at room temperature and the tissue lay-
ers separated under a microscope using sterile technique. After 
the seed coat was completely removed, the megagametophyte 
tissue was carefully separated from the embryo using a surgical 
blade and tweezers. DNA was then extracted from the needles 
of the parental trees or from the megagametophyte tissue of the 
F1 seeds using the NucleoSpin Plant II Mini kit (Macherey–Nagel 
GmbH & Co.), following modifications recommended in García and 
Escribano-Ávila (2016).

2.2  |  Probe design and sequence capture

Due to the substantial size and complexity of conifer genomes, 
exome sequence capture is the preferred genotyping method for 
the taxon (Lind et al., 2022). We designed our capture probes based 
on previous Pinus contorta exome capture probes (Suren et al., 2016) 
and removed all probes which failed to effectively capture the target 
sequences. In addition, we included probes corresponding to previ-
ously described pathogen response genes (Lu et al., 2021), filtering 
out those which targeted exon sequences of less than 100 base pairs 
(bp). We then submitted our probe sequences to Roche NimbleGen 
for Custom SeqCapEZ probe design. We achieved a final capture 
space of ~44 Mbp.

Following DNA extraction and probe design, approximately 
100  ng of DNA from each sample was used to construct a bar-
coded library (Kapa, Dual-Indexed Adapter Kit). Sequence capture 
was performed following the SeqCap EZ HyperCap Workflow 
User's Guide Version 2.0 (Roche Sequencing Solutions, Inc.). 
The enriched capture libraries were then multiplexed and se-
quenced in four lanes, with 23–30 libraries per lane, on an Illumina 
HiSeq4000 instrument at the Centre d'expertise et de services 
Génome Québec, Montreal, Canada, resulting in 351 Gbp of 150-
bp paired-end reads.

2.3  |  Sequence read processing, mapping, and 
SNP calling

We used fastp v0.19.5 (Chen et al., 2018) to trim sample reads, re-
moving adapters and polyG tails, in addition to using a 5 bp sliding 
window and removing all windows with less than 30 mean quality. 
We then removed all reads less than 75 bp in length. Following pro-
cessing with fastp, 95% of bases were greater than 20 quality and 
86% greater than 30 quality. We then used BWA-MEM v0.7.17 (Li 
& Durbin, 2009) to align reads against the congeneric loblolly pine 
(Pinus taeda) reference genome v2.01 (Zimin et al., 2017; https://
treeg​enesdb.org/FTP/Genom​es/Pita/v2.01), as a reference ge-
nome does not yet exist for P. contorta. We used SAMtools v1.9 to 

sort aligned reads, only keeping proper pairs, and PICARD v2.18.9 
(http://broad​insti​tute.github.io/picard) to mark and remove dupli-
cates. Where applicable, we converted the BAM files to mpileup 
files using SAMtools.

We then used the following variant caller programs: FreeBayes, 
HaplotypeCaller, SAMtools, UnifiedGenotyper, and VarScan, to call 
SNPs using the same BAM (or mpileup) files as input. After calling 
SNPs we performed an initial baseline level of filtering, first using 
criteria specific to each caller based on commonly used practices 
for the caller, and then secondly filtering each data set by a common 
set of filtering criteria (Table 1). The common filtering thresholds we 
used for each caller required that sites were called in both the par-
ent and the F1 sample, did not have greater than 50% missingness, 
and were not multiallelic. We used both VCFtools v0.1.14 (Danecek 
et al., 2011) and R v4.0.5 (R Core Team, 2021) to achieve the above-
described filtering.

TA B L E  1  Baseline filtering criteria. Set of filtering criteria unique 
to each variant caller program and set of common filtering criteria 
used across all programs. Criteria describe the sites removed

FreeBayes
Sites with less than 30 quality (QUAL)
Genotype calls with less than 5 depth (DP)
Genotype calls with less than 20 genotype quality (GQ)

HaplotypeCaller
Sites with greater than 60 Fisher strand (FS)
Sites with less than 40 mapping quality (MQ)
Sites with less than −12.5 mapping quality rank sum test 

(MQRankSum)
Sites with less than 30 quality (QUAL)
Sites with less than 2.0 quality by depth (QD)
Sites with less than −8.0 read position rank sum test 

