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The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible
and its operating time finite, thus implying friction effects at short cycle times. An important technological
goal is thus the design of maximally efficient engines working at the maximum possible power. We show
that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic
cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator
undergoing a quantum Otto cycle.

T
Hermodynamics is the study of heat and its interconversion to mechanical work. It successfully describes the
‘‘equilibrium’’ properties of macroscopic systems ranging from refrigerators to black holes1. The revolution
potentially embodied by the implementation of quantum technologies is motivating the consideration of

quantum devices going all the way down to the micro- and nano-scale2. This has forced us to revise our
interpretation of thermodynamics to include ab initio both quantum and thermal fluctuations. The former,
indeed, become quite prominent at such scales. In fact, far from equilibrium, quantum fluctuations become
dominant and cannot be neglected. In turn, thermodynamic quantities such as work and heat become inherently
stochastic and should be reformulated accordingly.

Recently discovered work fluctuation theorems (FTs) and the corresponding framework, which is known to
hold both in quantum and classical systems, are extremely useful for the task of setting up a quantum apparatus
for thermodynamics3–7. FTs set fundamental constraints on the energy fluctuations of a general thermodynamic
system and embody useful tools to understand the thermodynamic implications of finite-time transformations8,9.
Whether or not FTs can help us shedding light on the limitations or possible advantages of a quantum device
operating in finite-time is a very important point to address, that goes beyond the scopes of this paper. However, it
is sensible to expect that a convenient platform for the provision of quantitative answers in this sense could come
from the study of quantum engines, for which the thermodynamic laws must be recast appropriately10–13. In fact,
although the working principles of a reversible engine might well be quantum mechanical, its efficiency would
always be limited by the second law, thus making the quantum version of cycles similar to their classical
counterparts.

The assumed reversibility (quasi-stationarity) of an engine cycle, which implies an infinitely long cycle-time,
determines its inevitable zero-power nature. This clearly crashes with the reality of any practical machine, either
quantum or classical. However, the finite-time operation of a machine working in finite-time exposes it to the
effects of friction-induced losses. The key engineering goal in this context is thus to find the maximum efficiency
allowed at the maximum possible power15,16. Noticeably, in Ref. 17 an ultra-fast cycle has been discussed that
nevertheless attains Carnot efficiency.

Classical approaches to the maximization of the power output of thermal engines have been proposed and
developed in the past18,19. While Ref. 14 proposes the use of systematic noise to suppress friction in the expansion
and compression stages of a quantum Otto cycle, here we devise an innovative way to run a finite-time, finite-
power quantum cycle based on the use of quantum shortcuts to adiabaticity20–24. Such techniques have been
employed to show that the Hamiltonian of a quantum system can be manipulated in a way to mimic an adiabatic
process via a non-adiabatic shortcut20–24. In this context, the term ‘‘adiabatic’’ should be interpreted as ‘‘slow’’ and
will be used, unless the context is evidently different (such as in the description of the cycle), as synonymous of
‘‘quasi-static’’. A few experiments have demonstrated several of such proposals25–27. In this paper we show that
such Hamiltonian-engineering techniques allow us to drive the expansion and compression stages of a cycle,
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which are prone to frictional effects, virtually without any loss affect-
ing the performance of a quantum engine within the finite-time of its
cycle. Inspired by a recent ion-trap proposal13, we will provide an
example of a finite-time, fully frictionless quantum Otto cycle where
the working medium is a quantum harmonic oscillator. Remarkable
examples of recent works along the lines of our investigation have
been reported recently28,29, although they both address classical ana-
logs of quantum shortcuts to adiabaticity with Deng et al. studying
the performance of an Otto cycle from such perspective29.

Results
Quantum Otto Cycle. In an Otto engine, a working medium
(coupled alternatively to two baths at different temperatures Ti, i
5 1, 2) undergoes a four-stroke cycle. In its quantum version, the
state of the working medium is described by a density operator
r(l(t)) that is changed by the Hamiltonian ^ l tð Þð Þ. Here, l(t) is a
work parameter, typical of the specific setting used to implement
^ l tð Þð Þ, whose value determines the equilibrium configuration of
the system. As illustrated in Fig. 1, the cycle steps are as follows:

1) An adiabatic expansion performed by the change l0 ; l(0) R
l1 ; l(t1), where t1 is the time at which this step ends. As a
result of this transformation, work is extracted from the med-
ium due to the change in its internal energy.

2) A cold isochore where heat is transferred from the working
medium to the cold bath. This is associated with a heat flow
from the medium to the cold reservoir.

