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Abstract: Cell death is the ultimate form of cellular dysfunction, and is induced by a wide range of
stresses including genotoxic stresses. During genotoxic stress, two opposite cellular reactions, cellular
protection through DNA repair and elimination of damaged cells by the induction of cell death,
can occur in both separate and simultaneous manners. ATM (ataxia telangiectasia mutated) kinase
(hereafter referred to as ATM) is a protein kinase that plays central roles in the induction of cell death
during genotoxic stresses. It has long been considered that ATM mediates DNA damage-induced
cell death through inducing apoptosis. However, recent research progress in cell death modality
is now revealing ATM-dependent cell death pathways that consist of not only apoptosis but also
necroptosis, ferroptosis, and dysfunction of autophagy, a cellular survival mechanism. In this short
review, we intend to provide a brief outline of cell death mechanisms in which ATM is involved,
with emphasis on pathways other than apoptosis.
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1. Introduction

Cellular genomic DNA is always exposed to the risk of damage caused by ultraviolet
light (UV), ionizing irradiation (IR), and exposure to chemicals, what is collectively called
genotoxic stress [1,2]. In addition to these extrinsic stresses, the intrinsic generation of
reactive oxygen species (ROS), mainly in mitochondria, is another stress leading to in-
juries in both genomic and mitochondrial DNA [3]. Although the detrimental impacts of
ROS include lipid peroxidation [4], protein oxidation [5,6], and oxidative inactivation of
enzyme [5,6], it can damage DNA through the formation, for example, of 8-oxoguanine,
which is observed ubiquitously even in healthy cells [7,8]. Aberrant DNA replication such
as replication fork collapse [9], as well as defects in DNA repair [10], is often associated
with DNA damage and is followed by cellular responses to maintain whole body home-
ostasis. To avoid the accumulation of damaged DNA as well as aberrant DNA replication,
cells have a sophisticated system called the DNA damage response (DDR) [11,12]. DNA
damage, such as single- and double-stranded DNA breaks (SSBs and DSBs), as well as
DNA adduct formation, are recognized by sensor proteins, which initiate the DDR by
activating transducer and effector proteins. ATM (ataxia telangiectasia mutated) and ATR
(ATM and rad3-related) are the most important transducer proteins [1,13]. While ATM is
activated primarily by DSB, ATR is activated by a broader spectrum of stresses including
SSB and DSB [1].

ATM activation is governed by the MRN complex, which consists of mitotic recom-
bination 11 (Mre11), Rad50 double strand break repair protein (Rad50), and Nijmegen
breakage syndrome 1 (Nbs1), and works as a sensor protein bridging DSBs and ATM [14].
When a DSB is generated in cells, the MRN complex recognizes the ends of DNA breaks
and recruits ATM to the ends, where ATM self-activates through autophosphorylation at
ser-1981 [15,16]. This autophosphorylation results in the conversion of inactive ATM dimers
into active monomers [15]. Autophosphorylated and activated ATM further phosphory-
lates H2A.X variant histone (H2AX). Ser-139 phosphorylated H2AX (γH2AX) spreads the
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DNA damage response along the chromatin [17]. It should be noted that ATM-independent
generation of γH2AX has also been reported [18]. Downstream of the generation of DSBs
and subsequent activation of ATM, the most important role of ATM is regulation of cell
cycle checkpoint. In addition, there are two cellular responses: DNA repair and cell death.
The DNA repair response is further divided into two responses: homologous recombi-
nation (HR) and non-homologous end-joining (NHEJ) [2]. Although ATM seems to be
directly involved in the HR process [19], DNA-dependent protein kinase (DNA-PK) rather
than ATM might be the central molecule involved in NHEJ [2,20]. Nevertheless, massive
genotoxic stress surpassing the cellular ability to repair the resulting DNA damage should
lead to cell death or the development of cancer.