(ReadPosRankSum)
Sites with greater than 3.0 strand odds ratio (SOR)
Genotype calls with less than 20 genotype quality (GQ)

SAMtools
Sites with less than 20 quality (QUAL)
Genotype calls with less than 5 depth (DP)

UnifiedGenotyper
Sites with greater than 60 Fisher strand (FS)
Sites with less than 40 mapping quality (MQ)
Sites with less than −12.5 mapping quality rank sum test 

(MQRankSum)
Sites with less than 30 quality (QUAL)
Sites with less than 2.0 quality by depth (QD)
Sites with less than −8.0 read position rank sum test 

(ReadPosRankSum)
Sites with greater than 3.0 strand odds ratio (SOR)

VarScan
Genotype calls with less than 10 depth (DP)
Genotype calls with less than 20 genotype quality (GQ)
Heterozygote genotype calls

Common filters
Sites not called in both parent and offspring
Sites with greater than 50% missingness
Multiallelic sites

https://coadaptree.forestry.ubc.ca
https://treegenesdb.org/FTP/Genomes/Pita/v2.01
https://treegenesdb.org/FTP/Genomes/Pita/v2.01
http://broadinstitute.github.io/picard
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2.4  |  Program-specific details for SNP 
calling and filtering

2.4.1  |  FreeBayes

We used FreeBayes v1.3.1–17-gaa2ace8 to call SNPs separately in 
both the offspring samples and the parental sample to account for 
the ploidy difference. The resulting VCF files were merged using 
VCFtools. Sites with less than 30 quality score, and genotype calls 
with less than 20 genotype quality and/or less than 5 depth were 
filtered out, before applying the set of common filters as described 
above (Table 1).

2.4.2  |  HaplotypeCaller

We used GATK v4.1 HaplotypeCaller in -ERC mode to gener-
ate 107 individual sample g.vcf files for both parent and off-
spring. Individual g.vcf's were combined in batches of 20 using 
CombineGVCFs into a single multiple sample g.vcf comprising the 
full mixed ploidy cohort. GenotypeGVCF was used to call SNPs 
on the full cohort. Both commands for combining and genotyping 
are able to handle mixed ploidy of samples. We used the stand-
ard GATK hard-filter expression (https://gatk.broad​insti​tute.org/
hc/en-us/artic​les/36003​55324​12?id=11097) as our initial filtering 
step, as P. contorta lacks a benchmark set of high-quality SNPs for 
calibration and therefore we could not use variant quality score 
recalibration (VQSR). After the hard-filter expression we filtered 
out sites with less than 30 quality score, genotype calls with less 
than 20 genotype quality, and then applied the common set of fil-
ters (Table 1).

2.4.3  |  SAMtools

We used the bcftools v1.9 utility from SAMtools to call SNPs on the 
offspring and parent samples as a cohort. Filtering was performed 
by removing sites with less than 20 quality score, genotype calls 
with less than 5 depth, and then applying the set of common filters 
(Table 1). The -G flag was set to the default (i.e., all samples were 
treated as one population).

2.4.4  |  UnifiedGenotyper

We used GATK v3.8 UnifiedGenotyper to call SNPs separately 
in both the offspring samples and the parental sample. As with 
HaplotypeCaller, because VQSR was not applicable, we filtered 
using the hard-filter expression (https://gatk.broad​insti​tute.org/hc/
en-us/artic​les/36003​55324​12?id=11097), further filtered sites with 
less than 30 quality score, and then filtered using the common set 
of filters (Table 1).

2.4.5  |  VarScan

We used VarScan v2.4.4 to call SNPs on the offspring and parental 
data separately, using a p-value of.05. We then merged the resulting 
VCF files using VCFtools and filtered out all genotype calls with less 
than 20  genotype quality and/or less than 10 depth. Additionally, 
as VarScan does not have a ploidy setting (i.e., all genotype calls are 
diploid) and our offspring sample data were haploid, we removed all 
heterozygote genotype calls. Finally, we applied the common set of 
filters (Table 1).