3) An adiabatic compression performed by the reverse change of
the work parameter l1 R l0 and during which work is done on
the medium.

4) A hot isochore during which heat is taken from the hot res-
ervoir by the working medium.

If the engine is run in a finite-time, i.e. we abandon the usual quasi-
static assumption, friction is generated along the expansion and
compression steps. We will elucidate the nature of this friction later
on. In addition, one may (realistically) assume imperfect heat con-
duction during the isochores. Under such conditions, the work W
done by/on the engine and the heat Q exchanged by the medium with
the baths, become stochastic quantities. The efficiency of the engine
is then defined as the ratio between the average total work per cycle
and the average heat received from the hot bath, that is

E~{
Wh i1z Wh i3

Qh i4
, ð1Þ

where ÆKæj (for K 5 Q, W) is evaluated during step j 5 1, …, 4. The
power of the engine is then

P~{
Wh i1z Wh i3P4

j~1 tj
, ð2Þ

where tj is the time needed for step j. Here we consider the case where
friction only occurs along the adiabatic transformations and neglect
fluctuations in the heat flow. On the other hand, we should not forget
about the thermalisation process inherent in the isochores, which are
associated with the production of entropy. We thus assume to have
identified a regime such that the entropy produced by such therma-
lisation steps is negligible and associated with finite values of t2,4 (see
Supplementary Information for the determination of such a working
point and an estimate of both the order of magnitude of such time
intervals and of the corresponding production of entropy). Needless
to say, the entropy produced during the isochores is the same regard-
less of the way we perform the adiabats. Moreover, as we will describe
in the second part of this paper, the strategy based on shortcuts to
adiabaticity that we propose makes ÆWæi independent of ti. In these
conditions, the maximisation of Eq. (2) is achieved by minimizing
t1,3. We now describe our protocol to reduce the time needed for the
adiabats and keep the associated friction at bay.

Finite-time thermodynamics. Before we quantify the efficiency of
the engine, we need to define the probability distribution of work of
which ÆWæ is the first moment. We consider a Hamiltonian ^ l tð Þð Þ

applied to a system prepared into the Gibbs state rG l0ð Þ~
e{b ^ l0ð Þ

Z l0ð Þ
.

with inverse temperature b and l(t # 0) 5 l0. Here,

Z l tð Þð Þ :~Tr e{b ^ l tð Þð Þ
h i

is the partition function. At t 5 0, the

system-reservoir coupling is removed and l is changed from its
initial value l0 to l1 at t 5 t. Such process could be the expansion/
compression step of the Otto cycle, represented by a change of l in
^ lð Þ~

X
n

en lð Þ n lð Þj i n lð Þh j, where jn(l)æ is the nth eigenstate
with eigenvalue en(l). In this context, work should be reformulated
in a way to account for both the statistics of the initial state of the
system and the non-deterministic nature of quantum measure-
ments30. Under the assumption ^ l tð Þð Þ,Lt ^ l tð Þð Þ½ �~0, the cor-
responding work distribution P(W;t) reads

P W; tð Þ~
X
k,n

pt
nkp0

nd W{ ek tð Þ{en 0ð Þð Þ½ �: ð3Þ

Here we use the notation shortcut jn(t)æ 5 jn(l(t))æ, and call

pt
nk~ k tð Þh jÛ t,0ð Þ n 0ð Þj i

�� ��2 the probability that, under the action

of the evolution operator Û t,0ð Þ associated with ^ tð Þ, the
system goes from the initial state jn(0)æ to the final one jk(t)æ.
Finally, p0

n is the occupation probability of the initial state jn(0)æ,
which for a Gibbs ensemble reads p0

n~e{ben 0ð Þ
.X

n
e{ben 0ð Þ.

For ^ l tð Þð Þ,Lt ^ l tð Þð Þ½ �=0, this expression needs to be
modified31. However, regardless of the value of such commutator,
the first two moments of the work distribution read
Wmh i~

X
k,n

ek tð Þ{en 0ð Þ½ �mpt
nkp0

n m~1,2ð Þ.
For finite systems, the statistical nature of work requires the sec-

ond law of thermodynamics to be revised to ÆWæ $ DF, with DF the
change in free energy and the equality holding for a quasi-static
isothermal process (the inequality holding strictly for all quasi-static
processes performed without the coupling to a thermal reservoir).
For non-ideal processes, the deficit between ÆWæ and DF can be
accounted for by the introduction of the average irreversible work
ÆWirræ as ÆWæ 5 ÆWirræ 1 DF. The behavior of ÆWæ will be later
compared with the average work ÆWadæ performed onto (or made
by) the system in an adiabatic process. For such quantity, in the
absence of a heat bath, we have ÆWadæ . DF. For a closed quantum
system, the incoming heat flow is null and the irreversible entropy is
DSirr 5 b(ÆWæ 2 DF) 5 bÆWirræ, which can be recast as

