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ABSTRACT
Cancer is a highly malignant disease, killing approximately 10 million people 

worldwide in 2020. Cancer patient survival substantially relies on early diagnosis. 
In this study, we evaluated whether genes involved in glucose metabolism could be 
used as potential diagnostic markers for cancer. In total, 127 genes were examined 
for their gene expression levels and pairwise gene correlations. Genes ADH1B and 
PDHA2 were differentially expressed in most of the 12 types of cancer and five pairs 
of genes exhibited consistent correlation changes (from strong correlations in normal 
controls to weak correlations in cancer patients) across all types of cancer. Thus, the 
two differentially expressed genes and five gene pairs could be potential diagnostic 
markers for cancer. Further preclinical and clinical studies are warranted to prove 
whether these genes and/or gene pairs would indeed aid in early diagnosis of cancer.

INTRODUCTION

Despite recent advances in diagnosis and treatment, 
cancer remains one of the top challenges to human 
health. Prognosis for advanced-stage and recurrent cancer 
remains poor. Cancer is highly heterogeneous and can 
remarkably reprogram metabolic pathways [1]. Metabolic 
reprogramming not only alters the type and concentration 
of intracellular and extracellular metabolites but also 
modulates gene expression and tumor microenvironment 
for cell proliferation and survival [2, 3]. However, pan-
cancer analysis of metabolic reprogramming is limited 
except for observation of increased glucose uptake and 
aerobic glycolysis (Warburg Effect) in cancer cells [4, 5].

Glucose is the major energy source for cells, and 
thus, glucose metabolism is essential for normal cell 
functions and survival. In cancer cells, glucose metabolism 
is opted to low-efficient aerobic glycolysis over oxidative 
phosphorylation. This is likely an evolutionary adaptation 
to the hypoxic microenvironment. Furthermore, 
abnormality in glucose metabolism, such as the Krebs 

cycle, can trigger cancer metastasis and resistance towards 
chemotherapy [6-9]. Although there is a dispute on 
whether aerobic glycolysis is the cause or consequence of 
cancer, it is clear that cancer usually initiates in a hypoxic 
region and the switch to aerobic glycolysis is far ahead of 
cancer being diagnosed by lab tests or medical imaging 
[10-12]. Therefore, analysis of gene expression in the 
glucose metabolic pathway not only provides us valuable 
information on carcinogenesis but also could be used for 
early diagnosis of cancer.

Early diagnosis remains crucial for cancer 
patient survival. Our previous study showed that gene 
expression correlation coefficient could be used as 
a prognostic/diagnostic biomarker for human breast 
cancer [13]. Recently, we also reported that loss of gene 
pair correlations in the sphingolipid metabolic pathway 
and tryptophan metabolic pathway could be a hallmark 
in cancer diagnosis [14, 15]. In the current study, we 
undertake a pan-cancer analysis of gene expression and 
gene pair correlation for 127 genes involved in glucose 
metabolism using The Cancer Genome Atlas (TCGA).

https://creativecommons.org/licenses/by/3.0/


Genes & Cancer70www.genesandcancer.com

Figure 1: Kaplan-Meier plots of ADH1B in 12 different types of cancer. Patients with high expression of ADH1B were shown 
in red and patients with low/medium expression of ADH1B were shown in blue, respectively. ADH1B is a favorable prognostic factor 
for lung adenocarcinoma (LUAD, p = 0.004) but an unfavorable prognostic factor for stomach adenocarcinoma (STAD, p = 0.028). The 
Kaplan-Meier plots were generated using online software UALCAN (http://ualcan.path.uab.edu, accessed on May 23, 2021).
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RESULTS AND DISCUSSION

Cancer is a heterogenous and complex disease, 
killing approximately 10 million people globally in 
2020 [16]. Although recent advances, such as CAR 
T-cell therapy and immune checkpoint inhibitors, have 
provided more options for cancer treatment, prognosis for 
advanced-stage and recurrent cancer remains poor. For 
example, the 5-year survival rate for colon cancer drops 
from 92% for stage I down to 12% for stage IV in Canada 
[17]. Thus, early diagnosis is critical for patient’s survival. 
Gene expression profiling using microarray and RNA-
Seq data has been widely used to identify diagnostic or 
prognostic gene signatures, such as the 70-Gene Signature 
Assay, which are differentially expressed between cancer 
patients and normal controls. Moreover, these specific 
gene signatures may help in identifying drug design 
targets for cancer treatment.

