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Introduction

Esophageal carcinoma, as a malignancy with poor prognosis, 
is the sixth leading cause of cancer-related death worldwide1. 
The incidence rate is close to the prevalence rate, indicating a 
short overall survival time2. Adenocarcinoma and squamous cell 
carcinoma (SCC) are the dominant histologies for esophageal 
carcinoma patients3. Evidence-based studies have suggested that 
genetic polymorphisms in carcinogen-metabolizing enzymes are 
important in determining an individual’s susceptibility to cancer4. 

Management of esophageal carcinoma is based on the tumor 
extent according to the TNM classification and is divided into 
curative and palliative treatments. Patients with loco-regional 
disease (Stage I,II), in good medical condition, are often offered 
curative treatment. 

Surgery remains the first choice for patients with early-stage 
cancers and is the standard against which all other treatment 
regimens are compared. Commonly used techniques for the 
resection of localized esophageal carcinoma are the transhiatal 
and right transthoracic approaches5. Although surgical techniques 
and postoperative care have improved, the reported mortality 
rates during operation remain as high as 4% to 10%3. Cisplatin 
in combination with 5-fluorouracil (5-FU) is considered the 
standard chemotherapy for esophageal carcinoma. The response 
rate for cisplatin, as a single agent, is approximately 20%6,7. The 
combination of cisplatin and continuous-infusion 5-FU has 
shown a response rate ranging from 35% to 65%8,9. Curatively 
intended radiation therapy can be performed as a conventional 
external radiotherapy, as intra-luminal brachytherapy, or in 
combination. However, the efficacy of conventional radiotherapy 
is limited by the following factors: (1) the presence of hypoxic, 
intrinsically radio-resistant, and repair-proficient tumor cells; 
(2) genetic, metabolic, and microenvironmental heterogeneity 
of tumors; and (3) undesirable damage to the normal healthy 
tissues10. Therefore, a significant improvement in therapeutic 
efficacy can be only achieved by developing effective approaches 
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based on a comprehensive understanding of the radiobiology of 
tumor and normal tissues to enhance the radiation damage in 
tumors selectively while reducing the damage to normal tissues. 

Adjuvant modality, a combination of chemotherapy and 
radiation therapy, is often used for down-staging of the tumor 
and for improving prognosis after surgery. Despite surgery or 
chemoradiotherapy, the prognosis of esophageal cancer treatment 
still remains poor, with a 5-year survival of approximately 10%. 
The failure of conventional therapy mainly occurs because tumors 
develop resistance to chemotherapy or radiation, and attempts 
to overcome resistance with higher doses of radiation and 
chemotherapeutics inevitably result in an unacceptable degree of 
toxicity and damage to normal tissues. The major limitation of all 
these treatments and their combinations is the lack of specificity 
for the tumor cell and toxicity to the patient11. 

Neoadjuvant chemoradiotherapy for esophageal squamous 
cell carcinoma (ESCC) is beneficial in the setting of a complete 
pathological response. A gene expression study has shown that 
Rad51 expression is a useful predictive factor for the efficacy of 
neoadjuvant chemoradiotherapy in ESCC. Rad51 expression 
affects both chemo- and radio-sensitivity in various cancers12.

Targeted therapy

Overall survival rates for ESCC patients remain substantially 
unchanged over the past several decades despite aggressive 
multimodality inter vention13.  However, recent insights 
into the epigenetic mechanisms associated with multi-step 
carcinogenesis14 and delineation of signal transduction pathways 
conferring chemo/radiation resistance in cancer cells15-17 provide 
new opportunities for the development of potentially effective 
targeted molecular therapies for ESCC and Barretts esophagus. 
Modern cancer therapies have evolved from non-specific 
cytotoxic agents that affect both normal and cancer cells to 
targeted therapies and personalized medicine.