Figure 1 | Pressure-volume diagram of a (quantum) Otto cycle. The

numbers relate the processes to the description of each step given in the

main text. We identify the steps where heat enters (exits) the working

medium and those where work is performed by (done onto) it as a result of

a corresponding change in the work parameter l (t).
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DSirr~S rt r
eq
tkð Þ32 with S(rAjjrB) 5 Tr(rAlnrA 2 rAlnrB) the rela-

tive entropy between two density matrices rA and rB
33, rt the time-

evoluted state, and r
eq
t ~e{b ^ tð Þ

.
Tr e{b ^ tð Þ
h i

the corresponding

equilibrium state at the temperature 1/b. Here, ÆWirræ quantifies
the degree of friction caused by the finite-time protocol on the expan-
sion or compression stage of the engine cycle. When a bath is recon-
nected, such friction results in dissipation and hence the decrease in
the overall efficiency of the motor. For the point of demonstration we
allow only this form of irreversibility in our cycle, although in prin-
ciple the same analysis can be done for fluctuating heat flows34,35.

Friction-free finite-time engine. Recently, substantial work has
been devoted to the design of super-adiabatic protocols, i.e. shortcuts
to states which are usually reached by slow adiabatic processes20–22,24.
A typical approach for shortcuts to adiabaticity is to use ad hoc
dynamical invariants to engineer a Hamiltonian model that connects
a specific eigenstate of a model from an initial to a final configuration
determined by a dynamical process. Here we will rely on an approach
based on engineered non-adiabatic dynamics achieved using self-
similar transformations23,36.

Let us consider a quantum harmonic oscillator with time-
dependent frequency v(t) as the working medium of the engine
cycle23. The Hamiltonian model that we consider is thus
^ tð Þ~ ^ v tð Þ½ �~p̂2

�
2mð Þzmv2 tð Þx̂2

�
2, where x̂ and p̂ are the

position and momentum operators of an oscillator of mass m.
Inspired by the scheme in Ref. 13, we will use the tuneable harmonic
frequency to implement the compression and expansion steps of the
Otto cycle. In line with such proposal, the frequency of the harmonic
trap embodies the volume of the chamber into which the working
medium is placed, while the corresponding pressure is defined in
terms of the change of energy per unit frequency.

Clearly, in the compression or expansion stage of the Otto cycle,
the frequency of the trap will have to be varied, so that v(t) takes here
the role of a work parameter. We now suppose to subject the working
medium to a change in the work parameter occurring in a time t and
corresponding to one of the friction-prone steps of the Otto cycle.
Our goal is to design an appropriate shortcut to adiabaticity to
arrange for a fast, frictionless evolution between the configurations
of the working medium at t 5 0 and that at t 5 t. In order to do this,
we remind that the wavefunction wn(x, t 5 0) 5 Æxjn(0)æ of an initial
eigenstate jn(0)æ of ^ 0ð Þ is known to follow the self-similar evolu-
tion23

wn x,tð Þ~ 1ffiffiffiffiffiffiffiffi
b tð Þ

p exp i
m _b tð Þx2

2�hb tð Þ {i
en 0ð Þg tð Þ

�h

 !
x=b tð Þ n 0ð Þjh i, ð4Þ

where g tð Þ~
ðt

0
dt’
�

b2 t’ð Þ, en(0) is the energy of the eigenstate being

considered at t 5 0, and the scaling factor b is the solution of the
Ermakov equation

€b tð Þzv2 tð Þb tð Þ~v2
0

�
b3 tð Þ ð5Þ

with the initial conditions b(0) 5 1 and _b 0ð Þ~0. Needless to say,
while the physically relevant parameter is the time-dependent fre-
quency v(t), the determination of the exact scaling parameter b(t) is
key for the engineering of the correct shortcut to adiabaticity. This is
found by inverting the Ermakov equation and complementing the
previous set of boundary conditions with _b 0ð Þ~€b 0ð Þ~ _b tð Þ~
€b tð Þ~0, and b tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0
�

