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Giant cell arteritis (GCA) is a granulomatous systemic vasculitis of large- and

medium-sized arteries that affects the elderly. In recent years, advances in diagnostic

imaging have revealed a greater degree of large vessel involvement than previously

recognized, distinguishing classical cranial- from large vessel (LV)- GCA. GCA

often co-occurs with the poorly understood inflammatory arthritis/bursitis condition

polymyalgia rheumatica (PMR) and has overlapping features with other non-infectious

granulomatous vasculitides that affect the aorta, namely Takayasu Arteritis (TAK) and the

more recently described clinically isolated aortitis (CIA). Here, we review the literature

focused on the immunopathology of GCA on the background of the three settings in

which comparisons are informative: LV and cranial variants of GCA; PMR and GCA;

the three granulomatous vasculitides (GCA, TAK, and CIA). We discuss overlapping and

unique features between these conditions across clinical presentation, epidemiology,

imaging, and conventional histology. We propose a model of GCA where abnormally

activated circulating cells, especially monocytes and CD4+ T cells, enter arteries after

an unknown stimulus and cooperate to destroy it and review the evidence for how this

mechanistically occurs in active disease and improves with treatment.

Keywords: vasculitis, CIA, LVV, Takayasu, PMR, temporal arteritis, GCA, giant cell arteritis

INTRODUCTION

Giant cell arteritis (GCA) is a granulomatous systemic vasculitis of people age 50 or older that
affects large- and medium-size arteries (1, 2). Vascular inflammation has two major patterns, which
overlap in a clinical spectrum. The first and classic pattern, originally described by Horton in 1932,
involves inflammation of the extracranial branches of the carotid artery with predilection for the
temporal artery and is called cranial GCA. The second pattern involves the aorta and its proximal
branches, particularly the axillary, subclavian, and proximal brachial branches, and is called large-
vessel GCA (LV-GCA) (3). While autopsy studies in the 1970s demonstrated LV involvement in
patients with cranial-GCA (4, 5), advances in imaging in the past decade have reemphasized the
frequent co-occurrence of subclinical LV with cranial disease and have identified the less common
entities of isolated cranial- and LV-GCA (6). Along with Takayasu arteritis (TAK), a systemic
vasculitis that occurs mostly in women under age 50, and clinically isolated aortitis (CIA), a
vasculitis restricted to the aorta, GCA is one of three non-infectious granulomatous vasculitides
with prominent aortic involvement (1).

GCA is medical emergency due to its ability to cause irreversible vision loss and requires prompt
diagnosis and initiation of treatment. Individual patient presentations vary depending on the
complement of cranial or large vessels that are involved, yet patients often share common systemic
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features. These include laboratory evidence of systemic
inflammation, constitutional symptoms, and polymyalgia
rheumatica (PMR), a condition characterized by pain and
stiffness in the neck, shoulders, and pelvic girdle that often co-
occurs with GCA (7, 8). Mechanistic understanding of both GCA
and PMR has been limited by the lack of consensus diagnostic
criteria. However, GCA is better characterized than PMR due to
the historical de facto diagnostic gold standard being temporal
artery biopsy (TAB), which has created a more homogenous
clinical group and also provided a vital source of tissue for
research purposes. Immunosuppression with glucocorticoids
(GC) is the cornerstone of treatment for both GCA and PMR.
As most patients have disease flares with GC tapering and
require prolonged treatment, steroid sparing agents have been
sought, with methotrexate identified as providing benefit in PMR
and likely some in GCA, and targeted blockade of IL-6R with
tocilizumab (TCZ) providing benefit in GCA. Multiple other
drugs are being studied in clinical trials in GCA (9–12).

Here, we review the current understanding of the
immunopathology of GCA on the background of the three
settings in which comparisons are informative: LV and cranial
variants of GCA; PMR and GCA; and the three granulomatous
vasculitides (GCA, TAK, and CIA). We also discuss clinical
presentation and epidemiology of disease, and the growing
role of advanced imaging for clinical and research use. We
identify areas of uncertainty and discuss possible mechanisms of
disease pathogenesis.

CLINICAL PRESENTATION

Systemic inflammation is a cardinal feature of GCA, as well
as PMR and TAK. Clinically, many patients experience non-
specific constitutional symptoms including fatigue, anorexia,
weight loss, fever, and night sweats. Laboratory evidence of
inflammation includes anemia, thrombocytosis, and elevations in
the inflammatory markers erythrocyte sedimentation rate (ESR)
and/or C-reactive protein (CRP). Patients with CIA lack systemic
features, according to the most commonly used definition of CIA
(7, 8, 13, 14).

Cranial symptoms of GCA are the classic presentation
of disease and account for the majority of the 1990 ACR
classification criteria (7). Inflammation of medium-size arteries
causes pain and tenderness in the artery wall itself and
leads to vascular stenosis and ultimately occlusion, causing
symptomatic ischemia. Ischemic symptoms include headache,
jaw claudication, and acute onset visual disturbances (7), and
are inversely correlated with the degree of systemic inflammation
(15, 16). More rarely, scalp or tongue necrosis, sensorineural
hearing loss, and even vertebrobasilar stroke can occur. The most
commonly feared complication is irreversible vision loss, which
occurred in 15–35% of patients prior to widespread recognition
of GCA and emergent use of GC (2, 17, 18).

LV-GCA often presents with non-specific systemic symptoms,
leading to delayed diagnosis (19, 20). Features suggestive of
LV-GCA in patients with PMR include the need for unusually
high doses of GC, bilateral diffuse lower extremity pain, pelvic

girdle pain, and inflammatory low back pain (20). LV-GCA can
also cause ischemic symptoms corresponding to supra-aortic
vessel stenosis with resultant limb claudication or dizziness.
Physical signs can include vascular bruits, loss of carotid or
radial pulses, and/or discordant blood pressures (19, 21). These
overlap with the symptoms and classification criteria for TAK
(13). Rather than causing ischemia in downstream organs,
inflammation of the aorta under the stress of high-pressure
gradients generated by the heart leads to dilatation in 32% of
patients with GCA, aneurysm formation in 2–10% patients, and
ultimately may progress to dissection (22–24). Thus, LV-GCA
is typically identified on imaging or in surgical specimens from
repairs of aneurysms or dissections. In the case of surgical tissue,
GCA must further be differentiated from CIA by evidence of
systemic features or evidence of disease in arteries other than
the aorta.