Targeted therapies are directed at the unique molecular 
signatures of cancer cells to achieve significant efficacy with low 
toxicity18. Molecular studies of human esophageal tumors have 
revealed frequent genetic abnormalities (Table 1)4. Regardless 
of patient origin and suspected etiological factors, genetic 
changes that are consistently observed in ESCC are as follows: 
(1) alterations in tumor suppressor genes, specifically p53, 
resulting in altered DNA replication and repair, cell proliferation, 
and apoptosis; (2) disruption of the G1/S cell cycle checkpoint 
and loss of cell cycle control; and (3) alterations in oncogene 
function resulting in deregulation of cell signaling cascades19,20. 
In a recent comprehensive genomic analysis of 158 ESCC 
cases, as part of the International Cancer Genome Consortium 

research project, whole-genome sequencing was applied to 
17 ESCC cases and whole-exome sequencing to 71 cases, of 
which 53 cases plus an additional 70 ESCC cases were unused 
in whole-genome and whole-exome sequencing, were subjected 
to array comparative genomic hybridization analysis. Eight 
significantly mutated genes were identified, among of which 
six genes are well-known tumor-associated genes (TP53, RB1, 
CDKN2A, PIK3CA, NOTCH1, and NFE2L2), whereas two 
have not previously been described in ESCC (ADAM29 and 
FAM135B)21. In particular, FAM135B is identified as a novel 
cancer-implicated gene that promotes the malignancy of ESCC 
cells. In addition, a correlation between CD133 expression and 
the immunolocalization of several markers, such as p53, p16, 
p27, murine double minute 2 (MDM2), Ki-67, and epidermal 
growth factor receptor (EGFR), was observed. These indicators 
are known as prognostic markers or tumor proliferation factors 
in ESCC22. In a study by Nam et al.23, positive expressions of 
p53, Rb tumor suppressor protein (pRb), hMLH1, and MDM2 
were observed in 40%, 46.7%, 40%, and 66.7% of the tissue 
specimens, respectively. 

Other genetic alterations that are commonly associated with 
clinical tumors include p53 mutations24,25; loss of p16MST1 and/
or p1526, and/or RARβ expression27; amplification of cyclin D1, 
HST-1, EGFR and INT-228-31; and elevations in iNOS, hTERT, 
BMP-6, COX-2 and c-Myc expression32-36; as well as cytoplasmic 

Table 1 Molecular alterations in human esophageal squamous cell 
carcinoma4

Loss of heterozygosity 1p, 3p, 4, 5q, 9, 11q, 13q, 
17q, 18q

Loss of tumor suppressor gene 
function

p53 mutation

Methylation and/or loss of p16MST1 
and or p15

Reduced Rb expression

Gene amplification cyclin D1

HST-1

EGFR

INT-2

Increased expression iNOS

hTERT

BMP-6

COX-2

c-myc

β-catenin
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β-catenin levels37. One or several of these alterations contribute 
to the growth and metastatic potential of these tumors. 

Two other putative tumor suppressor genes, namely, FEZ-1 
on chromosome 8q22 and DLC1 on 3p21, have been identified 
as novel candidates that may serve a function in esophageal 
carcinogenesis, given that their expressions are absent in some 
sporadic tumors38,39. In contrast to the extensive literature 
on genetic alterations in frank tumors, limited information is 
available on genetic alterations in precancerous lesions of the 
esophagus.

The p53 gene results in cell cycle arrest through p21WAF1 
induction, which sequesters CDKs by down-regulating bcl-2  
(known as a key molecule in the regulation of apoptosis or 
programmed cell death), while up-regulating bax40. This process 
induces apoptosis18. MDM2, also known as HDM2 in humans, 
is a negative regulator of the tumor suppressor p5318. MDM2 
belongs to a large family of ring-finger-containing proteins and 
functions mainly, if not exclusively, as an E3 ligase41,42. MDM2 
targets p53 for mono- and/or poly-ubiquitylation, thereby 
controlling its localization and/or levels through proteasome-
dependent degradation. MDM2-mediated mono-ubiquitylation 
of p53 results in cytoplasmic sequestration, whereas poly-
ubiquitylation triggers p53 degradation. MDM2 also suppresses 
p53 function by binding to p53, thereby hindering its capability 
to interact with the basal transcriptional machinery and 
transcriptional co-activators, such as p30042,43. In response to 
DNA damage, phosphorylation of p53 on Ser20 and of MDM2 
on Ser395, as mediated by kinases such as ATM, interrupts 
the p53-MDM2 interaction, thus resulting in the nuclear 
accumulation of p53 and the activation of its transcriptional 
program44. MDM2 is overexpressed in a various human cancers, 
including melanoma, non-small cell lung cancer, breast cancer, 
esophageal cancer, leukemia, non-Hodgkin’s lymphoma, and 
sarcoma18. The tumor suppressor p53 is a powerful anti-tumor 
molecule that is frequently inactivated by mutations or deletions 
in cancer. However, half of the human tumors express wild 
type (wt) p53, and its activation by antagonizing its negative 
regulator MDM2 might offer a new therapeutic strategy45. Proof-
of-concept experiments have demonstrated the feasibility of 
this approach in vitro, but the development of pharmacological 
inhibitors remains a challenge. Potent and selective small-
molecule MDM2 inhibitors have recently been identified46,47. 
Studies of these compounds have strengthened the concept that 
selective and non-genotoxic p53 activation is a viable alternative 
to current cytotoxic chemotherapy. However, clinical validation 
remains pending. As a single agent, Nutlin-3a only increases 
apoptosis and decreases survival preferentially in wt p53-
expressing cells. Although the present data support the notion 