In this brief review, we intend to provide minimal essential information of fundamen-
tal mechanism of cell death for the researchers who are interested in not only ATM but also
cell death. Although there are an ever-growing number of cell death modes, we pick up
apoptosis, necroptosis, and ferroptosis; ATM is suggested to be involved in these modes of
cell death.

2. Role of ATM in Apoptosis

Apoptosis should be the most extensively studied form of cell death induced by DNA
damage. Since there are numerous review articles describing various aspects of apoptosis
(for example, [21,22]), we briefly summarized only fundamental mechanisms of apoptosis.

Mechanistically, apoptosis is regulated, as well as executed, through a cascade of the
activation of proteases known as caspases [23,24]. Caspases can be categorized into two
groups: initiator caspases (caspase-2, -8, -9, -10), which are involved in the initiation of
apoptosis, and executioner caspases (caspase-3, -6, -7), which are activated by initiator cas-
pases and involved in the executional processes of apoptosis [23]. Executioner caspases are
involved in the degradation of cellular molecules essential for cell survival. Undoubtedly,
p53 is the most characterized protein involved in DNA-damage induced apoptosis [25]
(Figure 1). This is also the case of apoptosis proceeding through the ATM-dependent man-
ner [26]. ATM is involved in the DDR-induced activation of the intrinsic apoptotic pathway
mainly through p53. ATM and its downstream effector, checkpoint kinase 2 (Chk2), can
phosphorylate p53 at ser-15 and ser-20, respectively, which stabilizes p53 by disrupting the
binding of E3 ubiquitin ligases and subsequently protecting it from proteolytic degradation
by the 26S proteasome [25,27–29]. In addition to ser-15 and ser-20, the phosphorylation
of p53 at ser-46 during DDR has also been reported to play an important role in DNA
damage-induced cell death [26]. Phosphorylated and subsequently stabilized p53 induces
the expressions of a panel of pro-apoptotic genes, such as bax, thereby facilitating the mito-
chondrial apoptotic pathway [30,31]. In addition to its role as a transcription factor, p53
has also been reported to facilitate mitochondrial pathway of apoptosis by recruiting bax
to mitochondria [32]. It should be noted that ATM can induce apoptosis through various
axes other than p53-dependent axis, such as p73-dependent activation of mitochondrial
pathway of apoptosis (reviewed in [2]).

DNA damaging stimuli such as UV, IR and exposure to chemicals can also damage
cellular proteins. Therefore, DNA damage is often associated with ER stress, which elicits
the subsequent unfolded protein response (UPR) in stressed cells [33]. Like DDR, UPR can
result not only in cellular protection by facilitating the degradation of misfolded proteins,
but also in the induction of apoptosis when cellular stresses surpass the cellular repair
capacity [34,35]. ER stress is sensed by a chaperon protein that resides in the luminal space
of the ER, binding immunoglobulin protein (BiP), and is relayed to the three forms of
UPR pathway: the inositol-requiring enzyme1α (IRE1α), PKR-like ER kinase (PERK), and
activating transcription factor6 (ATF6) pathways (Figure 1). IRE1α and PERK are kinases
located at the ER membrane, while ATF6 is a transcriptional activator that translocates
from the ER to the Golgi apparatus where ATF6 is cleaved to become its active form. Pro-
apoptotic c-jun N-terminus kinase is the main executioner of IRE1α pathway, while C/EBP