EPIDEMIOLOGY

GCA is the most common form of vasculitis in patients over
age 50 with most being much older. PMR is 3–10 times more
common than GCA and is the second most frequent rheumatic
disease of elderly after rheumatoid arthritis (2). Forty–sixty
percent of patients with GCA have symptoms of PMR while 16–
21% PMR have GCA (25, 26). Age >50 is a defining feature
of both GCA and PMR, and both peak around age 75, with
the exception that patients with LV-GCA are typically younger
between 50 and 65 (2, 3, 24, 27, 28). Other granulomatous
vasculitides affecting the aorta also occur earlier; CIA has a mean
diagnosis of age 65 while TAK peaks between 15 and 29 (14, 29).
All conditions are more common in women, with increasing
frequency from CIA and PMR (2:1), to cranial-GCA (almost 3:1),
to LV-GCA (3:1), and finally to TAK (9:1) (3, 14, 26–30).

The incidence of cranial-GCA and PMR is most frequent in
patients of Northern European ancestry. Overlapping incidence
of GCA between Northern Europe at 14.6–43.5/ 100,000 and the
ancestrally similar Olmstead County, Minnesota at 19.8/ 100,000
suggest a genetic predisposition (26, 27). In other populations,
GCA occurs between 1.1 and 11.1/100,000 (26, 31–33), though
there are no studies from Africa, South America, or the majority
of continental Asia and the Middle East. It was previously
thought that GCA was uncommon in African Americans (31).
However, this has not consistently been shown in the literature,
likely reflecting the ancestral heterogeneity within racial groups
within the United States and perhaps under recognition of GCA
in African Americans due to the misconception they are not
affected (34–38). TAK is less common than GCA, with highest
incidence in Asia, South America, and Turkey at 1–2/1,000,000
(39). The true incidence and demographics of LV-GCA and CIA
are unknown but appear to be intermediate between cranial-GCA
and TAK, at least in the United States (40).

While the increased frequency of GCA in patients of Northern
European ancestry suggests a genetic predisposition, genetic
studies have generated limited insight into pathophysiology of
disease. An early reported and consistently reproduced finding
is the association with MHC class II HLA DRB04, specifically
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the ∗0401 and ∗0404 alleles, with cranial- and LV-GCA as well
as PMR (3, 41–44). Indeed, large immune-focused genotyping
arrays performed on patients with TAB-confirmed cranial-GCA
and TAK identified the HLA locus as the only locus to achieve
genome-wide significance for association with GCA, and one
of two loci with genome-wide significance in TAK (45, 46). In
GCA, the majority of this association was due to HLA-DRB1
and HLA-DQA1, with a minor contribution from MHC class I
HLA-B. The opposite pattern was found for TAK (47). Strong
class II associations suggest a key role for antigen presentation
by MHC class II to helper CD4+ T cells in GCA, and multiple
studies have suggested changes to the MHC class II peptide-
binding groove, however, the specific antigens recognized by
CD4+ T cells in GCA remain unclear (41, 46). Likewise, TAK
has more cytotoxic CD8+ T cell infiltration than GCA that may
explain its association with class I (48).When data fromGCA and
TAK studies were combined in a meta-analysis, the only non-
HLA SNP that reached significance was in IL12B, encoding the
p40 portion of the IL-12 (p35p40)/IL-23 (p19p40) heterodimeric
proteins that is shared by both cytokines (47). Yet, clinically
targeting p40 with ustekinumab in two open-label trials has
shownmixed results in GCA (49, 50). Collectively, epidemiologic
data emphasizes the importance of old age, female sex, and
genetics with GCA though how these factors contribute to disease
pathogenesis remains largely unclear.

IMAGING

In 2018 the European League Against Rheumatism (EULAR)
issued guidelines for use of imaging in LVV for the first
time, recommending early imaging as the diagnostic test of
choice to replace TAB in all cases of clinically suspected
GCA (51). Currently, there are four major imaging modalities
used in clinical practice (Table 1): ultrasound, MRI, CT, and
[18F]-fluorodeoxyglucose (FDG) positron emission tomography
(PET) (6, 51). PET is combined with another technique, most
often CT. All four modalities assess vascular wall thickness
and a marker of inflammation that differs between techniques
(Table 1). Ultrasound assessment is limited to superficial arteries
and patients with GCA have non-compressible hypoechoic wall
thickening called the “halo sign” (51). Compared to ultrasound,
MRI angiography and CT angiography have increased vascular
resolution, facilitating assessment of luminal irregularities such
as vascular stenosis, aneurysm, and occlusion. Special MRI
contrast sequences can also assess cranial vasculature (55, 56).

PET is a very sensitive technique that detects inflammation
through the surrogate marker of increased glucose metabolism
via FDG uptake and has been particularly important to define
GCA and PMR. In 1999, a small prospective PET study first
demonstrated LV enhancement in patients with GCA and,
surprisingly, equally in those with PMR (57). Most subsequent
studies are retrospective raising the possibility of selection
bias. However, additional small prospective PET studies have
demonstrated LV FDG uptake in 66.7–83% of patients with
cranial GCA (54, 58) and 14–31% of patients with PMR (59,
60). Corresponding to limb girdle symptoms, patients with
PMR show additional FDG uptake in periarticular regions
to the hip and shoulder, ischial tuberosities, sternoclavicular

joints, and trochanteric and interspinous bursa (61). Pathologic
correlates to large vessel imaging studies are not intentionally
obtained. Supporting the concept that imaging findings do reflect
active vascular inflammation, some studies have reported that
inflammatory markers correspond to the degree of LV FDG
uptake (54, 62, 63), which is also reduced with treatment (58, 64,
65). However, low grade enhancement may persist with normal
inflammatory markers (66). Multiple prospective serial studies
have now shown this does not appear to predict clinical relapse
and may rather represent vascular remodeling (58, 65, 67).
Preliminary data suggests there may be an imaging cut-off that
can distinguish ongoing inflammation from vascular remodeling,
as well as from LVV mimics such as atherosclerosis, and is an
ongoing area of research (68, 69).

Large vessel imaging patterns can also help differentiate
between TAK and LV-GCA in patients who are at the border
of age around 50 (Figure 1A). Indeed, a large imaging cohort
study recently identified six patterns of LV involvement that were
different between diseases (70). Favoring TAK were involvement
of the abdominal aorta, renal, and mesenteric arteries; bilateral
carotid and subclavian arteries; and isolated left subclavian
artery. Favoring GCA were involvement of bilateral axillary and
subclavian arteries; diffuse disease including the aorta and its
proximal branches; and minimal disease without clear pattern.
Additionally, vascular damage with stenosis, aneurysm, or
occlusion is more common in TAK while vascular inflammation
alone is more common in GCA (70). Extracranial carotid arteries
involved in cranial-GCA are rarely affected by TAK. Scans
obtained for other reasons may also incidentally reveal CIA in
the arch and descending thoracic aorta (14).

Imaging has been instrumental to define GCA but provides
little insight into pathophysiology. EULAR recommends using
ultrasound and MRI to diagnose cranial-GCA, with no
preference in technique for LV-GCA. The optimal use and
interpretation of LV imaging in clinical practice is rapidly
evolving and is thus far uncertain.

