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Abstract
The vascular endothelial basement membrane and extra cellular matrix is a compilation of different
macromolecules organized by physical entanglements, opposing ionic charges, chemical covalent
bonding, and cross-linking into a biomechanically active polymer. These matrices provide a gel-like
form and scaffolding structure with regional tensile strength provided by collagens, elasticity by
elastins, adhesiveness by structural glycoproteins, compressibility by proteoglycans – hyaluronans,
and communicability by a family of integrins, which exchanges information between cells and
between cells and the extracellular matrix of vascular tissues.

Each component of the extracellular matrix and specifically the capillary basement membrane
possesses unique structural properties and interactions with one another, which determine the
separate and combined roles in the multiple diabetic complications or diabetic opathies.

Metabolic syndrome, prediabetes, type 2 diabetes mellitus, and their parallel companion
(atheroscleropathy) are associated with multiple metabolic toxicities and chronic injurious stimuli.
The adaptable quality of a matrix or form genetically preloaded with the necessary information to
communicate and respond to an ever-changing environment, which supports the interstitium,
capillary and arterial vessel wall is individually examined.

Background
A matrix may be defined as something within or from
which something else originates, develops, or takes form.
The extracellular matrix (ECM) is a post-natally developed
mesenchyme and provides scaffolding and structural sup-
port for cells and organs. Additionally, it is capable of

exchanging information with cells and thereby modulates
a whole host of processes including development, cell
migration, attachment, differentiation, and repair. The
repairing aspect of the ECM allows it to play a crucial role
in wound healing via its chemotactic, haptotactic,
opsonic, and ultimate attachment properties.
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Metabolic syndrome (MetS) and type 2 diabetes mellitus
(T2DM), which are now considered to be of pandemic
proportions are conditions associated with multiple met-
abolic toxicities (table 1) and chronic injurious stimuli
(figure 1). When uncontrolled by chronic injurious stim-
uli, there is chronic activation of these above processes
resulting in fibrosis, structural derangement, tissue or
organ dysfunction, and ultimate failure as a result of loss
of form – structure and function.

The Component quintology of the ECM
The ECM consists of the following quintet: basement
membrane (BM), collagen, elastin, proteoglycans (gly-
cosaminoglycans – GAGs) and hyaluronan, and structural
– adhesive glycoproteins.

I. Basement membrane (BM): (intimal and capillary)
The BM is important for the physical support and cellular
attachment of cells and maintenance of their structural
integrity, thus allowing cells to create and maintain their

own special environment and provides a filtering –
sieving mechanism due to the strong anionic charges of its
matrix.

The importance of the ECM and the thickened capillary
BM in diabetes was brought to "prime time" attention of
diabetologists and researchers in 1968 with the publica-
tion of a paper by Siperstein MD and colleagues [1]. Dur-
ing the decade of the 70s others became interested in this
phenomenon of matrix expansion within the basement
membrane [2-10]. Specifically, Williamson JR and Kilo C
were very strong contributors to this exciting area of sci-
ence and they contributed strongly to the concept that dia-
betics have "leaky" blood vessels and that glucose was
toxic to the endothelial cell and instigated capillary BM
thickening [11-29].

Throughout the decades of the 1970's and 1980's; a com-
mon vernacular terminology used to describe diabetes
was the following:

Table 1: The multiple metabolic toxicities of the A-flight-u Acronym

Multiple injurious stimuli responsible for the production of ROS.

A Angiotensin II (also induces protein kinase C – β isoform)
Amylin (hyperamylinemia) islet amyloid polypeptide toxicity
AGEs/AFEs (advanced glycosylation/fructosylation endproducts)
Apolipoprotein B
Antioxidant reserve compromised
Absence of antioxidant network
Aging
ADMA (Asymmetrical DiMethyl Arginine)
Adipose toxicity: Obesity toxicity – Lipid Triad (decreased HDL-C, increased triglycerides and small dense LDL-C)
Adipocytokine toxicity: Increased TNF alpha, Il-6, TGF beta, PAI-I and the increased hormones resistin, leptin and decreased 
adiponectin.