Genes 2021, 12, 1581 3 of 11

homologous protein serves as the main mediator of both PERK- and ATF6-depednent
apoptosis [34].
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Figure 1. Role of ATM in various pathways of apoptosis. Pathways of apoptosis and its regulation by ataxia telangiectasia
mutated kinase (ATM). (a) Extrinsic apoptosis and intrinsic apoptosis are two major pathways of apoptosis. In the
intrinsic pathway, a panel of mitochondrial intermembrane space (IMS)-resident proteins, such as cytochrome c (cyt c)
and Smac/DIABLO (direct IAP binding protein with low pI) [36,37], are released into the cytoplasm in response to the
dysregulation of mitochondrial function, including a loss of mitochondrial outer membrane potential (∆Φm), an increase
in mitochondrial outer membrane permeability (MOMP), or the generation of reactive oxygen species (ROS), through
pores in the mitochondrial outer membrane composed of oligomers of bax and bak [38,39] to activate caspase-9 [40,41].
Caspase-9 then activates caspase-3 to execute the downstream events of the entire apoptotic process. In contrast to the
intrinsic pathway, the extrinsic pathway is initiated by the ligation of so-called death ligands, such as FasL, to cell surface
receptors [42–44]. Although the ligation of the receptors to death ligands typically results in caspase-8 activation, this caspase
also leads to the activation of caspase-3 [45,46]. The DNA damage response (DDR)-induced activation of ATM results in the
subsequent activation of p53 via direct phosphorylation as well as checkpoint kinase 2 (Chk2)-mediated phosphorylation.
p53 transactivates bax gene expression, which facilitates the mitochondrial pathway of apoptosis. (b) ER stress-induced
unfolded protein response (UPR) also leads to apoptosis. UPR is executed via three pathways: the inositol-requiring
enzyme1α (IRE1α), PKR-like ER kinase (PERK), and activating transcription factor6 (ATF6) pathways. c-Jun N-terminus
kinase (JNK) and C/EBP homologues protein (CHOP) serve as the mediators of apoptosis. All three of these pathways are
regulated by the ER resident chaperon, binding immunoglobulin protein (BiP). ATM facilitates ER stress and subsequent
apoptosis through the protein phosphatase 2A (PP2A)/Akt/ glycogen synthase 3β (GSK-3β)-dependent degradation of
nascent polypeptide-associated complex α-subunit (αNAC)/ γ-taxilin (γTX). In this case, cytoplasmic ATM serves as a
platform for the activation of the PP2A/Akt/GSK-3β axis [47].

Cytoplasmic ATM has recently been suggested to be involved in the UPR upstream of
BiP. ATM serves as a platform supporting the protein phosphatase 2A (PP2A)-dependent
dephosphorylation of Akt and subsequent activation of glycogen synthase 3β (GSK-3β) [47].
The kinase activity of ATM seems to be unnecessary for this protein complex to work as
the mediator of ATM-dependent cell death; ATM works as a bridging protein connecting
Akt with PP2A for inactivation via PP2A-depedent dephosphorylation [47]. This axis of
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protein phosphorylation/dephosphorylation events leads to the degradation of the nascent
polypeptide-associated complex α-subunit (αNAC) and γ-taxilin (γTX), both of which are
required for the proper transport of nascent polypeptides from ribosomes into the ER [48].
In accordance with the notion that this pathway acts upstream of BiP, the inhibition of ATM
results in the activation of UPR and subsequent apoptotic cell death [40].

In stark contrast to necrosis, apoptosis is not associated with plasma membrane
rupture. Therefore, unlike necrosis, apoptotic cells do not extrude their cellular contents
and do not elicit an immune reaction by neighboring cells; cells undergoing apoptosis
are rapidly eliminated through phagocytosis by macrophages [49]. In contrast, necrosis
is often associated with tissue inflammation due to the release of the cellular contents
into the extracellular milieu [50]. Given the importance of inflammation in the pathology
of many diseases, this difference between apoptosis and necrosis gives necrosis certain
significance; we should consider the possible involvement of necrosis in the pathology of
diseases of interest, especially when the disease is accompanied by non-negligible levels
of inflammation. Although apoptosis was considered to be the only mechanism of ATM-
induced cell death executed in a regulated manner, recent research advances have been
revealing examples of ATM-induced regulated from of necrosis, which are described in the
following sections.