HISTOPATHOLOGY

Normal arteries have three layers separated by dense elastic
fibers (Figure 1B). From the lumen outward, these include
the tunica intima, internal elastic lamina (IEL), tunica media,
external elastic lamina, and tunic adventitia. Intima and media
are predominantly composed of endothelial cells and vascular
smooth muscle cells (VSCM), respectively (71). Their thickness
and complexity increases in large elastic vessels with proportional
increase in stromal cells and extracellular matrix, especially
within the elastic lamellae-rich media (71). The adventitia
contains a dense network of elastin and collagen connective tissue
produced by fibroblasts and is interdigitated with progenitor
cells, adrenergic nerves, and immunosurveillant tissue resident
myeloid cells called vascular dendritic cells (vasDC) (72, 73). It
is also the site of the vasa vasorum, a microvascular network
composed of endothelial cells and pericytes that supplies oxygen
and other nutrients to the vascular wall (72). As large arteries
require increased nutritional support due to their size, vasa
vasorum extend further into the media in these vessels. Outside
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TABLE 1 | Characteristics of imaging modalities clinically used to support a GCA diagnosis.

Ultrasound MRI CT FDG-PET

Vasculature examined Superficial cranial, carotid,

and axillary arteries

Cranial arteries, all large

arteries

All large arteries All large arteries; emerging use in cranial

arteries

Marker of inflammation “Halo sign” —vascular

edema

Contrast enhancement Contrast enhancement FDG uptake—glucose metabolism

Advantages Low cost, non-radiating Vascular resolution,

non-radiating

Vascular resolution, second

lowest cost

Exam sequence not limited to vasculature

and may detect mimics such as cancer,

emerging use in flare

Disadvantages Operator dependent, limited

to superficial arteries

Reduced accessibility, high

cost, highest number of

patient contraindications

Reduced accessibility,

radiation

Lowest accessibility, highest cost,

radiation when combined with CT

EULAR GCA recommendation Cranial-GCA, LV-GCA Cranial-GCA, LV-GCA LV-GCA LV-GCA

Sensitivitya Pooled: 77%b

(95% CI: 62–87%)

Pooled: 73%b

(95% CI: 57–85%)

73%c 67–71%d

Specificitya Pooled: 96%b

(95% CI: 85–99%)

Pooled: 88%b

(95% CI: 81–92%)

85%c 91–100%d

aCompared to clinical diagnosis of GCA. Caveats include that clinical diagnosis by ACR criteria favors cranial-GCA and there are fewer studies prospectively assessing sensitivity and

specificity of CTA and PET.
bData from a recent meta-analysis (52).
c(53).
d (53, 54).

the artery proper lie more connective tissues supported by a
network of small non-muscular blood vessels (74).

Temporal Arteries
GCA is a multi-focal, segmental destructive panarteritis (75–
78) (Figure 1B). There is a transmural inflammatory infiltrate
with greatest density between the adventitia and media that is
composed predominantly of CD4+ T cells and macrophages,
with few B cells and eosinophils; mature neutrophils are rare and
when abundant suggest an alternative diagnosis (79, 80). Despite
the name, giant cells themselves occur to a variable degree and
are prominent in ∼50% cases at the intima-medial junction
around a deranged IEL. In the media there is laminar necrosis
with loss of VSCMs and neoangiogensis; fibrinoid necrosis does
not occur (79). The intima has features of vascular remodeling
with hyperplasia and fibrosis, and occasionally thrombosis and
recanalization, especially above sites of active inflammation.
More active disease has a more diffuse and intense inflammatory
infiltrate and greater number of giant cells, while quiescent
disease has a scant infiltrate with fewer giant cells (81). At the end
of this spectrum is “healed arteritis,” when the features of vascular
damage and remodeling are seen in the absence of inflammatory
cells (78).

Three other patterns of inflammation associated with GCA
and PMR have also been described, together referred to
as “restricted inflammation” (RI). These include small vessel
vasculitis (SVV) involving the vessels in connective tissue beyond
the adventitia, vasa vasorum vasculitis (VVV), and inflammation
limited to adventitia (ILA) (82). Giant cells and granulomas
are not present. In their limited description, SVV consisted of
slightly more T than B cells and few macrophages (74), while
VVV showed approximately equivalent infiltration of T cells, B
cells, and macrophages (83). The extent to which these patterns

are reported and their role in GCA diagnosis is controversial
(82, 84). Recently, a retrospective clinicopathologic study with
advanced imaging found that patients with RI had fewer cranial
symptoms, less systemic inflammation, and less halo sign on
ultrasound (82). However, there was no difference in visual
symptoms including permanent vision loss or the degree of LV
involvement between RI and classic GCA. In an accompanying
systematic literature review, the positive predictive value for RI
was 23%, highest for ILA with 67% for GCA and 95% for PMR
(82). Notably, other forms of vasculitis, infection, and certain
hematologic malignancies can present with RI and particularly
with SVV (85, 86).

Large Vessels
Large vessel pathology in GCA is less well-studied. Historically,
patients with LVV have often been described to have TAK
and patients with CIA may be aberrantly reported as having
GCA (87). However, pathologic characteristics of GCA can be
disentangled by the few studies that concurrently report TAB,
which confirm histopathology is largely the same across vessel
sizes (4, 81, 88, 89). Compared to TAB, the aorta has reduced
adventitial inflammation with the majority of inflammatory
infiltrate in themedia; mild adventitial fibrosis is also occasionally
seen (4, 88) (Figure 1C). Interestingly, patients with aortic
dissection tend to have more diffuse involvement than seen on
necropsy, suggesting more robust aortic inflammation in these
patients (4, 89). CIA is histopathologically identical to GCA
(14, 88). Few studies have directly compared TAK and GCA
histopathology, but TAK has more inflammation and fibrosis in
the adventitia and media, resulting in thicker walls (40, 48, 88,
90). There is also increased invasion of CD8+ T cells, B cells,
and γδT cells and more giant cells compared with GCA (48, 91)
(Figure 1C).
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FIGURE 1 | Vascular topology and schematic cross sections of GCA, TAK, and normal arteries. (A) Depiction of the normal human large vessel vasculature. Vascular

involvement with greatest specificity for GCA shown in red and with greatest specificity for TAK in blue. (B) Cartoon representing a cross section though the temporal

artery as indicated in (A) with normal vessel on the left and the inflammatory infiltrate and vascular remodeling found in cranial-GCA on the right. (C) Cartoon

representing a cross section through the thoracic aorta as indicated in (A) with TAK on the left, normal in the middle, and LV-GCA on the right.