F Free fatty acid toxicity: Obesity toxicity – Lipid Triad

L Lipotoxicity – Hyperlipidemia – Obesity toxicity – Lipid Triad Leptin toxicity

I Insulin toxicity (endogenous hyperinsulinemia-hyperproinsulinemia) IGF-1 – (GH-IGF-I axis) toxicity: This may serve to increase bone 
metabolism within the media of the AVW
Inflammation toxicity

G Glucotoxicity (compounds peripheral insulin resistance) and induces reductive stress through the sorbitol/polyol pathway
Pseudohypoxia (increased NADH/NAD ratio)

H Hypertension toxicity
Homocysteine toxicity
hs-CRP

T Triglyceride toxicity: Obesity toxicity – Lipid Triad
U Uric Acid – Xanthine Oxidase toxicity: Uric acid is an antioxidant early in physiological range of atherogenesis and a conditional 

prooxidant late when elevated through xanthine oxidase enzyme and generation of ROS: thus generating the paradoxical (antioxidant 
→ prooxidant):
URATE REDOX SHUTTLE
Endothelial cell dysfunction with eNOS uncoupling, decreased eNO and increased ROS
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Multiple injurious stimuli to the Endothelium, intima, media, and adventitiaFigure 1
multiple injurious stimuli to the Endothelium, intima, media, and adventitia. The endothelial cell is exposed to mul-
tiple injurious stimuli consisting of: modified LDL-cholesterol, various infection insults (viral and bacterial), angiotensin II, hemo-
dynamic stress, LPa, glucose, homocysteine, uric acid, Ca++, phosphorus, parathyroid hormone, and intimal redox stress or 
reactive oxygen species. These multiple injurious stimuli (A-FLIGHT-U) cause a chronic injury and a response to injury with 
resultant remodeling of the arterial vessel wall and in particular the ECM. In the MetS, prediabetes, and overt T2DM, these 
stimuli act in concert to result in this detrimental remodeling with structural-functional abnormalities and dysfunction. The 
endothelium and its BM act as the first line of defense and are therefore the first cell and matrix to be affected with resulting 
dysfunction and structural changes. MetS, prediabetes, and T2DM undergo an accelerated atherosclerosis we term atheroscle-
ropathy. Oxidation, glycation, glycoxidation, or homocysteinylation must modify LDL-cholesterol for LDL-C to become ather-
ogenic. Multiple injurious stimuli acting alone and synergistically to modify LDL-cholesterol with resultant matrix structural 
defects accelerating atherogenesis and angiogenesis are observed. Each layer of the arterial vessel wall is eventually affected by 
these injurious stimuli initially from the lumen outward (inside-out) and later in the process to effect the plaque vulnerability 
from the outside-in (adventitial layer) by an inducible set of custom delivery vessels called the vasa vasorum.
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"Diabetes is a basement membrane disease."

This terminology is infrequently used today even though
it is a widely accepted concept (capillary BM thickening is
an ultrastructural hallmark in diabetic patients). This
review will focus on the importance of the remodeled
thickened CBM and update each component of the ECM.
Additionally, an attempt will be made to show how the
ECM comes "preloaded" with multiple reparative mecha-
nisms to undergo the morphological structural change of
remodeling in response to the metabolic and pathobio-
molecular mechanisms associated with MetS, prediabetes,
and overt T2DM.

The BM is a specialized extracellular matrix, which pro-
vides support – cell regulatory and filtering – sieving func-
tions. Endothelial cells and most other epithelial cells are
capable of synthesizing their BM.

MetS, prediabetes and T2DM are characterized by pertur-
bations of the arterial vasculature, especially the endothe-
lium and capillary BM, which are integrally involved with
profound cardiovascular and microvascular complica-
tions. The endothelium and its BM are the first line of
defense against injurious stimuli at the vascular lumen
and capillary bed and are responsible for the regulation of
vascular tone, circulation, fluidity, coagulation, inflam-
matory responses, oxidative stress, and remodeling in
response to injurious stimuli (figure 1, 2).

The interactions of the endothelial cell, its endothelial
capillary BM, and their associated ECM become major
players in the developing complications of MetS, predia-
betes, and T2DM and are the central issue of this review.
Proposed mechanisms of increased ECM accumulation in
the BM (table 2) are rooted in multiple metabolic toxici-
ties and reactive oxygen species (ROS) associated with
MetS and T2DM and have a multifactorial pathogenesis.

Accumulation of BM material in renal tubular cells, the
endothelial capillary beds of the renal, retinal, neuronal
unit, myocardial and skeletal muscle, and the arterial vas-
culature itself are at the very core of these disease processes
and diabetic complications. Even though these remodeled
BMs appear thickened on microscopic examination, they
lose their filtering – sieving (permselectivity) function and
become dysfunctional due to a leakiness of larger proteins
(such as albumin and lipoproteins into the intima and
sub-capillary interstitium) and inflammatory cells [1-29].
The remodeling of the endothelial BM may also make the
endothelium more prone to erosion and thrombosis in
patients with metabolic abnormalities.