3. Role of ATM in Necroptosis

Necroptosis is one of the first forms of regulated necrosis found to be executed in a
regulated manner both mechanically and genetically [51]. Necroptosis was discovered as
an alternative form of cell death that was still observed in the L929 mouse fibroblast-like cell
line in which apoptosis was blocked by the caspase inhibitor zVAD-FMK [52]. Although
the role of necroptosis in the homeostasis of the human body has not been elucidated,
necroptosis is assumed as an alternative form of death mechanism of cells in which apopto-
sis is suppressed. Necroptosis was also identified as a form of ischemic brain cell death that
can be blocked by the small molecule inhibitor necrostatin-1 (nec-1) [53]. Later, receptor-
interacting kinase-1 (RIP1) was identified as the target of nec-1 [54]. Canonical necroptosis,
for example the stimulation of immune cells such as monocytes/macrophages by pro-
inflammatory cytokines such as TNFα, is executed through the formation of a complex
between RIP1 and RIP3 downstream of the TNF receptor, and the subsequent activation of
mixed lineage kinase domain-like (MLKL), which translocates to the plasma membrane as
a trimer and is believed to be involved in the formation of the plasma membrane pores
required for the rupture of the plasma membrane during necrosis [55–58].

In addition to the RIP1/RIP3/MLKL axis of necroptosis, other necroptosis axes
have been reported, for example, apoptosis-inducing factor (AIF)-dependent and caspase-
independent cell death [59] (Figure 2). AIF, which was first implicated in apoptosis but
later found to be also involved in necrosis, is a NADH-dependent oxidoreductase that
resides in mitochondria in healthy cells, but is cleaved by calpain and translocates into
the nucleus in a truncated form (tAIF) where it participates in the degradation of chro-
mosomal DNA at the boundaries of nucleosomes [60–64]. Poly(ADP-ribose) polymerase
(PARP) is also implicated in AIF-dependent necroptosis. Upon DNA damage caused by
DNA alkylating reagents such as N-methyl-N’-nitro-N-nitrosoguanidine (MNNG), PARP,
which is involved in DNA repair, is overactivated resulting in the generation of excess
poly(ADP-ribose) (PAR). Excess activation of PARP leads to necrosis though the deple-
tion of cellular NAD+ as well as ATP [65]. Furthermore, PARP activation upon DNA
damage and the resultant generation of PAR facilitates the translocation of AIF from mi-
tochondria into the nucleus [66]. This type of necroptosis mediated by the PARP-AIF
axis is also called parthanatos [67]. Although there is less information about the possible
crosstalk between the RIP1/RIP3/MLKL-dependent and AIF-dependent axes of necropto-
sis, one report has indicated that hydrogen peroxide elicits necrosis in certain cell types in
a RIP1/RIP3/PARP/AIF-dependent manner [68].
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Figure 2. Role of ATM necroptosis. The apoptosis-inducing factor (AIF)-dependent caspase-
independent form of necroptosis [or parthanatos when the AIF-dependent cell death is also de-
pendent on poly(ADP-ribose) polymerase (PARP)] involves the translocation of AIF from the mi-
tochondria into the nucleus [69]. Nuclear AIF is complexed with ser-139 phosphorylated H2A.X
variant histone (γH2AX) and assists the digestion of chromatin via cyclophilin A (CypA) [64]. The
generation of γH2AX is mediated by ATM, and, therefore, ATM is required for the AIF-dependent
type of necroptosis.

As described, AIF-dependent type of necroptosis (or parthanatos) is elicited by DNA
damaging reagents and involves DNA degradation, implicating possible involvement of
ATM in this mode of cell death. Indeed, Baritaud et al. have reported that ATM is required
for MNNG-induced AIF-dependent necroptosis [69]. During this type of necroptosis, the
ATM-dependent generation of γH2AX, which is often observed during DNA damage and
has been proved to be essential in MNNG-induced necroptosis, plays an essential role in
the cell death. ATM forms a complex with γH2AX and cyclophilin A, which can degrade
DNA when assisted by AIF [70]. AIF-dependent necroptosis is implicated in a variety of
pathologies including ischemic injuries, neurodegeneration such as Alzheimer’s as well
as Parkinson’s disease, and prostate cancer [71]. Thus, it might be possible to regulate
AIF-dependent necroptosis though modulating ATM.

