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Abstract

Heart failure is a major cause of morbidity and mortality in type 2 diabetes. Type 2 diabetes contributes to the 

development of heart failure through a variety of mechanisms, including disease-specific myocardial structural, 

functional and metabolic changes. This review will focus on the contemporary contributions of state of the art non-

invasive technologies to our understanding of diabetic cardiomyopathy, including data on cardiac disease phenotype, 

cardiac energy metabolism and energetic deficiency, ectopic and visceral adiposity, diabetic liver disease, metabolic 

modulation strategies and cardiovascular outcomes with new classes of glucose-lowering therapies.

Introduction

Diabetes has reached epidemic proportions and is now 
among the top 10 causes of death worldwide (1). Type 2 
diabetes (T2D) is associated with an increased risk of both 
heart failure (HF) and cardiovascular mortality even in the 
absence of coronary artery disease (2, 3). Cardiovascular 
disease is the leading cause of mortality in patients with 
diabetes, despite advances in treatment (4, 5). HF is a 
particularly common complication of diabetes (6, 7, 8), 
with poor outcomes and five-year survival rates of <25% 
(5). Poorer glycemic control (hazard ratio (HR) 1.32 per 
percentage point of HbA1c) is an important predictor of 
HF development (3).

T2D contributes to the development of HF through 
a variety of mechanisms, including disease-specific 
myocardial structural, functional and metabolic changes. 
The term diabetic cardiomyopathy is applied when cardiac 

structural and haemodynamic changes are not directly 
attributable to other confounding factors such as coronary 
artery disease and hypertension, in patients with diabetes 
(9). This clinical entity is currently poorly understood, 
but is clearly of significant clinical importance, given 
the robust association of diabetes with HF and increased 
cardiovascular mortality.

Myocardial structural changes in diabetes

Although the link between HF and diabetes had first 
been suggested by Leyden as early as 1881 (10), it was 
not until 1972 when Rubler described the evidence that 
myocardial damage exists in diabetes independently of 
other vascular diseases (11). They observed ventricular 
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hypertrophy with diffuse fibrotic strands extending 
between bundles of muscle fibres and myofibrillar 
hypertrophy on histopathology in a series of post-mortem 
studies of four diabetic cases and coined the term ‘diabetic 
cardiomyopathy’.

In the last 2 decades, there has been an expansion 
in the armamentarium of non-invasive imaging 
technologies capable of providing detailed information 
about the structure of the heart in the health and disease. 
Patients with diabetes have been extensively phenotyped 
with a nuanced description of disease burden using these 
technologies, demonstrating the presence of hypertrophic 
response of the left ventricle (LV) independently of arterial 
blood pressure (12). However, the strong association 
among hypertension, and diabetes (13) is universally 
accepted, with a significant amount of overlap between 
the complications of diabetes and hypertension (14); 
making it difficult to distinguish the impact of diabetes 
from that of hypertension on the myocardial structural 
changes reported by many studies.

Several alterations in LV geometry have been 
demonstrated in patients with diabetes. One study has 
reported a 1% rise in HbA1c level was associated with a 
3.0 g increase in LV mass in elderly subjects (15). Although 
an increased LV mass is independently associated with 
diabetes, often this increase was shown to be modest 
(16, 17). LV concentric remodelling represents the main 
structural characteristic of diabetic heart disease, precedes 
the development of clinical HF and was shown to be a 
strong predictor of adverse cardiovascular events (18). 
There is less evidence that diabetes itself can cause left 
ventricular dilatation and eccentric remodelling in the 
absence of CAD, obesity or hypertension (19). Further, LV 
concentric remodelling was shown to be more strongly 
predictive of cardiovascular mortality than eccentric 
remodelling (18).

Interstitial fibrosis has been implicated in the 
pathogenesis of LVH and has been identified in the more 
advanced stages of diabetic cardiomyopathy (11). The 
role of interstitial fibrosis in the pathogenesis of LVH 
in stable/early diabetic cardiomyopathy is much less 
clear, as abnormal myocyte hypertrophy rather than 
fibrosis appears to predominate in the early stages (20). 
Cardiovascular magnetic resonance (CMR) imaging 
native and post-contrast T1 mapping for extracellular 
volume (ECV) quantification allows for non-invasive 
quantification of myocardial extra cellular matrix 
expansion, and it was demonstrated that the ECV correlates 
closely with collagen proportionate area on histology 
samples obtained from patients with HF (21). Using this 

technique, two recent studies demonstrated no significant 
increase in ECV and native T1 mapping in patients with 
well-controlled T2D, suggesting the absence of significant 
extra cellular matrix expansion, even in the presence of 
LV concentric remodelling and diastolic dysfunction (22, 
23). In a larger study of consecutive patients referred for 
CMR without amyloidosis, investigators showed higher 
median ECV in patients with diabetes (n = 231) than in 
those without diabetes (n = 945) (24). However, in this 
study, 85% of the patients with diabetes had diagnosed 
hypertension, which confounds the results.