that initiating the growth suppressive and pro-apoptotic activity 
of p53 by MDM2 antagonists is a potentially valuable strategy 
for treating OS with wt p53, further studies are needed to reveal 
the true therapeutic potential of this approach48.

RNA interference (RNAi) is the process of sequence-specific, 
post-transcriptional gene silencing directed by short interfering 
21-23 nucleotides (nt) double-stranded RNA (siRNA). A 
number of studies have demonstrated that the introduction of 
siRNAs into mammalian and human cells causes specific and 
effective suppression of the corresponding mRNA molecules. 
siRNAs can inhibit the in vivo expression of endogenous genes, 
providing further support to the notion that oncogene-specific 
siRNAs may be new alternatives for gene-specific therapeutics 
of human cancers. For example, MDM2 targets p53 protein 
for degradation in the ubiquitin pathway, resulting in the 
abrogation of its antiproliferative and apoptosis-promoting 
effects. In addition, studies have shown that p14 induces the 
degradation of the proto-oncogene MDM2, which destabilizes 
p53. Furthermore, cell-cycle arrest mediated by p14 can be 
terminated in cells lacking functional p53, indicating that p14 
may act upstream of p53. Significant alterations in the chromatin 
structure occur during multistep esophageal carcinogenesis49. 
Global DNA demethylation results in de-repression and 
activation of an operator gene through the deactivation of a 
repressor gene of imprinted alleles, such as H19 and IGF250,51, 
as well as the up-regulation of germ cell-restricted genes, 
many of which are linked to the X chromosome and encode 
proteins that are recognized by tumor reactive lymphocytes52-54. 
Paradoxically, site-specific DNA methylation silences a variety 
of tumor suppressor genes, including p16, RASSF1A, FHIT, 
E-cadherin, and RARb in esophageal cancers55-58. Hasan et al.59 
also showed that TC21 knockdown sensitizes ESCC to cisplatin. 
Several of these tumor suppressor genes are methylated in 
Barretts epithelium, indicating that epigenetic events that perturb 
cell cycle regulation occur extremely early during esophageal 
adenocarcinogenesis55,60. By contrast, the effects of CTA 
expression regarding the malignant phenotype of esophageal 
cancers have not been clearly established61,62. The implications of 
the methylation-mediated inactivation of tumor suppressor genes 
are evident. For example, restoration of p16 or FHIT expression 
by gene transfer techniques mediates growth arrest and apoptosis 
in cultured esophageal cancer cells63,64. Furthermore, several 
studies suggest that the aberrant methylation of tumor suppressor 
genes coincides with adverse response to therapy in esophageal 
cancer patients56,65,66. Recent studies suggest that the aberrant 
activity of DNA methyltransferases and histone deacetylases 
(HDACs) may contribute to the inactivation of tumor 
suppressor gene expression and perturbed cell cycle regulation 
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in aerodigestive tract malignancies67,68. In contrast to genes that 
have been mutated or deleted, the expression of epigenetically 
silenced tumor suppressors can be restored in cancer cells by 
pharmacologic compounds, including DNA demethylating 
agents and HDAC inhibitors69. Although HDAC inhibitors, 
such as FK228, modulate the chromatin structure through the 
acetylation of the core histone proteins, these agents also disrupt 
oncoprotein signaling by mechanisms that are remarkably 
analogous to those mediated by geldanamycin derivatives70,71. 
Indeed, FK228-mediated growth arrest in cancer cells coincides 
with signaling inhibition through the EGFr-ras-raf-Erk and 
P13K/AKT pathways70. Furthermore, FK228 and other HDAC 
inhibitors markedly enhance p21expression63,70. Abrogation 
of p21 expression by flavopiridol enhances depsipeptide-
mediated apoptosis in malignant pleural mesothelioma cells, thus 
contributing to cell cycle arrest, but also inhibiting apoptosis 
of cancer cells following exposure to a variety of conventional 
chemotherapeutic agents and novel antitumor compounds72. 