vf

q
with v0 5 v(0) and vf 5 v(t). An

instance of the solution to this problem can be found in the Methods,
where we give the explicit form of b(t) such that the finite-time
dynamics taking the initial state wn(x, t 5 0) 5 Æxjn(0)æ to the final

one wn x,t~tð Þ~ xjn tð Þh i~ x=b tð Þjn t~0ð Þh i
. ffiffiffiffiffiffiffiffiffi

b tð Þ
p

mimics the

wanted adiabatic evolution (albeit for any t g (0, t), wn(x, t) is in

general different from the eigenstate jn(t)æ of ^ tð Þ). The choice of a
harmonic oscillator is not a unique example as analogous self-similar
dynamics can be induced in a large family of many-body systems36

and other trapping potentials, such as a quantum piston37. The resi-
lience of the shortcuts to adiabaticity approach to imperfections in
the engineering of the exact functional form of the time-dependent
protocol embodied by v(t) is an important point to address. Overall,
shortcuts to adiabaticity are known to be robust against perturba-
tions, as discussed in Ref. 23 for the case of an approximately har-
monic trap and in Ref. 36 for other trapping potentials.

Let us consider the fluctuations induced in the expansion and
compression stages of the Otto cycle when the above shortcut to
adiabaticity is implemented. Let us consider a driving Hamiltonian
with instantaneous eigenstates jn(t)æ and eigenvalues en(t). In the
adiabatic limit, the corresponding transition probabilities pt

nk tend
to jÆn(t)jk(t)æj2 5 dk,n(t) for all t g [0, t]. The average work is then

Wad tð Þh i~
X

n
en tð Þ{en 0ð Þ½ �pn~

�h v tð Þ{v0½ �
2

coth
b�hv0

2
. On the

other hand, in a shortcut to adiabaticity, only the weaker condition
pt

nk~ wn tð Þjk tð Þh ij j2?dk,n t?0,tð Þ holds. For the time-dependent
harmonic oscillator, it follows that

Wh i~ �h
2

_b
2

tð Þzv2 tð Þb2 tð Þzv2
0

�
b2 tð Þ

2v0
{v0

" #
coth

b�hv0

2
: ð6Þ

In the adiabatic limit _b tð Þ?0 and b tð Þ?bad tð Þ~ v2
0

�
v2 tð Þ

� �1=4
.

Fig. 2(a) shows ÆWæ along a shortcut to an adiabatic expansion in
comparison with the corresponding adiabatic process ÆWad(t)æ (the
behavior observed during a shortcut to a compression is mirrored in
time). We stress that ÆWæ is the work done on either adiabat until the
reconnection with the bath, i.e. just prior to the isochoric heating/
cooling stage. Fig. 2(b) displays the standard deviation DW 5 [ÆW2æ
2 ÆWæ2]1/2, which provides a further characterisation of the work
fluctuations along the shortcut through the width of P(W;t).
Interestingly, upon completion of the stroke, the non-equilibrium
deviation of both the average work and the standard deviation from
the adiabatic trajectory disappear.

We shall now analyse the non-equilibrium deviation dW 5 ÆWæ 2

ÆWad(t)æ with respect to ÆWad(t)æ. This is equivalent to the deviation
of the mean energy of the motor along the super-adiabats from its
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Figure 2 | Work fluctuations along a shortcuts to an adiabaticity
expansion. (a) Average work; (b) Standard deviation of the work; (c) Non-

equilibrium deviations from the adiabatic average mean work; (d) We

show S rt jjr
eq
tð Þ=b (. and .) and S rad

t jjr
eq
t

� ��
b (e and e) [cf. Eq. (7)] for

the same processes shown in the other panels. All quantities are plotted in

units of "v0(b5 1).
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(instantaneous) adiabatic expression. For a reversible isothermal pro-
cess ÆWadæ 5 DF and dW 5 ÆWirræ. Differently, for the adiabatic
dynamics of stages 1 and 3 of the Otto cycle, conservation of the
population in jn(t)æ is satisfied provided that bt 5 ben(0)/en(t), as it
is the case for a large-class of self-similar processes, as discussed in
Refs. 23,36,37 and remarked in the Supplementary Information. Here,
bt is introduced by noticing that the physical adiabatic state at time t is

characterised by the occupation probabilities pt
n~e{bt e

t
n

.X
n

e{bt e
t
n .