4. Role of ATM in Ferroptosis

Ferroptosis is an iron-dependent form of cell death characterized by lipid peroxidation
and subsequent damage to the plasma membrane, although the mechanism connecting
lipid peroxidation to plasma membrane rupture has not been elucidated [72,73]. Ferrous
iron (Fe2+) is involved in the formation of ROS though the Fenton reaction, which leads to
the subsequent peroxidation of phospholipids (Figure 3). Therefore, ferroptosis depends
on the presence of ferrous iron [74].

Glutathione peroxidase4 (GPX4), a unique member of the glutathione-dependent
peroxidase family that has the ability to reduce peroxidized lipids, has been shown to
play a central role in the prevention of ferroptosis in healthy cells [75,76]. System Xc-,
the glutamate—cystine antiporter involved in the transport of cystine, a precursor of glu-
tathione, from the extracellular environment into cells, is also important for the prevention
of ferroptosis.

An unexpected role of ATM in ferroptosis has been revealed by Chen et al. [77]
who, using the siRNA-based screening of kinases involved in the execution of ferroptosis,
identified ATM as an essential kinase for ferroptosis [77]. They also revealed that ATM
regulates ferroptosis positively by facilitating iron metabolism. ATM inhibition not only
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increases both the heavy and light chains of ferritin, which are involved in the cellular
storage of iron, but also increases ferroportin, which is involved in the export of iron [77].
Thus, ATM is involved in the increase in the levels of cellular labile iron required for
ferroptosis. This ATM regulation of iron storage proteins seems to be mediated by metal
regulatory transcription factor1 (MTF1), which is involved in the cellular storage of iron
through inducing ferritin. ATM facilitates ferroptosis through inactivating MTF1, thereby
facilitating the elevation of cellular labile iron pools required for ferroptosis. Nevertheless,
whether ATM regulates MTF1 directly or indirectly remains to be examined [77]. The
essential role of ATM in ferroptosis appears to be consistent with recent reports that have
identified lipid peroxidation and ferroptosis as cellular responses to ionizing radiation, a
typical inducer of DDB [78].
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Figure 3. Role of ATM in ferroptosis. Ferroptosis involves plasma membrane damage that results
from the iron-dependent generation of reactive oxygen species (ROS) and resulting peroxidation
of lipids. Iron is stored in cells as a complex with ferritin (FT). During ferroptosis, FT is degraded
to release cellular labile iron through autophagy (ferritinophagy). ATM deficiency activates metal
regulatory transcription factor1 (MTF1), which induces ferritin gene expression, thereby enhancing
iron storage and preventing ferroptosis.

5. Role of ATM in Autophagy

Autophagy is a cellular degradation system that contributes to cell survival by re-
cycling biomaterials under nutrient starved conditions [79,80]. Autophagy also con-
tributes to cellular homeostasis by eliminating damaged proteins, which are harmful
when they accumulate in cells. Mechanically, autophagy is initiated via the formation
of a phagophore/isolation membrane, a cellular structure made up of membrane lipids
(Figure 4). After expansion, nucleation, and closure of the phagophore, a double membrane
structure, called an autophagosome, is created in which cellular proteins or organelles are
included. During the formation of autophagosome, microtubule-associated protein light
chain 3 (LC3) is cleaved, conjugated with phosphatidylethanolamine, and inserted into
the autophagosomal membranes [81]. Not only soluble but also aggregated proteins can
be sorted into the interior space of autophagosomes. For example, ubiquitin-conjugated
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protein aggregates, generated due to the inability of proteasome to digest large protein
aggregates, are delivered to autophagosome though p62, which can bind to both ubiquitin
and LC3 [81]. The materials inside the autophagosomes are then delivered to the interior of
lysosomes for degradation. This step is achieved by the fusion of the outer membrane of the
autophagosomes with the lysosomal membrane to produce a fusion structure known as an
autolysosome. Syntaxin17 serves as an autophagosomal SNARE protein in this fusion pro-
cess [82]. As a natural consequence of its role in cellular survival/homeostasis, autophagy
is also involved in the regulation of cell death under some circumstances. Although au-
tophagy is a cellular protective system against the accumulation of misfolded proteins as
well as nutrient deficiency, the aberrant accumulation of autophagosomes/autolysosomes
and subsequent cell death are frequently observed under a variety of circumstances. These
cell deaths are collectively known as autophagic cell death, although autophagy itself is
disrupted due to, for example, a loss of lysosome activity in most cases of autophagic cell
death [83,84].
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system. 279 