PATHOPHYSIOLOGY OF GCA

Clinical features, epidemiology, imaging, and conventional
histology give important information about GCA, PMR, TAK,
and CIA, but little insight into pathophysiology. For that, we
must rely on a small number of techniques, each with its
own strengths and limitations, predominantly based on the
characterization and manipulation of patient-derived peripheral
blood mononuclear cells (PBMCs) and TAB tissue. Based on
our review of data from these studies, here we envision the
sequence of events that occurs in GCA, starting with initial
immune activation, followed by arterial infiltration, damage, and

repair response. We propose the following general model of
the pathophysiology of GCA: Overlapping patterns of activation
in circulating PBMCs seen between GCA and PMR suggest
that immune activation precedes vascular damage. Pathologic
analysis suggests vascular damage initiates in the adventitial
vasa vasorum microvasculature because inflammation is never

restricted to intima (85). The initial trigger for vascular injury
in GCA is unknown but appears to involve interactions between
pathologically activated circulating cells, especially CD4+ helper
T cells and monocytes, and multiple vascular cell types.
Upon breach of vascular immunoprivilege, recruitment of these
abnormal monocytes and CD4+ T cells, especially IFN-γ-
producing Th1 cells, cooperate to mediate vascular injury and
repair. The sequence of recruitment is also unknown, but once
initiated, multiple interconnected positive feedback loops sustain
it in the vasculature and also likely feedback to amplify systemic
immune activation.

Immune Activation and Circulating
Leukocytes
Systemic inflammation is a core feature of GCA and PMR that
is largely driven by IL-6, with elevated plasma levels in both
conditions (92, 93). IL-6 is a pleotropic cytokine professionally
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FIGURE 2 | Comparative features between GCA, PMR, and TAK. PMR and GCA are overlapping clinical entities as patients can concurrently have both conditions.

However, more patients with GCA have PMR than do patients with PMR have GCA. Meanwhile, GCA and TAK share features of vascular inflammation in large

vessels. PMR, GCA, and TAK all share elevated levels of IL-6 and changes to circulating immune cells. However, distinguishing TAK from GCA are some circulating

lymphocytes and cytokines, vascular pathology, and patient age. Many features are common to other types of vascular disease, such as AAA (red). There is not

currently enough information to determine the extent to which CIA overlaps with other conditions.

produced by monocytes, macrophages, and dendritic cells
within the immune system—as well as by other cells including
endothelial cells, VSMCs, fibroblasts, and B cells—as an early
signal of tissue damage (94, 95). Monocytes appear to be
the primary source of IL-6 among PBMCs of patients with
GCA and PMR (93, 96), though the contribution from other
non-circulating cell types has not been assessed and is likely
significant. In the immune system, IL-6 has a key role in
CD4+ helper T cell differentiation, promoting the development
of Th17 and T follicular helper (TFH) cells, while inhibiting
that of regulatory T cells (Treg) due to opposite effects of
the IL-6-induced pioneering transcription factor STAT3 in the
generation of these cell types during inflammation (94, 95, 97).
In the liver, IL-6 stimulates production of acute phase response
proteins including CRP and fibrinogen, with resultant elevation
of ESR. IL-6 levels are tied closely to clinical symptoms of GCA
and are higher in patients who experience more relapses, with
levels rising concurrently with symptoms during relapse (93,
98). Consistent with the negative association between systemic
inflammation and cranial symptoms, patients with higher

serum IL-6 have fewer ischemic complications even during
relapse (98–100). Whether this reflects a biologic difference
or increased clinical detection remains unclear. Beyond IL-6,
other cytokines are not reproducibly systemically elevated across
studies; multiple studies have shown circulating TNF and IFN-γ
levels are unchanged (15, 92, 93, 101).

Patients with GCA and PMR have abnormally activated
PBMCs, particularly among CD4+ T cells, which are skewed
toward effector cells. Although unchanged in number,
polarization of CD4+ T cells is aberrant. Both conditions
share increased frequency of IFN-γ + Th1 cells and a STAT3-
activation pattern with increased IL-17+ Th17 cells and reduced
Treg (92, 101–103); IL-21+ TFH cells are also elevated in GCA
but untested in PMR. Th17 cells are stimulated by the cytokines
IL-23 and IL-1β and are pathologically associated with multiple
autoimmune diseases. Th1 cells develop downstream of STAT4-
activating IL-12, which also stimulates their production of the
signature cytokine IFN-γ, a well-known driver of granulomatous
inflammation in infections such as M. tuberculosis (104, 105).
In humans, the majority of TFH cells also respond to IL-12 and
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can co-produce IFN-γ, like Th1 cells; these cells accumulate in
a multitude of inflammatory diseases and provide B cell help. T
cell production of IL-21 can also enhance cytotoxicity of CD8+ T
cells and NK cells (106). In GCA, in vitro culture of patient T cells
with IL-21 further engenders more Th1 and Th17 differentiation
(102). Beyond polarization, GCA and PMR share an increased
frequency of senescent T cells (107). Studies in PMR are more
limited, but GCA patients have other evidence of increased
activation. These include a shift from central memory CD4+ T
cells to effector memory and terminally differentiated effector
memory cells; higher expression of HLA-DR and NOTCH1,
which has a pleomorphic pro-inflammatory function in mature
T cells; and a gene expression signature enriched for T cell
receptor signaling (102, 108–110).

In comparison, other circulating lymphocytes appear to be
less impacted, though comprehensive assessment using high-
dimensional analyses is lacking. CD8+ T cells from GCA and
PMR patients have increased oligoclonality, and many but not all
studies report lower numbers; at least in GCA, they also express
higher HLA-DR (102, 111–115). In some studies, there is a global
reduction in the number of B cells, while NK cell numbers are
unchanged (102, 116).

In the myeloid compartment, prominent changes include
increased numbers of circulating monocytes and immature
neutrophils. Monocytosis of classical CD14bright CD16lo cells
is present in both GCA and PMR (93, 117). In GCA, these
cells are phenotypically identical to healthy controls (118,
119). However, they are transcriptionally primed in circulation,
expressing higher levels of pro-inflammatory cytokines IL6, IL1B,
and IL-12/23 components IL23A (p19), IL12A (p35), and IL12B
(p40) as well as extracellular matrix-degrading (ECM) gelatinases
MMP2 and MMP9 (96, 101, 118). Surprisingly, left shift with
increased circulating immature neutrophils was recently shown
to be the major cellular difference by mass cytometry (CyToF)
between untreated GCA patient and healthy control PBMCs (80).
Collectively, these data suggest there is increased bone marrow
myelopoiesis and/or recruitment in active disease. Whether PMR
patients have the same transcriptional changes to monocytes or
cellular distribution remains to be seen.