II. Collagen is the most abundant protein in humans and
provides the framework for all multi-cellular organisms.

There are characteristic triplet repeats of amino acids in
the collagen molecule consisting of glycine XY, which
results in glycine being present in every third amino acid.
The collagen molecule is formed by three polypeptide
chains, which intertwine to form triple helical rope-like
collagen fibrils. These fibrils are cross-linked by hydroxyl
groups between alpha chains (a major contributor to their
tensile strength) to form the collagen fiber and these fib-
ers, in turn, form collagen bundles. Gaps in the collagen
fibril give the cross-banding appearance of types I and II
collagen fibers at a characteristic length of 67 nm when
viewed by electron microscopy. In type III collagen there
is a structurally beaded appearance instead of the charac-
teristic cross-banding appearance observed in types I and
II collagen.

The physical and tensile strength of collagens are typified
by collagen type I (having the tensile strength of steel),
which predominates in bones, tendons, skin, and mature
scars, while type II collagen is thinner and predominates
in cartilage, vitreous humor and nucleus pulposus. Type
III collagen is found in organs requiring more plasticity
such as blood vessels, heart, gastrointestinal tract, uterus,
and the dermis.

Types I, II, and III collagen are the fibrillar – interstitial
collagens and are the most abundant collagen types. They
are important in diabetic remodeling fibrosis within the
myocardium (cardiomyopathy), the tubulo-interstitium
of the kidney (nephropathy-interstitiopahy), the intima
(intimopathy) in atheroscleropathy, dermopathy, inter-
stitial changes within the retina (retinopathy), and possi-
bly the neuronal unit of neuropathy. In contrast,
collagens IV, V, and VI are non-fibrillar or amorphous and
are found in BMs and interstitial tissue.

Historically, BMs have been shown to be highly insoluble
and possess a distinct stability against mechanical forces.
These findings are correlated with the presence of large
amounts of a collagenous protein, which differ from the
fiber-forming fibrillar collagens type I through III and
thus the term type IV collagen has emerged.

One very unique feature of type IV collagen is the presence
of seven to eight cysteine residues, which are involved in
intra and intermolecular disulfide bonds, which aid in the
stabilization of this polymer. This presence of cysteine in
type IV collagen is in contrast to mature fibrillar collagens
type I, II, and III, as they lack a cysteine moiety.

Type IV collagen is found exclusively in BM and it does
not form individual fibers with electron microscopic
cross-banding like the other collagens but instead forms
an amorphous polygonal matrix, which is associated with
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The basement membrane exploadedFigure 2
The basement membrane exploaded. This image expands – explodes the BM and demonstrates the importance of each 
of its components that are involved in the expansion and thickening of the BM in MetS, prediabetes, and T2DM. The BM is an 
integral part of the ECM and plays such an integrating role in the structural – functional changes associated with MetS, predia-
betes, and T2DM. An integrin has been placed in this image to verify its important-integrating role in cell-cell, cell-matrix com-
munication. This image demonstrates the existence of a shape and a form to the PAS+, hyaline staining, thickened BM in MetS, 
prediabetes, and T2DM.
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laminin and other matrix macromolecules to form the
unique BM matrix (figure 2).

Turnover of type IV collagen is known to be very slow
unless there are inciting injurious stimuli that activate the
specific BM degrading enzymes: matrix metalloprotein-
ase(s) MMP-2 (constitutive) and MMP-9 (inducible) [31-
34].

III. Elastin is known to provide support and elasticity.
This elasticity is important for many tissues and organs
such as the blood vessels, heart, skin, lung, and uterus.
Elastin is a 70-kd glycoprotein and constitutes the central
core of elastic fibers. It is similar to collagen, in that it is
rich in glycine and proline, but unlike collagen, it contains
almost no hydroxylated amino acids. It is cross linked, but
unlike most other proteins it does not form definite folds
but rather oscillates between different states to form ran-
dom coils. It is this cross-linked, random-coiled structure
of elastin that determines the capacity of the elastic net-
work to stretch and recoil. Fibrillin microfibrils (a unique
glycoprotein microfibril) are stiffer reinforcing fibers in
compliant tissues and have been recently identified to be
associated with elastic fibers [35].