Figure 4. Role of ATM in autophagy. Process of autophagy. During the formation of the phagophore
and further creation of the autophagosome, microtubule-associated protein light chain 3 (LC3) is
cleaved and conjugates with phosphatidylethanolamine (PE) to insert itself in the autophagosomal
membrane. Ubiquitinated (Ub-) protein aggregates that cannot be degraded by the proteasome are
delivered into the autophagosome via the binding of p62 to both LC3 and Ub-proteins. Damaged
organelles, such as mitochondria, peroxisomes, and even the nucleus and lysosomes, can be delivered
into autophagosomes for lysosomal degradation. Autophagosomes fuse with lysosomes for the degra-
dation of interior proteins by lysosomal hydrolases. ATM can facilitate mitochondrial autophagy
(mitophagy) as well as peroxisomal autophagy (pexophagy). During pexophagy, ATM phospho-
rylates the peroxisomal membranous protein PEX-5 to facilitate its ubiquitination and subsequent
binding to p62. During mitophagy, ATM activates PTEN-inducible kinase1 (PINK1)/parkin system.

ATM participates in the regulation of autophagy. For example, it has been reported that
mitophagy, which is the process by which damaged mitochondria are degraded through
autophagy, is decreased in the thymus of ATM-null mice [85]. ATM seems to activate
mitophagy through upregulating PTEN-inducible kinase1 (PINK1)/Parkin system [86,87],
which is essential for mitophagy [88]. It has been shown that a loss of ATM leads to the
death of neurons, at least in part through the upregulation of autophagy [89]. Pexophagy,
which is a form of specified autophagy targeting peroxisomes, is another example in which
ATM is involved. ROS generation from peroxisomes can activate ATM through modifying
its sulfhydryl groups [90]. ATM activated on peroxisomal membranes phosphorylates ser-
141 residue of peroxisomal biogenesis factor-5 (PEX-5), thereby facilitating the ubiqutination
of this protein and resultant binding to p62 [90]. This ATM-dependent phosphoprylation
of PEX-5 on peroxisomes initiates pexophagy, which should be beneficial for cellular
homeostasis. As autophagy is essential for human body homeostasis and its dysregulation
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participates in the development of numerous diseases [91], this cellular protective process
should be important target of ATM to maintain whole body homeostasis.

6. Concluding Remarks and Future Perspectives

Recent research progress is now revealing that necroptosis, parthanatos, and fer-
roptosis must be taken into accounts in the research field of ATM-dependent cell death.
Since pathophysiological implications of these cell death are totally different from that of
apoptosis, we should reconsider the role of ATM in the pathogenesis of relevant diseases.
For example, the role of ATM in ferroptosis might implicate that ATM participates in the
pathogenesis of neurodegenerative diseases such as Parkinson’s disease, since ferroptosis is
implicated in this disease [92]. There are other forms of regulated cell death such as pyrop-
tosis [93], autosis [94], and methuosis [95], and we should also pay attention to the possible
involvement of ATM in these cell deaths. Since the investigation of the ATM-dependent
regulation of cell death other than apoptosis has just started, there is a possibility that
unexpected roles of ATM may be revealed by the research.
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