Initiating Arterial Inflammation
Two major challenges to understanding GCA pathogenesis
are the absence of a commonly used mouse model and the
lack of availability of sequential patient samples. Given these
challenges, mechanistic insights rely on three human systems
based on temporal artery: (1) observations from TAB; (2)
manipulation of TAB or normal arteries in Matrigel (120); or
(3) manipulation of TAB or normal arteries in chimeric mouse
systems (121). The chimeric systems are the most complex and
have evolved over time. One currently used system involves three
sequential steps to produce inflammation, which may rely in
part on alloreactivity (“subcutaneous-chimera”): (1) implantation
of a human artery segment as a subcutaneous graft on the
lower midback of a highly immunocompromised NOD.Cg-
Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse that lacks all lymphocytes
and has severely defective myeloid cells; (2) stimulation with
lipopolysaccharide (LPS), activating xenograft vasDC to adopt a

pro-inflammatory CD83+ CD86+ phenotype and produce T-cell
recruiting chemokines; and (3) adoptive transfer of PBMCs from
treatment-naïve allogeneic GCA patients, generating immune
infiltration that histologically and transcriptionally resembles
GCA (103, 121). Additional mechanistic insights can also
be learned from another chimeric vascular allograft rejection
model, where human coronary artery xenograft surgically
replaces the mouse infrarenal aorta (“interposition-chimera”)
(122). Similar to subcutaneous-chimeras, this model uses highly
immunocompromised CB17.Cg-PrkdcscidLystbg−J/Crl mice that
lack T and B cells through the same Prkdc mutation but differ
in the mechanism of impaired NK and granulocyte function.
After adoptive transfer of PBMCs from allogeneic blood donors,
these mice develop xenograft vascular inflammation even in
the absence of LPS over a similar time course. However,
inflammation is more histopathologically similar to TAK, with
prominent adventitial and intimal CD4+ and CD8+ T cell
invasion and hyperplasia; unlike TAK and GCA, very few
leukocytes invade the media, myeloid infiltration is rare, IEL are
preserved, and neovascularization does not occur (123).

Arterial invasion requires activation of both circulating
and vascular cells. Emphasizing the importance of pathogenic
circulating cells, in subcutaneous-chimeras, normal human
PBMCs cannot typically invade artery grafts even in the presence
of LPS (109).Meanwhile, GCA-derived alloreactive T cells cannot
invade artery grafts in the absence of LPS (121). Some of these
effects may be caused by recruitment and duration of contact
with the subcutaneous graft because normal human T cells—but
not myeloid cells—can invade the interposition-chimera allograft
without further stimulus downstream of endothelial antigen
presentation to CD4+ and CD8+ T cells (122, 124). Interestingly,
upon co-implantation of TAB fragments from GCA, PMR, or
control patients into NSG mice, T cells recirculate from GCA
arteries and invade PMR but not normal arteries in the absence
of LPS, suggesting PMR vessels have lost immunoprivilege (121).
PMR vasDC have a partially activated CD83+CD86− phenotype
on TAB. However, whether vasDC cause the arterial leakiness
in PMR or GCA vessels is unclear because adoptive transfer of
GCA T cell alloreactive clones in subcutaneous-chimeras in the
absence of LPS also induces a CD83+ vasDC phenotype, but T
cells do not invade (121). Thus, while LPS stimulation can breach
immunoprivilege in transplanted arterial sections via vasDC
activation and perhaps prolonged contact with allogeneic T cells,
this may not be the initiating event of vascular damage in GCA.
These data also suggest—despite some overlapping phenotypes
in PBMCs—that pathogenic differences occur between GCA and
PMR cells that can facilitate entry into PMR primed vessels.

IFN-γ can independently break vascular immunoprivilege.
Incubation of normal artery in Matrigel with IFN-γ induces
VSMC expression of several chemokines including monocyte-
recruiting CCL2 as well as Th1- and CD8+ T cell-recruiting
CXCL9, CXCL10, and CXCL11 (125). It also induces VSMC
ICAM-1 expression, an adhesion molecule that binds leukocyte
integrins and, when expressed by endothelial cells, facilitates
vascular transmigration. Remarkably, addition of healthy control
PBMCs results in invasion of macrophages—but not healthy T
cells—that subsequently become giant cells (125). Endothelial
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expression of HLA-DR is also induced by IFN-γ (122, 124), but
whether pathogenic GCA PBMCs facilitate T cell entry has not
been tested. This axis may also be important in early vascular
injury in GCA, as TAB shows increased ICAM-1 expression by
VSMCs in regions of structurally normal skip lesions and as well
as by endothelial cells in the vasa vasorum (126, 127). Notably,
other cytokines such as macrophage-derived TNF and IL-1β can
also induce ICAM-1 expression on endothelial cells in vitro as
well as enhance its upregulation by IFN-γ (128). Interestingly,
IL1B is increased in PMR TAB compared to controls (129).
Thus, local induction of cytokines from activated circulating cells
may similarly prime segments of vasculature for inflammatory
cell entry, though the mechanism of tissue tropism to the LV
vasculature with this lens remains to be explored.

The Feed-Forward Inflammatory Infiltrate
On TAB, activated memory CD4+ T cells massively invade
GCA arteries, where they polarize even further into effector
cells compared to PBMC, homing mostly to the adventitial-
medial border but present in all three layers. These express a
broad repertoire of T cell receptors with a minimal degree of
clonal expansion (130, 131). While a comprehensive assessment
of infiltrating T cells is lacking, there are varying degrees of IFN-
γ, IL-17, IL-21, and IL-9 produced. The balance of polarization
differs between patients and is functionally relevant because
cranial ischemic symptoms correspond to increased Th1 function
on TAB (99, 132, 133). Indeed, ischemia positively correlations
with: (1) the Th1 signature cytokine IFN-γ, (2) its activator IL-
12p35, and (3) the downstream number of giant cells (99, 132,
133). In contrast, patients with higher expression of the Th17
signature cytokine IL-17A have fewer relapses and more systemic
symptoms (134, 135). Consistent with this, in interposition-
chimeras, IL-17 blockade does not impact intimal hyperplasia but
does reduce IL6 (136). Thoughminimally described, TABwith RI
also reflect different T cell composition. Compared to transmural
inflammation, SVV has low levels of IL-17 and intermediate
levels of IL-9 while VVV/ILA has the opposite pattern (135); the
distribution of IFN-γ has not been described. VVV further lacks
NOTCH1+ infiltrating T cells (109). Thus, T cell polarization
differs between clinical and pathologic phenotypes, but how
different signature cytokines affect pathogenesis largely remains
to be explored.