2.5  |  Comparing variant caller programs

Variant callers differed considerably in the number of sites they 
called using the baseline filtering (e.g., UnifiedGenotyper yielded 
~3 M vs ~100 k for VarScan; Table 2). We found that the mismatch 
rates between parent and offspring genotype calls roughly scaled 
with the number of SNPs called (Table 2; Figure S1), and in order 
to compare mismatch rates between different callers we stand-
ardized their output by adjusting the filtering criteria so that each 
caller yielded a similar number of SNPs (Tables S1–S5). This addi-
tional filtering step was conducted in an iterative manner to assess 
the effect of varying stringency on mismatch rates, using the QUAL, 
DP, and GQ metrics (but only DP and GQ for VarScan) and varying 
each metric according to their empirical distribution. For example, 
to get approximately x SNPs with a given caller, we would increase 
the QUAL, DP, and GP filtering criteria from the yth to the zth per-
centile of each of their respective distributions. We calculated two 
different mismatch rates, a by-genotype rate and a by-site rate. The 

Sites Genotypes
Site mismatch 
rate

Genotype 
mismatch rate

FreeBayes 1.19 × 105 1.05 × 107 1.03 × 10−2 2.39 × 10−3

HaplotypeCaller 2.24 × 106 1.87 × 108 2.41 × 10−1 1.18 × 10−2

SAMtools 4.59 × 105 4.16 × 107 5.36 × 10−2 3.08 × 10−3

UnifiedGenotyper 3.49 × 106 2.86 × 108 1.51 × 10−1 2.03 × 10−2

VarScan 1.16 × 105 9.01 × 106 2.49 × 10−3 5.48 × 10−4

TA B L E  2  The number of sites and 
genotypes called, and the by-site and by-
genotype mismatch rates for each variant 
caller program after base filtering was 
applied

https://gatk.broadinstitute.org/hc/en-us/articles/360035532412?id=11097
https://gatk.broadinstitute.org/hc/en-us/articles/360035532412?id=11097
https://gatk.broadinstitute.org/hc/en-us/articles/360035532412?id=11097
https://gatk.broadinstitute.org/hc/en-us/articles/360035532412?id=11097
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by-genotype mismatch rate was calculated as the proportion of mis-
matched parent-offspring genotype calls out of the total number of 
offspring genotypes called. The by-site mismatch rate was calcu-
lated as the proportion of sites with at least one mismatched parent-
offspring genotype call out of the total number of sites. For example, 
if 25/100 sites each had any nonzero number of mismatches, mean-
ing 75/100 sites were completely mismatch free, we would calculate 
this as a 25% by-site mismatch rate.

3  |  RESULTS

3.1  |  Base filter

After applying the base level filters to each caller's SNP set, the 
two GATK callers, UnifiedGenotyper and HaplotypeCaller, re-
sulted in the greatest number of SNPs called and the highest mis-
match rates by site and by genotype (Table 2). While SAMtools, 
FreeBayes, and VarScan called an order of magnitude fewer SNPs 
than the GATK callers, they also resulted in mismatch rates 1–2 or-
ders of magnitude lower (Table 2). The strong correlation between 
the number of SNPs a program called after base filtering and its 
mismatch rate (R2 = 99.4%; Figure S1) led us to apply our additional 
incremental filtering method to better facilitate the comparison 
among variant callers.

Despite the different variant callers generating SNP sets orders 
of magnitude different in size, the distributions of parent-offspring 
genotype mismatches across the sites called were very similar among 
programs (i.e., heavily right-skewed; Figure S2). UnifiedGenotyper 
and VarScan, however, produced an overinflation of sites with a 50% 
genotype mismatch rate, suggesting a higher rate of genotyping 
error in the parent than seen with the other variant callers (Figure 
S2).

3.2  |  Comparing between callers

3.2.1  |  Sites called

After applying the additional incremental filtering and reducing each 
SNP set down to approximately 4 × 105 and 1 × 105  sites called, 
HaplotypeCaller, SAMtools, and UnifiedGenotyper were most simi-
lar in the specific sites called, sharing approximately 44 and 58% 
sites, respectively, between all three (Figures S3–S7). Conversely, 
FreeBayes and VarScan called the most sites unique to a single 
caller; FreeBayes called 61% unique sites and VarScan called 41% 
unique sites (Figures S3–S4). We found very little difference when 
comparing the total sites shared between callers (Figures S3 and 
S5) and the sites shared with zero genotype mismatches (Figure 1a, 
S7A). Notably, however, the specific sites each program called that 
had genotyping mismatches were largely unique to each caller 
(Figure 1b, S7B).