Describing the myocardial structural changes detected 
in hypertensive heart disease in detail is beyond the scope 
of this review article. However, given the significant 
overlap with the diabetic cardiomyopathy phenotype, 
in summary hypertension results in increasing arterial 
stiffness and afterload, leading to remodelling of the 
myocardium due to cardiomyocyte hypertrophy, fibroblast 
stimulation and then increased collagen formation (3). In 
a cohort of well-controlled hypertensive patients, CMR T1 
mapping revealed increased diffuse myocardial fibrosis, 
with small increases in T1 values which were only detected 
in patients with significant LV hypertrophy (25). Another 
study has shown concentric LV hypertrophy to be more 
prevalent than eccentric remodelling in hypertensive 
patients (26).

Myocardial functional changes in diabetes

Despite the link with HF on a population level (12), 
the majority of studies report that diabetes has little 
or no effect on global LV ejection fraction (LVEF), with 
the exception of the Strong Heart Study, which has 
demonstrated the presence of a mild reduction in LVEF 
(16). However, diabetes traditionally has been linked to 
diastolic dysfunction mainly based on echocardiography. 
Consequently, diastolic abnormalities have been 
suggested as the earliest functional effect of diabetic 
cardiomyopathy, with reported prevalence rates in 
asymptomatic, normotensive patients with T2D varying 
from 15 to as high as 75 per cent (27). The Strong Heart 
Study demonstrated that the extent and frequency of 
diastolic dysfunction was directly proportional to the 
HbA1c level (16).

The combination of pulsed tissue Doppler velocity 
of the medial mitral annulus (e′) with early passive 
transmitral inflow velocity (E) has been validated as a 
reliable index of left ventricular filling pressure. E/e′ ratio 
has been shown to be a useful prognostic biomarker in 
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diabetic patients. Importantly, abnormality in E/e′ was 
shown to be associated with insulin resistance (28). From 
and coworkers in large study of 1760 diabetic patients with 
a tissue Doppler echocardiographic assessment showed 
that abnormalities in E/e’ in diabetic patients is associated 
with the subsequent development of HF and increased 
mortality independent of hypertension, coronary disease 
or other echocardiographic parameters (29).

The recent use of relatively less load dependent, 
sensitive measures of myocardial function with strain 
imaging by echocardiography and CMR has demonstrated 
the presence of subtle systolic dysfunction to be frequent 
as a marker of subclinical heart disease in diabetic 
patients. Both reduced longitudinal contractility and 
impaired systolic circumferential strain have been shown 
in diabetics (30). Although these subclinical abnormalities 
in contractility are widely considered to be a precursor to 
the onset of clinical HF in diabetes, prognostic data on 
the use of strain measures in diabetes is lacking and large 
longitudinal studies will need to assess this and better 
define the spectrum of diabetic heart disease.

Myocardial metabolic changes in diabetes

Myocardial energy metabolism in diabetes

Maintenance of adequate levels of cardiac high-energy 
phosphate metabolites, ATP, the energy source for 
contraction and phosphocreatine (PCr), the major energy 
storage compound, are of vital importance for normal 
heart function. Altered myocardial metabolism has been 
widely considered among the potential mechanisms 
leading to diabetic heart disease. In the normal heart, 
60–90% of ATP synthesis is generated from fatty acids 
(FA), with a lesser proportion (10–40%) from glucose (31). 
In diabetes, insulin fails to suppress hormone-sensitive 
lipase in adipose tissue and very low-density lipoprotein 
secretion in the liver leading to high circulating FAs. 
This, in turn activates peroxisome proliferator activated 
receptor-α (PPARα), which upregulates myocardial 
FA uptake and metabolism while decreasing glucose 
transporter 4 (GLUT4) (32, 33). Hence, these systemic 
metabolic changes in diabetes modify metabolism in 
the heart, culminating in abnormal cardiac substrate 
utilisation, impaired cardiac efficiency and decreased 
energy generation (19, 34, 35, 36, 37). FA regulate glucose 
metabolism in the heart by activating pathways that lead 
to the attenuation of insulin signals, thereby inhibiting 
insulin-mediated glucose transport (38, 39, 40). Due 