Myeloid cells also diffusely infiltrate all three layers of the
artery on TAB and densely populate granulomas around the
IEL. These include three populations: a smaller CD16−CCR2+

CX3CR1− cells that produce IL-6 and IL-1ß and phenotypically
resemble circulating monocytes; CD16+CCR2−CX3CR1+

macrophages that produceMMP9, MMP2, VEGF, and the potent
mesenchymal mitogen PDGF; and giant cells that functionally
overlap with CX3CR1+ macrophages but express the above
effectors to an even greater degree by immunohistochemistry
(96, 117, 137, 138). Other myeloid generated cytokines elevated
in TAB that contribute to the pro-inflammatory environment
include TNF, IL-12, and IL-23 (101, 139, 140). Co-culture of
human peripheral blood monocytes with aortic adventitial
fibroblasts induces their differentiation into macrophages that
produce MMP9 (141). In other biologic conditions, various

cytokines can stimulate macrophage fusion into giant cells—
including IFNγ, IL-1β, and IL-6—but correlation between IFN-γ
levels and number of giant cells on TAB suggest this is the
primary mechanism in GCA (99, 142). Collectively, these data
suggest monocytes that are transcriptionally primed to produce
pro-inflammatory cytokines and gelatinases in circulation are
recruited from the peripheral blood, differentiate in the inflamed
vessel into macrophages, and further combine to form giant cells
in response to IFN-γ. However, it is also possible that monocytes
and macrophages are independently recruited to inflamed vessels
from the circulation.

Multiple cell types generate positive feedback chemokine
loops that enhance T cell and myeloid recruitment. In
subcutaneous-chimeras, vasDC produce CCL19 and CCL21 as
well as its receptor CCR7, trapping them in the artery upon
activation (73). They also produce CCL20 and attract cells
expressing CCR6, a phenotype shared by many infiltrating T
cells on TAB as well as by Th17 and Th1/Th17 precursors in
GCA patient peripheral blood (92, 143, 144). Notably, a variety
of cells including DC, macrophages, Th17 cells, and VSMC can
produce CCL20 and while it is overexpressed on TAB, the cellular
source has not been shown (134, 136, 145). VSMC are a nexus for
accentuating inflammatory signals: macrophage-generated TNF
stimulates macrophage-attracting CX3CL1 in vitro; macrophage-
expressed PDGF induces monocyte-recruiting CCL2 in Matrigel;
Th17-produced IL-17 causes Th1/Th17-recruiting CCL20 in
vitro and in interposition-chimeras; and Th1-derived IFN-γ
provokes CX3CL1 plus Th1-, CD8+ T cell- and monocyte-
recruiting chemokines, as previously described (125, 136, 146,
147). Finally, when co-cultured, fibroblasts induce monocyte
expression of monocyte-recruiting CCL2 (141). Thus, upon entry
of T cells and monocytes in the blood vessel, interactions with
resident vascular cells perpetuate inflammation.

T cell interactions with other vascular cells also enhance
inflammation. Endothelial cells in the vasa vasorum
pathologically express Jagged1 on TAB. This can be
experimentally reproduced in vitro by GCA plasma and
mitigated by anti-VEGF, consistent with the increased
systemic levels of VEGF in patients with GCA. In vitro and
in subcutaneous-chimeras, Jagged1 ligates NOTCH1 expressed
by circulating T cells and enhances their polarization to Th1 cells
and, to a lesser extent, Th17 cells (103, 109). Upon entry into the
vessel, T cells interact with vasDC. In normal artery specimens,
these constitutively express PD-L1, a molecule that restrains
PD-1+ T cells generated during chronic immune stimulation
(148). In GCA TAB, vasDC upregulate antigen presentation
machinery of HLA-DR, CD83, and CD86 but downregulate
PD-L1; meanwhile, vascular invasive but not circulating T
cells highly express PD-1 (73, 121, 148). Blocking PD-L1 in
subcutaneous-chimeras results in exuberant inflammation,
suggesting physiologic PD-1L+ vasDC restraint is lost in GCA
immunopathology (148). Thus, inflammatory changes to other
cell types augment the pathogenicity of pre-activated T cells.

Vascular Injury and Repair
Macrophages drive vascular injury largely via gelatinases. In
normal vessels, VSMC constitutively produce pro-MMP2 and
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its inhibitor TIMP2 resulting in a quiescent vessel without
proteolysis (149). With inflammation, macrophage- and giant
cell-derived MMP2 and MMP9 outpace inhibitors, resulting in
progressive degradation of ECM that is consequently more easily
infiltrated by T cells (118, 149). Destruction occurs locally around
macrophages as demonstrated by the restriction of MMP9 and
proteolysis to the adventitia in ILA on TAB (118). Giant cells
are gelatinase factories and, taking residence along the IEL,
cleave and destroy it. The mechanisms that drive VSMC laminar
necrosis are poorly described, but likely also involve myeloid
mediators because, like IEL degradation, it does not occur in
interposition-chimeras that lack myeloid recruitment (122, 123).

Macrophages and Th1 inflammation launch vascular
remodeling, resulting in intimal hypertrophy and
neovascularization. In response to a variety of mitogenic signals
in Matrigel but most robustly to PDGF, healthy contractile
VSMC become proliferative, invasive myointimal cells (146).
These leave the media and invade the intima where they produce
the vascular ECM proteins collagen I and III, generating the
hypertrophic neointima (138, 146). TAB levels of PDGF and IFN-
γ correspond to the degree of intimal hyperplasia, which in turn
correlates with ischemic symptoms as the macrolumen becomes
progressively stenotic (138). While macrophages and giant cells
at the media/intimal border both produce PDGF, recombinant
IFN-γ can also directly stimulate VSMC to produce PDGF
as well as upregulate its receptor in interposition-chimeras
that lack PBMC adoptive transfer, resulting in neointimal
hyperplasia even in the absence of cellular infiltration (150).
Both macrophage and T cell pathways are likely active in GCA.
Patients with ischemic symptoms also have higher plasma levels
of endothelin 1 (ET-1), a potent vasoconstrictor physiologically
generated by endothelial cells. Interestingly, ET-1 is expressed by
infiltrating immune cells on TAB and can redundantly generate
intimal-invasive myointimal cells from VSMC in Matrigel (151).
The degree of intimal hyperplasia further correlates with the
degree of neovascularization in the intima and media, and in
turn, to levels of VEGF on TAB, suggesting this process is driven
by hypoxia (152). However, neovascularization co-localizes
with macrophage- and giant cell-rich areas on TAB (152).
Thus, the extent of neovascularization likely reflects the degree
of macrophage and giant cell activation through multiple
mechanisms including their production of VEGF. Collectively,
vascular remodeling results in thickened blood vessels that
cause symptomatic ischemia and generates a conduit for further
inflammatory cell entry through leaky neovasculature (127).