3.2.2  |  Mismatch rates

With the additional incremental filtering, the majority of call-
ers dramatically improved in by-site mismatch rates and by-
genotype mismatch rates (Figure 2; see also Figure S8; Table S6). 
UnifiedGenotyper, HaplotypeCaller, and SAMtools all showed strik-
ing improvements in mismatch rates with additional incremental fil-
tering until about the 105.5 SNP mark, where mismatch rates for all 
three callers approached relative plateaus. FreeBayes, on the other 
hand, showed continued improvements in mismatch rates with in-
creased filtering and did not reach a point of diminishing returns. 
Finally, while VarScan did see some limited improvement in mis-
match rates with increased filtering this change was less dramatic 
than in the other callers. However, note that because VarScan called 
relatively few SNPs, minimal additional filtering could be applied. 
After additional incremental filtering to a specific number of sites 
called, UnifiedGenotyper consistently had the lowest genotype mis-
match rate, followed by HaplotypeCaller, VarScan, SAMtools, and 
FreeBayes (Figure 2a). The number of SNPs called (i.e., the degree 
of filtering applied) did not appreciably change how the five callers 
ranked in either mismatch rate metric (Figure 2).

3.3  |  Comparing within callers

To assess the effects of individual quality metrics on mismatch rates, 
we explored the effect of varying each metric on the number of gen-
otypes called and the by-genotype mismatch rates for the baseline 
filter SNP set from each variant caller program (Table 1).

3.3.1  |  FreeBayes

Increasing stringency in either of DP or GQ resulted in monotoni-
cally decreasing genotype mismatch rates in the FreeBayes SNP set 
(Figure 3a, S9–S10). Similarly, increasing QUAL over lower values 
decreased the mismatch rate; however, mismatch rates did plateau 
over very high QUAL values (Figure S11). All three filtering metrics 
performed well on our data set and would be useful metrics to filter 
SNPs with increased stringency.

3.3.2  |  HaplotypeCaller

Filtering by any of QUAL, DP, GQ, or MQ produced monotonic 
decreases in genotype mismatch rates with the HaplotypeCaller 
SNP set (Figure 3b, S12–S14, S16). These filtering metrics would 
be useful for researchers unable to use VQSR and requiring further 
increased filtering stringency. The metrics FS, MQRankSum, QD, 
ReadPosRankSum, and SOR did not appreciably improve mismatch 
rates with further filtering, and in the case of QD slightly increased 
mismatch rates in our data (Figures S15, S17–S20).



    |  2529JASPER et al.

3.3.3  |  SAMtools

Filtering by either QUAL or GQ resulted in monotonic decreases 
in genotype mismatch rates in the SAMtools SNP set (S21–S22). 
Increasing DP did improve mismatch rates over lower DP thresholds, 
although mismatch rates plateaued over higher values (Figure 3c, 
S23). As with the other callers, these three filtering metrics per-
formed well and would be useful for filtering SNPs with further 
stringency; however, there may be diminishing returns when filter-
ing by DP with SAMtools.

3.3.4  |  UnifiedGenotyper

Filtering by any of QUAL, DP, or GQ resulted in decreased genotype 
mismatch rates with increasing stringency in the UnifiedGenotyper 

SNP set (Figure 3d, S24–S26). As with HaplotypeCaller, these three 
filtering metrics would be useful for researches unable to filter with 
VQSR and requiring further filtering stringency. None of FS, MQ, 
MQRankSum, QD, ReadPosRankSum, nor SOR appreciably im-
proved mismatch rates with UnifiedGenotyper, and with our data 
set filtering by QD or SOR slightly increased mismatch rates (Figures 
S27–S32).