to increased FA availability as a substrate and increased 
gene expression of FA oxidation enzymes via peroxisome 
PPARα activation, the β-oxidation increases. This increase 
in FA availability, and consequently, increased cardiac 
usage (36, 41, 42, 43, 44, 45, 46), is thought to result in a 
loss of metabolic flexibility, efficiency between substrate 
use and ATP production in the diabetic heart (46). The 
free energy yielded by hydrolysis of ATP is affected by the 
substrate oxidized (47) and this is lower when excess FA 
are used compared to glucose (48, 49, 50), resulting in 
mitochondrial inefficiency and lower ATP yield.

Myocardial energetic impairment in patients 
with type 2 diabetes

The relative concentration of PCr to ATP (PCr/ATP) is a 
sensitive index of the energetic state of the myocardium 
(31). Phosphorus magnetic resonance spectroscopy (31P-
MRS) allows non-invasive assessment of the myocardial 
PCr/ATP. Decreased PCr/ATP is a predictor of mortality 
(31), linked to contractile dysfunction (51) and is a 
well-recognized complication of diabetes (30). This pre-
existing energetic deficit in diabetic cardiomyopathy is 
exacerbated by exercise (30). Additionally, exercise PCr/
ATP was shown to correlate with impaired myocardial 
perfusion and oxygenation, suggesting that, in diabetes, 
coronary microvascular dysfunction exacerbates 
derangement of cardiac energetics under conditions of 
increased workload (30).

Although significant correlations between myocardial 
systolic strain and PCr/ATP were demonstrated (30), the 
causal role of altered energetics in contractile dysfunction 
in diabetic hearts remains unclear, and additional research 
is therefore necessary to delineate the role of myocardial 
energetics in the development of cardiac dysfunction in 
patients with T2D.

Manipulation of substrate utilisation

Epidemiological data have shown an association between 
glycaemia and incident HF events in patients with or at 
risk of T2D (52, 53, 54, 55); as a result, major emphasis 
has been placed on the carbohydrate mechanism. 
Paradoxically, overall, glucose-lowering drugs or strategies 
increased the risk of HF compared with standard care 
(56). There is therefore a need for new and effective 
alternative therapeutic strategies to reduce the prevalence 
and incidence of HF in patients with T2D. As such 
substrate metabolism has become a potential target of 
pharmacological agents to improve the cardiac function. 
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Myocardial utilization of the glucose and FAs are regulated 
by substrate availability, competition at the level of the 
mitochondria and also at the site of cellular entry (57) 
(Fig. 1). Thus, agents that affect mitochondrial substrate 
uptake or cellular substrate uptake have been developed. 
Table 1 includes a list of potential therapeutic strategies to 
restore the balance of fuel utilisation.

Supporting the hypothetical cardiovascular beneficial 
influences of reduced FA oxidation in animal models of 
T2D, trimetazidine was shown to ameliorate features of 
diabetic cardiomyopathy and reverse insulin resistance 
(58). Trimetazidine is a piperazine derivative with 
pleiotropic beneficial properties (e.g. anti-ischaemic, 
antioxidant and even anti-apoptotic roles have been 
reported) (59). It is licensed as an anti-anginal agent, 
which selectively inhibits long-chain 3-ketoacyl coenzyme 
A thiolase (the last enzyme involved in β-oxidation) 
activity, thereby modifying energy metabolism by partial 

inhibition of FA oxidation. Although there is a lack of 
large-scale clinical trials with metabolic modulators, 
there have been 16 randomised controlled clinical trials 
of patients with chronic HF suggesting the efficacy of 
trimetazidine. Trimetazidine was shown to reduce all-
cause mortality, improve LVEF, reduce symptoms of HF 
and plasma B-type natriuretic peptide (BNP) levels (59). 
While studies reported beneficial effects of trimetazidine 
on clinical prognosis of diabetic patients with advanced 
ischaemic heart disease (60), whether or not these 
beneficial effects can prevent the development of HF in 
patients with T2D at an early stage has not been explored 
in clinical studies.