Treatment Effects
Glucocorticoids are the standard therapy for GCA and PMR.
Consistent with the need for higher doses in GCA than PMR,
systemic changes occur first while local changes seen in TAB
generally take much longer. Plasma IL-6 is strongly inhibited
after a single dose of GC, but the median time to normalization is
4 weeks (93). Though systematic sequential immunophenotyping
of PBMCs during treatment has not been reported, B cells
appear to be the first to respond and normalize after 2 weeks,
a time course consistent with changes in mobilization (116).
After 3 months of treatment, Th17 cell frequency, and CD4+

but not CD8+ T cell HLA-DR expression return to normal
(92, 101, 102). Monocyte numbers are also reduced at this time
but remain higher than healthy controls (117). Furthermore,
after 3–9 months of treatment, monocyte expression of IL6 and
Th17-activating IL1B and IL23A normalize while expression of
Th1-inducing and activating IL12A and IL12B remain elevated
(101). Consistent with this, among CD4+ T cells, Th1 take longer
to respond, normalizing with full disease remission (101, 102).
Finally, CD8+ T cell numbers take up to 2 years to return to
baseline numbers (111). Indeed, in patients diagnosed with GCA
for at least 2 years, increased circulating CD4+ T cells, reduced
CD8+ T cells, and the corresponding increased CD4+/CD8+

ratio but not inflammatory markers or monocytes numbers
have recently been shown to be associated with thoracic aortic
dilatation compared to controls (22).

Reports of TAB re-biopsy after GC treatment reveal similar
results to PBMCs with initial control of Th17 pathways, and later
reduction in Th1 pathways, as well as a prolonged timecourse of
vascular healing. Compared to TAB with active GCA, re-biopsies
at 3-9 months phenocopy peripheral blood and show profound
reduction in IL6, IL1B, IL23A, and IL17 while IL12A IL12B, and
INFG are unchanged (101). In another study, patients with paired
re-biopsy at 1 year demonstrated a global reduction in all tested
cytokines including IL1B, IL6, IL23A, IL12A, IL12B, and IFNG as
well asMMP9, though patients withmore relapses showed higher
levels of IL12B and IFNG (139). Consistent with this prolonged
time course, a prospective study of 40 patients re-biopsied at 3,
6, 9, and 12 months found active arteritis in 7/10, 9/12, 4/9, and
4/9 samples, respectively, despite normalization of inflammatory
markers and clinical symptoms. There was also a time-dependent
increase in vascular remodeling (153). Thus, GC quickly control
Th17 signatures in circulation and TAB, likely reflecting loss
of STAT3 activation from monocyte-derived IL-6. Meanwhile,
Th1 pathway takes longer to respond, consistent with prolonged
monocyte production of STAT4-activating IL-12, which may
drive relapse and ongoing vasculitis in some individuals. Finally,
vascular remodeling continues after active inflammation resolves,
like the prolonged FDG signal on PET imaging.

Multiple other treatment modalities have been tested for
GCA in randomized clinical trials. In the GiACTA trial, targeted
blockade of IL-6R with TCZ demonstrated superiority to a course
of GC alone in achieving steroid-free remission at 1 year, as
defined by lack of clinical flare and normal level of IL-6-induced
CRP, becoming the first non-steroid FDA-approved treatment
for GCA (11). Interestingly, fewer patients with relapsing disease
responded to TCZ than patients with untreated disease, raising
the possibility that these patients may have more Th1 driven
disease. Furthermore, one patient in the TCZ every-other-week
arm developed the ischemic complication of anterior ischemic
optic neuropathy. In another study, a patient with highly active
disease that normalized on TCZ—but who died unrelated to
GCA after 6 months of therapy—had widely active vasculitis
on autopsy (154). Though GCA-related adverse events were not
statistically different between groups in GiACTA, these raise the
question if TCZ controls vascular-level inflammation or if it
blocks systemic manifestations of flare, which may further differ
between newly diagnosed and relapsed patients.
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Further insights to this question are suggested by the differing
results of the two open-label studies of anti-p40 ustekinumab.
In the initial promising Irish trial, all patients recruited had
relapsing disease and ustekinumab was successful in achieving
GC-reduction without flare, albeit with persistent low GC dose in
the majority of patients. Notably, of 10 patients with LV disease
in this study, eight underwent reimaging by CT angiography,
which demonstrated not only a halt to further vascular damage
but improvement of wall thickening in all patients and complete
resolution in four (49). In the American trial, both newly
diagnosed and relapsing patients were recruited and all patients
were required to end GC at 6 months, resulting in clinical
flare across the majority of patients with elevated inflammatory
markers and PMR symptoms; though data was not shown for
relapse between newly diagnosed vs/ relapsing patients they were
stated not to be different (50). Vascular imaging follow up was not
reported (50). Consistent with molecular studies, these differing
trial results suggest a degree of independence between systemic
symptoms of flare downstream of IL-6 and vascular damage in
relapsing patients downstream of IL-12. While GC controls both
endotypes, targeted therapies directed at either can fail; however,
only low dose GC may be required to control the IL-6 axis, as in
PMR, at least in patients with relapsing disease. These data also
emphasize that long-term follow up of TCZ-treated patients and
further clinicopathologic correlation will be important and the
utility of a randomized trial for ustekinumab in GCA patients
with relapsing disease. Similar to GC, blocking STAT activation
directly with JAK inhibitors would allow combinatorial blockade
of IL-6 and IL-12/23 without GC side effects and is theoretically
compelling. Indeed, multiple JAK inhibitors are currently in
clinical trials (12).

Beyond IL-6, another potential emerging treatment is to
target T cell overactivation directly. Indeed, abatacept (CTLA-
4:Fc) was superior in achieving relapse-free survival at 1 year
in a phase 2 trial (155). Other targeted therapies using TNF
blockade with infliximab, adalimumab, or etanercept have been
ineffective (156–158).

Comparison to TAK and CIA
Due to relative lack of tissue compared to GCA, less is known
about the immunopathology of TAK, and that of the more
recently-described entity CIA remains virtually unexplored.
Consistent with overlapping but distinct pathology, TAK
shares several features in common with GCA but differs in
cytotoxic mediators (Figure 2). Like GCA, changes to circulating
inflammatory cells also reflect those in the tissue. Systemically,
patients with TAK share elevated systemic levels of IL-6 and
increased circulating classical monocytes, Th17 cells, and Th1
cells with fewer Treg (159–161). In tissue, memory CD4+ T
cells—including Th1 and Th17 subsets—are likewise the most
prevalent invasive cell type, with equal macrophage infiltration
between conditions (48, 162). Interestingly, in the opposite
pattern of GCA, peripheral Th1 cells respond better to steroids
than Th17 cells, which remain elevated despite clinical remission
(162). Unlike GCA, patients with TAK also have elevated
systemic TNF and consistent with this, TNF inhibitors are at
least modestly clinically effective (161, 163). The major difference

between TAK and GCA is among non-CD4+ lymphocytes, as
B cells and CD8+ T cells are elevated in peripheral blood and
tissue. As suggested by genetic HLA class I associations, CD8+ T
cells seem particularly relevant, rising in circulation during flares
and found actively killing vascular cells on electron microscopy
(91, 159). Interestingly, GCA patients with relatively higher
levels of CD8+ T cell invasion also have more severe disease,
though in this condition it may also reflect the degree of Th1
inflammation given mutual dependence of CD8+ T cells on the
positive-feedback IFN-γ-CXCR3 recruitment loop (114).