Glucose metabolism is essential for normal cellular 
functions and cell growth, and switch to aerobic glycolysis 
(Warburg Effect) has been recognized as a characteristic 
of cancer. Thus, we undertook a pan-cancer analysis of 
127 genes involved in glucose metabolism in 12 cancer 
datasets which meet the selection criteria of Nnormal ≥ 
10 and Ncancer ≥ 10. The 12 types of cancer are bladder 
urothelial carcinoma (BLCA), breast invasive carcinoma 
(BRCA), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), head and neck squamous cell 
carcinoma (HNSC), kidney renal clear cell carcinoma 
(KIRC), liver hepatocellular carcinoma (LIHC), lung 
adenocarcinoma (LUAD), prostate adenocarcinoma 

(PRAD), stomach adenocarcinoma (STAD), thyroid 
carcinoma (THCA), and uterine corpus endometrial 
carcinoma (UCEC). For each gene, the normalized log2FC 
in gene expression between cancer patients and normal 
controls was calculated and presented in Supplementary 
Table S1. As shown in Table 1, there were 10 genes 
showing similar trend of gene expression change (either 
upregulated or downregulated) across all 12 types of 
cancer. These genes are ADH1B, ALDH2, ENO1, EPM2A, 
GAPDH, LDHA, MPC1, PDHA2, PFKFB4 and PHKG2. 
However, only one gene, ADH1B (highlighted in red in 
Table 1) was differentially downregulated in all types 
of cancer upon using |log2FC| ≥ 1.00 and p < 0.05 as the 
cut-off. This implicated that ADH1B could be applied as 
a diagnostic marker for cancer. ADH1B encodes alcohol 
dehydrogenase 1B, which catalyzes the oxidation of 
alcohol to form acetaldehyde. ADH1B is downregulated 
in hepatocellular carcinoma [18] and its polymorphism is 
associated with increased risk for various types of cancer, 
such as colorectal cancer, gastric cancer, and esophageal 
cancer [19-21]. We further performed survival analysis 
and generated Kaplan-Meier plots for ADH1B for the 
12 types of cancer (Figure 1). ADH1B is a favorable 
prognostic factor for lung adenocarcinoma (LUAD, p = 
0.004) but an unfavorable prognostic factor for stomach 
adenocarcinoma (STAD, p = 0.028). Other than ADH1B, 
gene PDHA2 (also highlighted in red in Table 1) was 
differentially upregulated in most types of cancer except in 
bladder urothelial carcinoma (BLCA, data not available) 
and prostate adenocarcinoma (PRAD, log2FC = 0.73), 
implicating that PDHA2 could also be used as a diagnostic 

Table 1: Ten genes showing similar trend of expression change (either upregulated or 
downregulated) across all 12 types of cancer, with the two genes differentially expressed (|log2FC| 
≥ 1.00) in most of the 12 types of cancer highlighted in red.
Gene BLCA BRCA COAD ESCA HNSC KIRC LIHC LUAD PRAD STAD THCA UCEC