Perhexiline, 2-(2,2-dicyclohexylethyl) piperidine 
is another metabolic agent reducing FA metabolism 
through the inhibition of carnitine palmitoyltransferase, 
the enzyme responsible for mitochondrial uptake of long-
chain FA. Perhexiline was also shown to improve LVEF, 

Free Fatty Acids Glucose

Glucose-6-Phosphate

Pyruvate

Lactate
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Figure 1

Cardiac energy metabolism and the sites of action of the different metabolic modulators. These range from (A) mitochondrial 

carnitine shuttle (CPT inhibitors) and (B) β-fatty acid oxidation inhibitors (C) pyruvate dehydrogenase (PDH) activators. In practice, 

the latter two represent the clinically pertinent therapeutic targets. Group (A) includes perhexiline, etomoxir, oxfenicine and to a 

lesser extent amiodarone. Group (B) includes trimetazidine and ranolazine. Group (C) includes dichloroacetate. GLUT denotes 

glucose transporter, PCr phosphocreatine, Cr free creatine.
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resting and peak stress myocardial function and skeletal 
muscle energetics, peak exercise oxygen consumption 
(VO2max) reduce HF symptoms in patients with chronic 
HF (61), and in a separate study, perhexiline improved 
myocardial energetics (62). Efficacy of perhexiline was 
also shown in patients with symptomatic hypertrophic 
cardiomyopathy (HCM), with improved myocardial 
energetics, diastolic function and exercise capacity (63). 
In patients with ischaemic cardiomyopathy, perhexiline 
was shown to have no effect on wall motion response 
to dobutamine stress and adverse effect on strain rate 
compared to placebo (64). Neither of these antianginal 
metabolic modulators showed any negative inotropic 
effect to reduce the cardiac workload, consequently, their 
beneficial cardiovascular effects are considered to be 
related to inhibition of FA uptake and a metabolic shift 
towards the use of glucose and lactate (61, 62).

L-carnitine plays a pivotal role in both FA and 
carbohydrate metabolism. It is responsible for transfer of 
long-chain FA into the mitochondrial matrix. Meldonium 
is also an antianginal drug, which partially inhibits 
γ-butyrobetaine hydroxylase, reducing L-carnitine 
biosynthesis and uptake and consequently leading to a shift 
away from FA metabolism towards glucose metabolism. In 
animal models of obesity and impaired glucose tolerance, 
meldonium reduced plasma insulin concentration and 
increased cardiac and hepatic PPAR-α activity (65).

There is evidence that increased FA utilisation may 
‘paradoxically’ have beneficial effects on cardiovascular 
health in patients with T2D (66). In the Fenofibrate 
Intervention and Event Lowering in Diabetes (FIELD) study, 
PPAR-α agonist fenofibrate treatment was associated with 
a statistically non-significant trend towards a reduction 

in the 5-year CVD risk of 14.5 to 13.1%, representing a 
proportional risk reduction of 11% (adjusted HR 0.89 (95% 
CI 0–21%), P = 0.052; absolute risk reduction 1.4%). These 
contradictory outcomes make it even more pertinent to 
delineate the precise metabolic changes that occur in 
patients with T2D. Rather than representing a paradox, 
this may indicate that it is the lack of metabolic flexibility, 
rather than specific substrate preference that predisposes 
the diabetic heart to injury (67). Further, PPAR-α activation 
may be beneficial with two significant advantages: (i) 
providing continued support to the muscle’s metabolic 
needs and (ii) avoiding accumulation of lipid byproducts 
that could be harmful to the cardiomyocyte (68). 
Additionally, pleiotropic benefits of these agents may be 
responsible for these beneficial effects (67).

Myocardial steatosis in patients with type 2 diabetes

Excess myocyte accumulation of lipids has emerged 
as an important contributor to the development of 
diabetic cardiomyopathy, particularly concentric LV 
remodelling (23). The discordance between the rates of 
FA availability and/or uptake with that of FA oxidation 
results in increased intracellular long-chain fatty acyl-
CoA concentrations (19). Since cardiomyocytes are 
not specialised to store lipid, this finding suggests a 
deleterious effect and cellular lipid overloading underlies 
the concept of ‘lipotoxicity’ as a potential mechanism 
for impaired cardiac function (32). The excess long-chain 
fatty acyl-CoA is then diverted towards non-oxidative 
processes with the production of lipotoxic intermediates 
such as ceramide and diacyl-glycerol (32). These have 
been shown to activate signalling pathways affecting ATP 

Table 1  Potential therapeutic strategies to restore the balance of fuel utilisation in type 2 diabetes.