3.3.5  |  VarScan

Filtering by either of DP or GQ produced appreciable improvements 
in genotype mismatch rates in the VarScan SNP set (Figures 3e and 
S33–S34). While increasing stringency in DP resulted in quite a 
sharp decrease in mismatch rates over lower DP values, mismatch 
rates did plateau or increase over higher values (Figures 3e and S33), 

F I G U R E  1  Number of unique variant sites shared between FreeBayes, HaplotypeCaller, SAMtools, UnifiedGenotyper, and VarScan after 
additional filtering to approximately 1 x 105 sites called. The number of unique sites with zero genotype mismatches (a) and the number of 
unique sites with at least one genotype mismatch (b) are shown. The vertical bars show the number of unique sites shared by a combination 
of variant callers (or single variant caller), and the coloured dots and connecting line below define which combination of variant callers. The 
horizontal bars at the lower left show the total number of sites without genotype mismatches (a) or with genotype mismatches (b) from 
each caller. SNP sets were filtered by depth, genotype quality, and quality score where applicable. FreeBayes, HaplotypeCaller, SAMtools, 
UnifiedGenotyper, and VarScan resulted in 100,041, 99,087, 100,596, 99,871, and 99,983 sites, respectively

(a)

(b)
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somewhat similar to SAMtools (Figures 3c and S23). Rather than sug-
gesting that increasing DP increases error rates in VarScan, however, 
it is very likely that our mismatch rates are biased over higher values 
of DP as a consequence of a few erroneously called sites in the par-
ent. For example, at a filtering DP of 80, two sites are responsible 
for the entirety of the genotype mismatches remaining, one with a 
parent-offspring mismatch rate of 50% and one with a mismatch rate 
of 100% (i.e., probably one base miscalled in the parent and both 
bases miscalled in the parent, respectively). Both DP and GQ appear 
to be useful for increased filtering with VarScan; however, there could 
possibly be diminishing returns when filtering by DP with VarScan.

4  |  DISCUSSION

The reliability of SNP genotypes identified from high-throughput se-
quencing and the choice of variant caller has been a topic of debate 
for over a decade (Hwang et al., 2015; Poland & Rife, 2012). Here, we 
leveraged diploid and haploid sequence data from a single P. contorta 
parent and 106 full-sibling offspring to compare SNP genotyping 
across five popular variant calling tools: FreeBayes, HaplotypeCaller, 
SAMtools, UnifiedGenotyper, and VarScan. We used the proportion 
of mismatches between parent and offspring genotype calls to infer 

the genotype error rates of each variant caller, given the rarity of 
mutation within one generation. Our comparison found large differ-
ences in the SNPs called and we evaluated the impact of various 
filtering metrics on the SNP quality and quantity.

After applying an initial, base level of filtering (Table 1) with each 
program, we found a large disparity in the number of SNPs called 
and the error rates between callers (Table 2). As might be expected, 
we found a strong correlation between the number of SNPs called 
and the by-genotype error rates (R2 = 99.4%; Figure S1), which led 
us to apply our additional incremental filtering to compare callers. 
For our specific data set, we show that UnifiedGenotyper consis-
tently had the lowest error rates at all degrees of additional filtering 
stringency (Figure 2). Not only did UnifiedGenotyper have the low-
est overall error rates after additional filtering, but it also resulted in 
the most SNPs called in total, offering ample opportunity to prior-
itize either the number of SNPs called or the error rates. However, 
note that UnifiedGenotyper is no longer supported by GATK. After 
UnifiedGenotyper, both HaplotyperCaller and VarScan performed 
appreciably well in terms of error rates (Figure 2). VarScan, however, 
produced quite a low number of SNPs despite initial filtering being 
relatively lenient (Table 1). After additional filtering, FreeBayes and 
SAMtools resulted in the highest by-genotype error rate and by-site 
error rate, respectively (Figure 2).

F I G U R E  2  Comparison of mismatch rates by genotype (a) and by site (b) between variant callers at variable numbers of sites called. 
Mismatch rates were calculated as the proportion of mismatched parent-offspring genotype calls out of the total number of genotypes 
called (a) and as the proportion of sites with at least one mismatched parent-offspring genotype call out of the total number of sites (b). Inset 
plots show a magnification of the mismatch rates over 50 to 100 k sites called. Variation in the number of sites called for a particular variant 
caller was generated by additional incremental filtering to different degrees with depth, genotype quality, and quality score where applicable

(a)