Discussion

Surgery, radiation therapy, and chemotherapy have been the 
main modes of treatment for human malignancies for more 
than 40 years. The use of a combination of radiation and 
chemotherapy is often called chemoradiation in the medical 
literature73. The rate of tumor growth and expansion is controlled 
by the balance between cell proliferation/survival and apoptosis, 
which are strictly regulated processes in normal cells. However, 
apoptosis is disrupted in cancer cells and tumors, and the cell 
cycle proteins required for cell survival and proliferation are 
up-regulated or are continuously activated74. In recent years, 
considerable insight into the mechanisms of aerodigestive tract 
carcinogenesis has been gained. The aforementioned studies 
indicate that the manipulation of gene expression as a means 
to restore cell cycle regulation and induce apoptosis is feasible 
in esophageal cancer cells in vitro, as well as in clinical settings. 
Furthermore, recent laboratory experiments have demonstrated 
that novel compounds that inhibit survival signaling markedly 
enhance the efficacy of conventional therapeutic regimens for 
esophageal cancer. These data clearly support the evaluation 
of these combination treatment regimens using well-designed 
clinical protocols. We are entering a new era as regards the 
treatment and prevention of cancer, but whether the targeted 
molecular therapies can inhibit the pathogenesis and clinical 
progression of esophageal malignancies remains to be proven75. 

Curative treatment of malignant tumors with ionizing 
radiation (IR) was introduced 80 years ago76. The conditions 
of the tumor microenvironment that favor tumor cell survival 

after IR include hypoxia and secretion of radiation-protective 
cytokines and growth factors that promote the growth and 
survival of tumor tissues. Tumor radioresistance serves an 
important function in treatment failure for esophageal cancer. 
Therefore, the mechanisms involved in tumor radioresistance 
must be determined to improve prognosis77. Moreover, a number 
of genes have been implicated in the response mechanism of 
eukaryotic cells to IR. These genes include a number of cell 
cycle, checkpoint, and DNA repair genes, as well as mediators 
of apoptosis, such as p53, bax, and Bcl-2. The expression or 
repression of related genes is associated with cell survival 
or cell death in simple model systems, but shed no light on 
intercellular events in in-situ tumors or in the clinical outcome 
of radiotherapy. In addition, studies have shown that miRNA 
expression fingerprints correlate with the clinical and biological 
characteristics of tumors, including tissue type, differentiation, 
aggression, response to therapy, and prognosis78. For example, 
analysis of MDM2 overexpression in relation to p53 gene status 
has revealed significant associations between p53 missense 
mutations and the lack of detectable MDM2 protein expression79. 
Inhibition of MDM2 can restore p53 activity in cancers with wt 
p53, resulting in anti-tumor effects with apoptosis and growth 
inhibition18. The silencing of HDM2 mRNA directly enhances 
MCF-7 cell apoptosis and decreases cell proliferation. These 
results provide strong evidence that the siRNA technology can 
be an effective method for inhibiting oncogene expression and 
activating apoptotic and tumor suppressor genes80. MDM2 
is a critical component of the responses to both ionizing and 
UV radiation81. The decreased levels of MDM2 sensitize cells 
upon IR. Thus, MDM2 is a potential target for therapeutic 
intervention because its inhibition may radiosensitize the subset 
of human tumors expressing wt p53, making radiotherapy more 
effective81.