Strategy/Agent Effect

Pyruvate dehydrogenase kinase 1–4 inhibition
  Dichloroacetate Increased flux through PDH

Increased Krebs cycle flux
Increased oxidative metabolism
Pyruvate dehydrogenase activation

CPT-1 inhibition
  Perhexiline, Amiodarone, Etomoxir, Oxfenicine Decreased fatty acid oxidation

Increased glucose oxidation
Long-chain 3-ketoacyl-CoA thiolase inhibitors
  Trimetazidine, Ranolazine Decreased fatty acid oxidation

Increased glucose oxidation
γ-butyrobetaine hydroxylase partial inhibition
  Meldonium Decreased l-carnitine synthesis

Increased glucose oxidation
Carnitine acylcarnitine transferase activation
  l-propionylcarnitine l-carnitine Increased fatty acid transport across mitochondrial membrane

Increased glucose oxidation
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production, insulin sensitivity, myo-cellular contractility 
and apoptosis (32, 69). Increased FA levels stimulate 
cardiac PPAR-α, resulting in upregulation of the lipid 
metabolising pathway, and PPAR-α-overexpressing mice 
show a phenotype similar to diabetes (32). This provides 
another potential mechanistic link between cardiac 
steatosis, lipotoxicity and concentric LV remodelling in 
diseases of upregulated FA metabolism such as diabetes.

Using proton (1H)-MRS, myocardial triglyceride 
content has been shown to be increased by 1.5- to 2.3-
fold in T2D (23, 70). Importantly, myocardial steatosis has 
been shown to be modifiable (71, 72). Successful reduction 
of myocardial steatosis with GLP-1 agonists (71) and 
mineralocorticoid receptor blockers (72) have both been 
shown to reverse concentric LV remodelling. However, 
larger studies targeting myocardial lipid accumulation are 
needed to confirm these observations.

Ectopic and visceral adiposity and insulin 
resistance in patients with type 2 diabetes

Accumulating evidence suggests that: (i) the distribution 
of excess fat is an important determinant of cardiovascular 
risk; (ii) ectopic and visceral adiposity confer a much higher 
risk than subcutaneous adiposity (73, 74) and (iii) abnormal 
distribution of excess fat may also play a role in the 
pathogenesis of cardiomyopathy process associated with 
diabetes and obesity (75). Computed tomography (CT), 
MRI, ultrasonography and 1H-MRS have all been used to 
quantify adipose tissue amount or lipid content within an 
organ and to examine the association of various fat depots 
with both systemic and local manifestations of disease 
(70, 76, 77, 78, 79, 80). Recently, using these techniques, 
it was demonstrated that, irrespective of body mass index, 
diabetes is related to significant abnormalities in cardiac 
function, energetics and cardiac and hepatic steatosis 
(81). However, obese patients with T2D showed a greater 
propensity for ectopic fat deposition that is associated with 
cardiac contractile dysfunction and fibroinflammatory 
liver disease than lean T2D patients (81) (Fig. 2).

Epicardial adipose tissue (EAT), which is a form 
of visceral fat, has no anatomical barriers with the 
myocardium, and, by secreting proinflammatory 
adipokines and cytokines through paracrine/autocrine 
signalling pathways, EAT may play a significant role in 
diabetic heart disease. Supporting this theory, an inverse 
correlation of EAT volumes with cardiac systolic strain 
was demonstrated (81). Similarly, excess liver fat, which is 
a form of ectopic fat, has been shown to be accompanied 
by cardiac structural and functional changes (82).