Therefore, the reference state r
eq
t is not the physical instantaneous

equilibrium state rad
t ~

X
n

p0
n n tð Þj i n tð Þh j resulting from the adia-

batic dynamics, and we find

dW~
1
b

S rt jjr
eq
tð Þ{S rad

t jjr
eq
t

� �� �
: ð7Þ

Therefore, in general dW ? 0. However, one can check that at the end
of the process we have pt

nk~dk,n, which implies dW 5 0 and thus the
frictionless nature of the process [cf. Fig. 2(c)]. The time-evolution of
the different contribution to dW, i.e. S rt jjr

eq
tð Þ=b and S rad

t jjr
eq
t

� ��
b,

are displayed in Fig. 2(d). This result is remarkable in the context of
the quantum Otto cycle: If the baths are reconnected at time t after
both the compression and expansion stages, then the efficiency of an
ideal reversible engine can be reached in finite-time, thus implement-
ing a frictionless finite-time cycle. As friction is the only source of
irreversibility in our scheme, the super-adiabatic engine reaches the
maximum efficiency of an ideal quasi-static engine in a finite-time
only.

Let us address a final point: The efficiency in Eq. (1) diminishes
with the breakdown of adiabaticity13. In contrast, our super-adiabatic
engine achieves the maximum possible value E~1{v tð Þ=v 0ð Þ.
Clearly, if unlimited resources are available, there is no fundamental
lower-bound on the running time of the adiabats. However, we take
a pragmatic approach and quantify the energy cost associated
with the implementation of our super-adiabatic engine, which
would provide a significant cost function for such part of the cycle.
We have thus considered the time-averaged dissipated work

dWh i~t{1
ðtwtc

0
dW dt, ensuring v2(t) . 0 for t g [0, t]. The

cut-off time tc was taken as the maximum running time along the
shortcut of each super-adiabat before the trap is inverted (cf.
Methods section). When this occurs, the adiabatic eigen-energies

are not well defined and our formalism breaks down. For the shortcut
to adiabaticity discussed here, such inversion occurs when the expan-
sion time is smaller than the inverse of the initial frequency of the
trap36. The exact value of such critical running time, which depends
on the expansion factor and can be found numerically, is different for
expansion and compression stages, being larger in the former case.
While the steps necessary for the calculation of ÆdWæ are reported in
the Supplementary Information, here is enough to mention that the
cost of running the super-adiabatic engine exhibits a ÆdWæ , 1/t
behavior for a wide range of parameters, as shown in Fig. 3. This
demonstrates the existence of a trade-off between the running time of
the super-adiabatic transformations and the corresponding amount
of time-averaged dissipated work, in line with the analogous com-
promise between the irreversible entropy produced along the iso-
chores and the running time of the transformations. An upper bound
for the power of an engine run can be calculated using the fun-
damental limitations set by quantum speed limit. The key steps of
such calculations are discussed in the Supplementary Information.

Discussion
We have demonstrated the possibility to perform a fully frictionless
quantum cycle in a finite-time. Our proposal exploits the idea of
shortcuts to adiabaticity, which allowed us to bypass the effects of
friction on the compression and expansion stages in an important
cycle such as Otto’s. Our study embodies one example of the potential
brought about by the combination of shortcuts to adiabaticity and
the framework for out-of-equilibrium dynamics of a quantum sys-
tem. The possibility to achieve maximum efficiency of a quantum
engine at finite time with virtually no friction is tantalizing in the
perspective of designing micro- and nano-scale motors operating at
the verge of quantum mechanics.

Methods
Driving protocol of the super-adiabats. Here we illustrate the formal procedure for
the determination of the scaling factor b(t) used in the super-adiabatic steps of our
proposal. The simplest interpolation of the actual solution of the Ermakov equation in
the main body of the paper with the boundary conditions stated in the main text is
found to be the polynomial

b tð Þ~6 c{1ð Þs5{15 c{1ð Þs4z10 c{1ð Þs3z1 ð8Þ

with s 5 t/t. This solution guarantees that, in the adiabatic limit, b
?
(t) R 0 and b(t) R

bad, while more generally the eigenstates of the initial oscillator will evolve according
to the scaling law in Eq. (4). The modulation of v(t) is the responsible for the speed-
up of the transformations performed along the super-adiabats. In turn, the
implementation of such modulation is the price to pay for the achievement of such
advantage. The explicit form v(t) can be extracted from the Ermakov equation,

v2 tð Þ~v2
0

.
b4 tð Þ{€b tð Þ

.
b tð Þ, using Eq. (8) for b(t), see Fig. (4). For sufficiently

small values of v0t, v(t) can become purely imaginary (requiring the inversion of the
trap into an expelling barrier). The condition v2(t) . 0 provides the cut-off time tc

used in Fig. 3.
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