ADH1B -4.40 -4.86 -4.06 -2.15 -3.41 -2.67 -1.16 -3.19 -1.66 -1.83 -3.44 -7.03

ALDH2 -1.64 -2.10 -0.26 -0.17 -0.65 -0.75 -1.02 -1.19 -0.81 -0.23 -0.84 -0.36

ENO1 0.96 0.33 1.00 1.48 1.14 0.64 1.27 1.22 0.19 1.12 0.17 1.53

EPM2A -2.45 -0.96 -1.21 -0.79 -0.99 -1.30 -0.30 -1.17 -0.94 -1.10 -0.82 -2.00

GAPDH 0.67 1.05 0.90 1.29 0.56 1.50 1.35 1.72 0.08 0.64 0.44 1.45

LDHA 0.62 0.56 0.72 1.50 1.31 1.71 0.05 1.36 0.42 0.85 0.07 1.38

MPC1 -0.62 -0.38 -0.96 -0.69 -0.82 -1.56 -0.85 -0.37 -0.19 -0.42 -0.79 -0.38

PDHA2 N/A 1.13 1.88 2.99 1.65 2.27 3.72 3.43 0.73 2.92 1.35 1.73

PFKFB4 2.39 1.26 0.84 1.15 1.65 2.45 2.43 0.81 0.21 0.11 0.18 2.33

PHKG2 0.71 1.12 0.48 0.95 1.01 0.28 0.86 0.86 0.26 0.96 0.31 1.01
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Figure 2: Gene pair correlations of 127 genes involved in glucose metabolism across 12 different types of cancer 
(BLCA, BRCA, COAD, ESCA, HNSC, KIRC, LIHC, LUAD, PRAD, STAD, THCA and UCEC). Positive and negative 
correlations are represented by blue and red dots, respectively, and the sizes of the dots are proportional to the correlation coefficient 
values.

Figure 3: The protein-protein interaction (PPI) network for proteins encoded by the 5 pairs of genes with correlation 
changes consistent across all 12 types of cancer.
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marker. PDHA2 encodes subunit alpha 2 of pyruvate 
dehydrogenase 1E, which is a major component of the 
pyruvate dehydrogenase complex (PDC) catalyzing the 
oxidative decarboxylation of pyruvate to form acetyl-CoA. 
PDHA2 is predominately expressed in germ cells, whereas 
its homologue, PDHA1, is expressed in somatic cells 
[22]. It has been shown that downregulation of PDHA1 
promotes cancer progression and acts as a poor prognostic 
factor for cancer [23-26]. However, the biological function 
of PDHA2 has barely been studied in cancer cells. Only 
recently, Lv et al. proposed gene pair PDHA2-APRT as a 
potential prognostic marker for breast cancer patients after 
treatment with tamoxifen [27].

Some gene signatures, especially single gene 
makers, have failed to serve as diagnostic or prognostic 
markers, because alterations of their expressions are not 
sufficient enough to be detected [28]. Carcinogenesis is 
a very complex process, which requires the coordination 
of multiple genes. Increased/decreased correlations among 
genes are highly likely happening prior to expression 
changes of the individual genes. Our previous studies 
have shown that pairwise correlation coefficients were 
dramatically decreased for genes involved in either 
sphingolipid metabolism or tryptophan metabolism in 
cancer patients as compared to normal controls [14, 15]. 
Due to the crucial role glucose metabolism in normal 
cellular functions, we decided to calculate the pairwise 
gene correlation coefficients for the 127 genes involved 
in glucose metabolism. Glucose metabolism genes 
were widely and strongly correlated in normal controls, 
however, the gene-pair correlation coefficients were 
significantly decreased or lost in cancer patients for all 
12 types of cancer (Figure 2). In addition, we examined 
whether any pair of genes exhibited consistent correlation 
change across all types of cancer in one of the following 
six correlation categories: positive → more positive, 
positive → less positive, positive → negative, negative → 
more negative, negative → less negative and negative → 
positive. Only 5 pairs of genes were identified (Table 2). 
Interestingly, the correlation became weaker for all 5 pairs 
of genes upon carcinogenesis, with ADH6 – GYC1 and 
ADPGK – SLC2A4 changed from negatively correlated 

in normal controls to less negatively correlated in cancer 
patients and ENO1 – PPP2R1A, MDH2 – SLC25A11 and 
PGM2 – PPP2CA changed from positively correlated in 
normal controls to less positively correlated in cancer 
patients. Thus, correlation coefficients for these 5 pairs 
of genes could be applied as a potential diagnostic maker 
for cancer and/or an indicator of cancer prevalence in 
a community when compared with a normal control. 
However, the differentially downregulated gene ADH1B 
and differentially upregulated gene PDHA2 were not 
present in the identified gene pairs. This implicates that 
genes may decouple even without significantly altering 
their respective expression level upon carcinogenesis. 
The decoupling of genes might help to diagnose cancer 
at a much earlier stage than the currently used diagnostic 
techniques, such as gene signature and cancer antigen 
assays, which depend on changes of gene or protein levels.