Ectopic and visceral adiposity or ‘acquired 
lipodystrophy’ is linked to insulin resistance and 
diabetes (83). Multiple studies support the concept 
that insulin resistance is prompted, and sustained by, 
dysregulated fat tissue (84, 85, 86). It is possible that the 
insulin resistance may be responsible for the increased 
cardiovascular risk that is linked to ectopic and visceral 
adiposity. Additionally, there is evidence for a strong 
association between insulin resistance and non-ischaemic 
HF (87). There are many molecular mechanisms that may 
contribute to the association between insulin resistance 
and non-ischaemic cardiomyopathy (87). These include 
metabolic inefficiency (19), impaired vascular function 
(88), inflammation, mitogenic actions of insulin on 
myocardium leading to changes of left ventricular 
geometry (89). However, there are differing opinions 
whether this relationship is of protective or pathological 
nature (90, 91, 92). Although it has been demonstrated 
that insulin resistance and ectopic adiposity are associated 
with an even greater cardiovascular risk (93, 94), Nolan 
and coworkers recently argued that insulin resistance 
protects critical tissues, such as the heart, from nutrient-
induced damage (92). It has been proposed that insulin 
resistance is an antioxidant defence mechanism (90). 
Consequently, lately, there has been something of a 
paradigm shift in the consensus regarding the nature 

Figure 2

Differences in cardiac function, hepatic steatosis, and hepatic 

cT1 among the study cohorts. (A) Peak circumferential systolic 

strain; (B) diastolic strain rate; (C) hepatic triglyceride content 

(%) and (D) hepatic corrected T1 map (ms). The dots indicate 

values outside the interquartile range. Reproduced with 

permission from Levelt et al. (83). Copyright© The American 

College of Cardiology.
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of the role of insulin resistance in diabetes associated 
cardiovascular risk, when the traditional thinking had 
regarded insulin resistance as a primary etiological factor 
in the development of non-ischaemic HF. This is based on 
the evidence that impairment of mitochondrial oxidative 
capacity, which follows increased reactive oxygen species 
(ROS) production in muscles of diet-induced diabetic mice 
(95) and inhibition of mitochondrial ROS production 
reverses insulin resistance (96, 97). This novel perspective 
might offer answers to why some previous research 
therapeutically targeting impaired insulin sensitivity 
resulted in deleterious effects such as PPARs, including 
the development of HF in patients with diabetes (90, 98).

Novel glucose-lowering therapies and 
improved cardiovascular outcomes

Recently new classes of glucose-lowering therapies, such as 
glucagon-like peptide-1 (GLP-1) analogues (99) and inhibitors 
of sodium–glucose cotransporter 2 (7) have shown exciting 
results with improved glycaemic control as well as reduced 
cardiovascular mortality in patients with T2D. However, 
these recent trials were designed to assess the specific effects 
of these novel drugs on clinical outcomes, and therefore, the 
mechanisms behind the observed cardiovascular benefits 
are speculative. It would be interesting to see if the potential 
beneficial effects of these novel therapies on cardiovascular 
health will be reflected by the changes measured with non-
invasive imaging techniques.

The biologic action of GLP-1 is focused on the 
intake, absorption, retention and disposal of energy-rich 
substrates (100). In normal physiology, endogenous GLP-1 
is implicated in the control of appetite and satiety, not 
surprisingly therefore GLP-1 is currently under intensive 
investigation as a potential primary mediator of beneficial 
metabolic effects after bariatric surgery, with its eating-
inhibitory, antiobesity and antidiabetes effects (101). 
The principal determinants of the levels of active plasma 
GLP-1 include enzymatic inactivation by dipeptidyl 
peptidase 4 (DPP-4) and neutral endopeptidase and renal 
clearance (102).

The incretin-based drugs include dipeptidyl peptidase 
4 (DPP-4) inhibitors and GLP-1 analogues. The GLP-1 
analogues exert their effect via the incretin system, 
specifically targeting the receptor for the incretin hormone 
GLP-1, which is partly responsible for augmenting glucose-
dependent insulin secretion in response to nutrient 
intake (the ‘incretin effect’). The predominant actions of 
exogenously administered GLP-1 regulate blood glucose 

via inhibition of appetite, glucagon secretion and gastric 
emptying and stimulation of insulin secretion (103).