PERSPECTIVES AND FUTURE
DIRECTIONS

GCA is a complex disease because it lies at the interface of
two clinical spectra—the pathologically similar granulomatous
vasculitides and the clinically overlapping GCA and PMR—
each of which have historically been imprecisely defined
based on clinical phenotypes and therefore often overlap
in the literature (Figure 2). Additionally, emerging results
from advanced imaging and pathologic analysis show two
additional spectra—LV- and cranial-GCA and histologic RI—
that demonstrate even greater overlap with PMR than previously
recognized. Compounding this complexity is the clinical need to
treat GCA emergently and the recent transition from pathology
to imaging for diagnosis, which respectively limit the availability
of untreated patient PBMCs and tissue specimens for research.

Despite phenotypic similarities between TAK and GCA,
the multiple differences between affected patients—in age,
demographics, vascular distribution, genetics, histopathology,
and immunophenotype—suggest that these are distinct
disease entities with some degree of convergence (Figure 2).
Furthermore, most shared features between TAK and GCA are
not unique to vasculitis. In fact, the common vascular condition
of abdominal aortic aneurysm (AAA), a permanent dilatation to
the aorta that affects 1–2% of men age 65 and 0.5% of women
age 70, shares most features: elevated systemic levels of IL-6;
monocytosis; medial invasion of memory CD4+ T cell and
macrophages; and vascular remodeling with dissolution of the
elastic lamellae, loss of VSCM, and neoangiogenesis (164–169)
(Figure 2). This suggests despite different triggers of vascular
injury, many pathways of arterial damage converge, though
some differences persist and may inform our understanding of
disease mechanisms. For example, granulomatous inflammation
likely reflects the higher vascular IFN-γ and macrophage
invasion in GCA, CIA, and TAK compared to AAA, while
changes to circulating T cells reflect higher systemic levels of
IL-6 (164, 167, 169, 170). Likewise, the prominent fibrosis in
TAK appears to be an important distinction and may represent
a novel disease target. Interestingly, the comparison of AAA
is particularly relevant for GCA as they share several other
epidemiologic features, including old age with rare incidence
below age 50, increased prevalence in Northern Europe, and
smoking as a core risk factor for aneurysm development
(24, 166). Thus, these unexplained risk factors in GCA may
represent common mechanisms of vascular risk.
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The heterogeneous and overlapping patterns of pathologic RI,
LV-involvement, and PMR with GCA remain a mystery. One
possibility is that RI and PMR represent more subtle degrees of
vascular injury that jointly affect the microvasculature, including
that of large arteries. In some patients who experience an
unknown stimulus, this may progress to more fulminant disease.
Supporting this, a recent report demonstrated a key role for
NOTCH3 signaling between the arterial microvasculature and
synovial sublining fibroblasts to generate synovitis in rheumatoid
arthritis (171). Indeed, microvascular endothelial cells upregulate
the NOTCH3 ligand Jagged1 in GCA, though whether this also
occurs in PMR synovitis has not been tested (103). Furthermore,
subtle microvascular changes may explain the ability of GCA T
cells to recirculate into PMR arteries in early experiments (121).
Alternatively, the regulatory logic of CD4+ T cells may differ in
LV-GCA and/or RI. For example, several lines of evidence suggest
that a Th1 signature favors vascular damage and ischemia.
Mechanistically, this is an especially feed-forward module in
the vasculature through cyclical recruitment of Th1, myeloid
cells, and CD8+ T cells that ultimately propagates stenotic
tissue remodeling through macrophage activation and giant cell
formation. However, the role of other helper T cell modules such
as Th17 in GCA is less clear—despite the evidence that they
are also present systemically and in vascular tissue. Though it is
possible circulating Th17 and TFH cells may simply represent off-
target STAT3 activation of IL-6, another possibility is that this
module corresponds more to LV inflammation. Supporting this,
patients with LV disease typically have more systemic symptoms,
as do patients with increased IL-17 on TAB. Furthermore, mice
lacking the Rac activator Def6, a negative regulator of IRF4,
spontaneously develop granulomatous aortitis due to aberrant
T cell production of IL-21 and IL-17 (172). Given the more
recent emphasis on LV-GCA, radio-pathologic correlation has
not yet been performed but would be interesting. Comprehensive
assessment of the immune infiltrate in RI is more easily achieved.

Since the discovery of GCA, the trigger for vascular
inflammation has been questioned. Here, we propose a model
where systemic changes in the circulation precede vascular
injury and are required for disease initiation. In this model,
systemic activation likely initiates in myeloid cells—perhaps
monocytes—leads to circulating CD4+ T cell polarization
downstream of the pioneering transcription factors STAT3 and
STAT4. However, recently published data suggests myeloid
activation may be even further upstream, as early as the

bone marrow, given the prominent left shift seen by CyToF
in patients with untreated GCA (80). Supporting this, GCA
can occur as a paraneoplastic phenomenon to myelodysplastic/
myeloproliferative neoplasms as well as in the recently described
somatic, myeloid-activating autoinflammatory condition VEXAS
(173, 174). Upon breach of vascular immunoprivilege, pre-
activated monocytes and CD4+ T cells mutually enter the vessel
and cooperate to destroy it. In chimeric systems, T cell invasion
likely relies on allorecognition, but in GCA, HLA associations
suggest an antigenic driver that is thus far elusive and may
describe tissue tropism to the microvasculature of large vessels.
With GC treatment, the IL-6-STAT3 axis regulating systemic
symptoms is more quickly controlled while IL-12-STAT4 axis
mediating vascular damage, at least in TAB, requires prolonged
treatment, consistent with the different time course needed
to control these cytokines in circulating monocytes. In the
absence of IL-6, Th1 cells may paradoxically initially increase
as the cytokine microenvironment favors their generation and
persistence (105), consistent with the weaker performance of
TCZ in relapsed patients and potentially better performance
by ustekinumab (11, 49). Whether flares represent reemergence
of abnormally activated circulating myeloid cells, lack of
control in the vessel, or some other unexpected mechanism
is unclear, but comprehensive longitudinal phenotyping is
likely to be informative to this end, as recently described in
rheumatoid arthritis (175). In the future, integration of such
longitudinal data with imaging will be particularly useful to
define clinically relevant entities such as persistent subacute
inflammation, flare, and remission. Ultimately, clinical trials
of various immune modulators in patients with GCA will
provide further insights into proposed disease mechanisms and
should include dual assessment of clinical flare as well as
vascular damage.
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