Finally, we constructed the PPI network for proteins 
encoded by the 5 pairs of genes. As illustrated in Figure 
3, the 10 proteins, especially ENO1, MDH2, PPP2R1A 
and PPP2CA, are hubs in the PPI network. They make 
1513 direct interactions with other proteins, including 
48 proteins involved in glucose metabolism. Because 
biological hubs are normally drug development targets, 
further studies are warranted to identify whether these 
10 proteins could also be the intervention sites for cancer 
treatment.

MATERIALS AND METHODS

Data acquisition

A list of 127 genes involved in glucose metabolism 
was downloaded from PathCards (https://pathcards.
genecards.org/), which is an integrated database of 
human biological pathways and their annotations. Cancer 
RNA-Seq datasets (Nnormal ≥ 10 and Ncancer ≥ 10) were 
downloaded from TCGA via the Genomic Data Commons 
(GDC) data portal. In total, 543 normal controls and 5641 
cancer patients from 12 different types of cancer were 

Table 2: Five pairs of genes with correlation changes consistent across all 12 types of cancer.
Gene pair Change of pairwise correlation from normal to 

cancer
ADH6 – GYC1 Negative → Less negative
ADPGK – SLC2A4 Negative → Less negative
ENO1 – PPP2R1A Positive → Less positive
MDH2 – SLC25A11 Positive → Less positive
PGM2 – PPP2CA Positive → Less positive

https://pathcards.genecards.org/
https://pathcards.genecards.org/
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involved in the study. The numbers of cancer patients and 
normal controls for each type of cancer were summarized 
in Table 3. For each dataset, 60,483 RNA transcripts were 
analyzed in term of FPKM value.

Identification and visualization of differentially 
expressed genes

The protocol on identifying differentially expressed 
genes (DEGs) in cancer against normal using DEGseq 
in the R package has been published [14, 15]. Briefly, 
Likelihood Ratio Test (LRT) was applied, and sample 
expression profiles were screened using p-value < 0.05. 
The output was expressed in normalized log2fold-change 
(Log2FC). Then, expression changes of the 127 genes 
involved in glucose metabolism were extracted for the 12 
types of cancer (Supplementary Table S1).

Computation and visualization of correlation 
matrix

For each type of cancer, correlation matrix was 
calculated using cor function and visualized using 
corrplot function in the R package. Positive and negative 
correlations are represented in blue and red, respectively.

Protein-protein interaction (PPI) network

Human protein interactome (BIOGRID-
ORGANISM-Homo_sapiens-4.0.189.tab) was 
downloaded from the BioGRID database [29]. PPI data 
were then extracted from the protein interactome and 
plotted using Cytoscape [30] for genes involved in the 5 

gene pairs which were conserved across all 12 types of 
cancer.

CONCLUSION

In this study, we evaluated the expression and 
gene pair correlation for 127 genes involved in glucose 
metabolism across 12 different types of cancer. Genes 
ADH1B and PDHA2 were differentially expressed in most 
of the 12 types of cancer. We also identified five pairs of 
genes having consistent correlation changes (weaker 
correlations in cancer patients) in all types of cancer. The 
two differentially expressed genes and five gene pairs 
could be potential diagnostic markers for cancer.
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Table 3: Numbers of normal controls and cancer patients in 12 different types of cancer.
Type Cancer description Normal Cancer
BLCA Bladder urothelial carcinoma 19 414
BRCA Breast invasive carcinoma 113 1102
COAD Colon adenocarcinoma 41 471
ESCA Esophageal carcinoma 11 159
HNSC Head and neck squamous cell carcinoma 13 127
KIRC Kidney renal clear cell carcinoma 72 538
LIHC Liver hepatocellular carcinoma 50 371
LUAD Lung adenocarcinoma 59 533
PRAD Prostate adenocarcinoma 52 498
STAD Stomach adenocarcinoma 32 375
THCA Thyroid carcinoma 58 502
UCEC Uterine corpus endometrial carcinoma 23 551
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