GLP-1 receptors are also expressed in the heart, 
and administration of GLP-1 improves cardiovascular 
function in the setting of experimental cardiac injury 
(104). The actions of GLP-1 on the heart may be directly 
through generation of cAMP in cardiomyocytes and/or 
indirectly by improvement of the metabolic environment 
through control of blood glucose, insulin and Fas (105). 
The Liraglutide Effect and Action in Diabetes: Evaluation 
of Cardiovascular Outcome Results (LEADER) trial 
showed that death from cardiovascular causes occurred 
in fewer patients in the GLP-1 analogue liraglutide 
group compared to the placebo group in patients with 
T2D and high cardiovascular risk. Similarly, in high-risk 
T2D patients, the rate of cardiovascular death, nonfatal 
myocardial infarction or nonfatal stroke was significantly 
lower for semaglutide than for placebo (106). Exenatide 
is an exendin-4-based GLP-1 receptor agonist which is a 
once-weekly, injectable, extended-release formulation 
drug. The Exenatide Study of Cardiovascular Event 
Lowering (EXSCEL) assessed the long-term cardiovascular 
safety and efficacy of exenatide, in patients with T2D 
who had a wide range of cardiovascular risk (107). 
The results of this study showed that exenatide was 
non-inferior to placebo with respect to cardiovascular 
safety, but it was not superior to placebo with respect 
to efficacy. The risk of death from any cause was 6.9% 
in the exenatide group and 7.9% in the placebo group 
(hazard ratio, 0.86; 95% CI, 0.77–0.97); this difference was 
not statistically significant. Furthermore, the Functional 
Impact of GLP-1 for Heart Failure Treatment (FIGHT) 
study which was a multicentre, double-blind, placebo-
controlled randomized clinical trial of patients with 
established HF and reduced LVEF has demonstrated that 
liraglutide does not improve post-hospitalization clinical 
stability in patients with advanced HF and reduced LVEF 
despite prior studies indicating that GLP-1 therapy might 
ameliorate mechanisms of myocardial insulin resistance 
reported in patients with severe cardiomyopathies (108). 
No favourable effects of liraglutide on secondary end 
points based on echocardiographic measures, 6-minute 
walk distance or quality of life scores were shown. The 
negative outcome in this study was speculated to be 
potentially associated with the promotion of glucose-
dependent insulin secretion with GLP1 agonists. This is 
also providing extra support for the argument put forward 
recently by Nolan and coworkers that insulin resistance 
protects critical tissues, such as the heart, from nutrient-
induced damage (92) that enhancing endogenous insulin 
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secretion is disadvantageous in the setting of HF, and 
myocardial insulin resistance in HF models might be an 
adaptive mechanism in patients with advanced HF.

Inhibitors of DPP-4 reduce the breakdown of 
endogenous GLP-1. Unlike with GLP-1 analogues, there 
has been considerable speculation about the potential 
beneficial effects of DPP-4 inhibitors on the cardiovascular 
system. The results of multicentre observational studies 
of DPP4 inhibitors showed no beneficial results on their 
effect on HF admissions: (i) SAVOR–TIMI 53 trial (109) 
showed 27% increase in the risk of hospitalization for HF 
in patients with T2D assigned to saxagliptin compared to 
those who received placebo, and the drug did not provide 
any cardioprotective benefit; (ii) cardiovascular outcomes 
studies EXAMINE trial (110) of alogliptin vs standard 
care and TECOS trial (111) of sitagliptin both showed 
no increase in the overall risk of hospitalization for HF 
among patients randomly assigned to alogliptin and 
sitagliptin, vs standard care respectively. Meta-analysis 
of several large cohorts of patients with T2D, the use of 
incretin-based drugs, as compared with combinations 
of oral antidiabetic drugs, was not associated with an 
increased risk of hospitalization for HF (112).

The incretin-based drugs were also shown to reduce the 
occurrence and degree of hepatic steatosis independent of 
their action on body weight in an experimental study (113) 
and also in a small clinical phase 2 study in overweight 
patients with nonalcoholic steatohepatitis (114).

Finally, inhibitors of sodium–glucose cotransporter 
2 reduce rates of hyperglycemia in patients with T2D by 
decreasing renal glucose reabsorption, thereby increasing 
urinary glucose excretion (115). EMPA-REG OUTCOME trial 
showed that patients with T2D at high risk for cardiovascular 
events who received empagliflozin, a selective inhibitor of 
sodium–glucose cotransporter 2, had significantly lower 
rates of the primary composite cardiovascular outcome 
and of death from any cause than did those in the placebo 
group when the study drugs were added to standard care 
with almost immediate beneficial effect despite a modest 
improvement in glycaemic control, with approximately 
0.4% reduction in glycated haemoglobin of over 94 weeks 
(7). Canagliflozin is another SGLT2 inhibitor. The 
Canagliflozin Cardiovascular Assessment Study (CANVAS) 
Program, comprising two sister trials, was designed to assess 
the cardiovascular safety and efficacy of canagliflozin. The 
trial program showed that T2D patients with high risk 
of cardiovascular disease treated with canagliflozin had 
a significantly lower risk of death from cardiovascular 
causes, nonfatal myocardial infarction or nonfatal stroke 
than those who received placebo, but they were at a 