(b)
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Our results highlight two different “flavours” of variant call-
ers. Tools such as HaplotypeCaller and UnifiedGenotyper are 
highly customizable, highly flexible and offer the user the option 
to prioritize the number of SNPs called or the error rate. However, 
HaplotypeCaller and UnifiedGenotyper also required extensive ad-
ditional filtering (Figure S8) beyond baseline to achieve acceptable 
error rates (Figure 2). The huge number of SNPs these two callers 
produce, the extent of the filtering required, and the large number 
of different filter parameters involved, may call for a more experi-
enced user and probably more tinkering to curate a suitable SNP set, 
especially so in non-model organisms where VQSR is not an option. 
Other variant callers, such as FreeBayes, SAMtools, and VarScan, 
achieve decidedly lower error rates when comparing baseline filter 
SNP sets (Table 2), and probably require much less tinkering and ef-
fort to produce an acceptable SNP set. However, these three variant 
callers may lack the customization and flexibility of the GATK callers, 
and because they call many fewer SNPs may be at risk of missing 
some important sites.

When we compared the specific sites produced with each vari-
ant caller, we found a large degree of overlap among most programs 
(3/5) in both the total sites a program called (Figures S3 and S5), 
and as well in the error-free sites a program called (Figures 1a and 
S7A). The sites where each caller made genotyping errors, however, 
were largely specific to the caller used (Figures 1b and S7B), sug-
gesting that the processes by which each caller makes errors differ 

mechanistically. Taken together, the high degree of overlap among 
callers in correctly called sites and the low degree of overlap in er-
roneously called sites (Figures 1 and S7), suggests that the practice 
of calling sites with multiple different variant caller tools and using 
only the SNPs common to all tools may be a highly effective method 
to improve accuracy. However, while this may reduce error rates, 
taking the intersection across multiple tools will result in a smaller 
number of SNPs called.

Across all callers, we found that filtering by QUAL, DP, or GQ 
gave excellent results in terms of reducing by-genotype error rates 
in our data set (Figure 3; also see Supporting Information). For 
those using GATK callers and investigating non-model organisms 
where VQSR is not applicable, these three metrics may offer the 
best returns on increasing filtering stringency. While the majority 
of the GATK filtering metrics did not perform optimally on our data 
(Figures S15, S17–S20, S27–S32), it should be noted that our results 
represent a comparison performed on one single data set and that 
results may vary with other input data. For other variant calling pro-
grams, our results suggest that substantial improvements in error 
rate can be achieved solely through filtering with QUAL, DP, and/
or GQ only.

Our study provides a quantitative assessment of the accuracy 
of some of the more popular variant caller programs and their com-
monly used filtering metrics; however, it comes with three main ca-
veats. Our analysis was performed on a linkage mapping population 

F I G U R E  3  Effect of filtering by depth (DP) on the number of genotypes called (blue) and the genotype mismatch rates (red) after baseline 
filtering. Scales differ on all three axes for each panel
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and as such our results may differ from similar analyses performed 
on natural populations. For example, a variant caller that is predi-
cated on sample allele frequencies being in Hardy-Weinberg equi-
librium will have biased error rates when used on a linkage mapping 
population where allele frequencies are expected to be 0, 0.5, or 1. 
As such, it would be valuable to repeat our comparison of variant 
callers on natural populations in the future. Second, because a P. 
contora reference genome does not yet exist, we aligned our reads 
against the best available but highly fragmented congeneric lob-
lolly pine (P. taeda) reference genome. Any differentiation or lack of 
synteny between P. contorta and P. taeda, as well as any assembly 
errors in the loblolly pine reference genome may have influenced 
our results. The option to use the reference genome of the correct 
study species, the quality of that genome, and whether or not the 
study species is model will all probably have important effects on 
results. Finally, we chose to include VarScan in our analysis as it is 
currently a popular variant calling tool, however, VarScan can only 
call diploid genotypes. Despite these ploidy limitations, our results 
show that VarScan is still very accurate given haploid input data, 
with the lowest error rates after baseline filtering out of the vari-
ant callers we tested, and comparable error rates after additional 
incremental filtering. However, because these are diploid genotype 
calls from haploid input data they still need to be interpreted with 
some caution. It could prove insightful to repeat a similar analy-
sis in the future, taking into account the genotypes of the pollen 
donor and diploid offspring to assess variant caller performance 
given diploid input data.
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