Non-specific cytotoxic agents that affect both normal and 
cancer cells in targeted therapies and personalized medicine 
are considered as novel cancer therapeutics. Targeted therapies 
are directed at the unique molecular signatures of cancer cells 
for enhanced efficacy with low toxicity18. Cancer is a multistep 
genetic and epigenetic disease with a complex etiology, and 
cancer cells have been characterized by several defects, such 
as mutations, down-regulation, over-expression, and deletions 
of oncogenes and tumor suppressor genes74. Expression 
array technology has become an important method for many 
applications, including the identification of disease-related and 
treatment-responsive genes, as well as the determination of 
carcinogenicity, toxicity, and safety of drugs82. These techniques 
have the capability to identify genes with expressions that 
correlate with ESCC because these genes could be potential 
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candidates as molecular markers for the prevention and early 
detection of ESCC. Moreover, identification of genes that are 
differentially expressed between radiosensitive and radioresistant 
cancer cells is important for predicting the clinical effectiveness 
of radiotherapy83. Therefore, activation of the cellular apoptotic 
program is a current strategy for the treatment of human 
cancers. Studies have demonstrated that radiation and standard 
chemotherapeutic drugs kill some tumor cells through the 
induction of apoptosis84. Most chemotherapeutic agents and 
radiation therapy target the DNA. Non-DNA targets may be 
effective in killing the cell or modifying the cell in such a way 
that it becomes more susceptible to cell killing after radiation-
induced damage85. Recent advances in the molecular biology 
of esophageal cancer have documented the function of genetic 
alterations in tumorigenesis and have facilitated the development 
of potential new therapeutic approaches designed to target 
such genetic alterations11. Further study is needed to elucidate 
the markers or combinations of markers that best enhance the 
effects of radiotherapy in ESCC. Such markers might prove 
valuable, not only as clinical predictors, but also as targets for 
ESCC treatment. For example, the treatment might result in an 
increased sensitivity if these abnormal functions and expressions 
return to normal86.

The siRNA complexes silence gene expression in vitro or 
in vivo with excellent specificity in cells bearing the receptor 
recognized by the antibody and can target cells, such as primary 
lymphocytes, which are refractory to lipid-mediated transfection. 
RNAi possesses high specificity and high efficiency in down-
regulating gene expressions, making it a potential therapeutic 
strategy against human cancer. Several molecules involved in 
cell-cycle regulation have been targeted for RNAi intervention 
in an effort to suppress cancer cell growth. Two cell-cycle 
regulators, namely, pRb and p53, are of special importance in 
cancer therapy and worthy of discussion87. RNAi has facilitated 
the identification and study of the components of apoptosis and 
survival pathways, thus enabling the identification of specific 
gene targets for improving the effectiveness of cancer therapies. 

Conclusion

Significant advances in understanding the molecular biology 
of esophageal cancer have resulted in the application of gene 
therapeutic methods, in which genetic material is transferred 
into human cells and expressed in those cells for a therapeutic 
purpose. Many of the genes described above may contribute 
to the resistance to chemotherapy or irradiation. For example, 
the expression of antiapoptotic proteins by cancer cells 
is an important mechanism by which cancer cells resist 

chemotherapy or irradiation. Using RNAi to target antiapoptotic 
proteins may be a promising strategy for use in conjunction 
with chemotherapy and radiotherapy for cancer treatment. 
RNAi therapy can potentially be used in conjunction with 
chemotherapy, radiotherapy, and/or immunotherapy. The 
same types of tumors, even with similar clinical phases, differ 
in terms of radiosensitivity. In recent years, many genes related 
to the radiosensitivity of tumor cells have been found. Studies 
focus on controlling the radiosensitive genes and adjusting the 
fraction dose and interval of radiation, as well as on how to 
realize the individualization of radiotherapy, change tumor cell 
radiosensitivity, and reduce the normal tissue damage to achieve 
the optimum therapeutic effects. Safety and effectiveness are the 
key factors in gene therapy, and its control mechanism affects 
its targets. siRNA technology has several major advantages over 
other post-transcriptional gene silencing techniques, such as the 
antisense and gene knockout technologies. siRNA technology is 
easier to deliver, requires only small doses of siRNA to produce 
its silencing effect, and can directly inactivate a gene at almost 
any stage in development with biological molecules through a 
number of theoretically possible reactions. The gene therapy in 
the field of esophageal cancer is in the primitive stage compared 
with those in lung, head and neck, as well as brain cancers.
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