greater risk of amputation (116). The CVD-REAL Study 
was a retrospective registry study designed to evaluate 
the association of outcomes of hospitalization for HF and 
all-cause death in patients with T2D treated with SGLT-2 
inhibitors vs other glucose-lowering drugs. Consistent 
with the EMPA-REG OUTCOME, CVD-REAL Study showed 
treatment with SGLT-2 inhibitors was associated with 
39% relative risk reduction in HF hospitalization, a 51% 
reduction in all-cause mortality. These beneficial effects, 
particularly relevant to HF admissions, appeared to be 
class related. Importantly, overwhelming majority (87%) 
of patients included in the study had no established CVD, 
suggesting that lower risk patients may derive similar 
benefits with SGLT-2 inhibitors, as those with higher 
risk. However, this study similar to others did not address 
the mechanisms linking use of SGLT-2 inhibitors and 
associated cardiovascular benefits (117).

As a result, the reasons for the beneficial cardiovascular 
effects are not yet clear, however recently suggested 
theories include: (i) SGLT2 inhibitor induced plasma 
volume contraction (5% increase in haematocrit in 
conjunction with a 35% relative risk reduction in hospital 
admission for HF on empaliflozin arm) (118); (ii) Restoring 
cellular energy homeostasis by activation of AMPK (119, 
120); (iii) SGLT2 inhibitor induced mild ketosis (121, 122). 
This may improve myocardial/renal metabolic efficiency 
and function, given that the ketone body oxidation 
yields more ATP per oxygen consumption than palmitate, 
therefore, being more ‘energy-efficient’ (49).

Diabetic cardiomyopathy in type 1 diabetes

Relatively little research has taken place comparing the 
underlying mechanisms and clinical features of diabetic 
cardiomyopathy in type 1 vs type 2 diabetes. Although 
high prevalence of subclinical myocardial dysfunction 
has been reported in the early stage of type 1 diabetes 
(T1D), clinical presentations of HF is relatively rare in this 
type of diabetes compared to T2D (123). In a longitudinal 
observational study of a relatively large cohort of T1D 
patients without a previous history of heart disease only 
17 patients out of 462 (3.7%) were shown to develop HF 
during a 12-year follow-up period (124). Those patients 
who developed HF were reported to be older with a longer 
duration of diabetes (35 ± 9 years), and had higher blood 
pressure, and higher prevalence of albuminuria and 
retinopathy compared to those without HF.

Similar to T2D (125), cardiomyocyte hypertrophy has 
been reported for different animal models of T1D (126), 
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however significant reduction in the cardiomyocyte cross 
sectional area was also observed in a model of T1D (127). 
Fewer studies of T1D have shown an increase in LV mass 
compared to T2D. This may be due to the younger age 
and lower incidence of hypertension in T1D patients 
investigated in most studies. Significant LV dysfunction 
has also been detected by tissue Doppler and speckle 
tracking echocardiography techniques in T1D patients 
(128). Myocardial metabolic remodelling studies have been 
scarce in T1D. A single study demonstrated a significant 
reduction in myocardial energetics at rest independently 
of myocardial perfusion reserve changes, similarly to T2D 
(129). To our knowledge no studies to date have evaluated 
the role of myocardial steatosis in T1D.

Conclusions

Science has progressed significantly in its understanding 
of disease mechanisms in type 2 diabetes, and significant 
advances have been made in characterizing the metabolic 
phenotype in the diabetic heart and in defining 
the relationship among the myocardial metabolic 
remodelling, structural and functional changes. However, 
the fundamental question of whether or not a primary 
alteration in substrate utilisation in diabetes is responsible 
for cardiac dysfunction remains uncertain. The ability 
to manipulate cardiac metabolism is a promising 
therapeutic target which may shed light on this question. 
The mechanisms behind the observed cardiovascular 
mortality benefits of new classes of glucose-lowering 
therapies also remain to be shown. In search of treatment 
and prevention of diabetes-associated HF, the road ahead 
still appears long, but promises significant advances.
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