Elastin is not felt to be a primary component of the capil-
lary BM and it is interesting to note that the capillary tuft
of the glomerulus was found to be devoid of elastin and
present only in the mesangial stalk and afferent and effer-
ent arterioles [36]. This may be one of the reasons that the

capillary BM of the glomerular tuft undergoes remodeling
expansion and results in a thickening of its BM when
exposed to increased volume or increased pressure (intra-
glomerular hypertension), which occurs in the MetS and
early in the natural history of T2DM.

Elastin provides an elastic molecular recoil phenomenon
to the ECM and this is why there is a distinct internal and
external elastic lamina on either side of the medial vascu-
lar smooth muscle layer of the arterial vessel wall (figure
1).

IV. Proteoglycan(s) (PG) – (glycosaminoglycans – GAGs) 
and Hhyaluronan
PG and hyaluronan are ubiquitous and found within the
intima. They are synthesized primarily by the vascular
smooth muscle cell (VSMC), other cells of mesenchymal
origin, and in BM by the endothelium.

PG consist of a core protein(s) covalently linked to one or
more highly sulfated polysaccharide chains termed
glycosaminoglycans (GAGs). These molecules are highly
diverse with multiple combinations of core proteins and
polysaccharide chains. Examples are: heparan sulfate pro-
teoglycans (HSPG), chondroitin sulfate proteoglycans,
keratan sulfate proteoglycans, and dermatan sulfate prote-
oglycans (table 4).

Table 2: Observations and proposed mechanisms of increased capillary bm thickening with appliations to the myocardial, intima, islet, 
neuronal unit, Endothelial, renal, retinal and skeletal capillary basement membranes (Increased synthesis and decreased degradation 
tips the balance to accumulation)

Observations Proposed mechanisms

Glucotoxicity: IGT postprandial, IFG, and overt T2DM Protein Kinase C (PKC) activation.
Altered integrin expression of podocyte and pericyte: (podocyte-
pericyte loss)

Increased Synthesis Of: Type Iv Collagen TGF beta, VEGF, and possibly PDGF beta 1. All associated with PKC 
activation and induction of growth hormones – factors from 
glucotoxicity and → ROS.

Increased Maintenance of: type IV Collagen
AGE cross-linking of type IV collagen.

AGE – RAGE connection.

Increased resistance to protease (MMP) degradation, allowing type IV 
collagen to accumulate.

Decreased Degradation. Decreased MMP-2 MMP-3
Decreased Degradation. Increased expression of TIMP-2

Increased ROS.
In general, ROS promotes ECM fibrosis under the influence of chronic 
injurious stimuli and is associated with the chronic inflammatory state.

ROS
increases all aspects of type IV accumulation: Glucotoxicity → PKC 
activation, AGE cross-linking activation, Decreased eNOS and eNO 
activity resulting in increased MMP activation.*

*Comment: It seems whenever there is robust MMP activation the result is robust newly synthesized collagen, which is more susceptible to ROS 
oxidation and accumulation. In general, it is more difficult to degrade newly synthesized – oxidized collagen than non-oxidized collagen. Other 
observations include an association of decreased eNO and increased activation of MMPs and in a like manner when eNO is normal or elevated 
MMP activity is suppressed. This comment points to the importance of a healthy eNOS and eNO generating endothelium in order for the ECM to 
maintain homeostasis.
Endothelial nitric oxide synthase (eNOS) – Endothelial nitric oxide (eNO)
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Table 3: Components of the basement membrane: See Figure 2

Component Constituent Chains Molecular Composition Function

Type IV Collagen: alpha 1(IV), alpha 2(IV)
alpha 3(IV)
alpha 4(IV)
alpha 5(IV)

Three alpha chains
Structure:
Polygonal shaped

Network structure Provides a 
structural-lattice base for the 
attachment of other BM 
macromolecules such as HSPG, 
laminin, enactin and Fn.

Perlecan:
Heparan sulfate proteoglycan 
(HSPG):
Proteoglycan (PG)

Polypeptide chain, side chains of 
GAGs

Protein Core GAG side chains 
Highly anionic sulfated.
Structure:
Multiple globular protein core with 
multiple polypeptide chains. See 
figure 2.

Electrostatic charge important for 
filtering. Especially in renal 
glomerulus.

Enactin – Nidogen: [31]
Structural – Adhesive 
Glycoprotein

Single polypeptide chain Structure:
Dumbbell-shaped sulfated 
glycoprotein

Bridges Laminin and Type IV 
collagen.
Important in assembly of the BM 
and changes in permselectivity 
properties.

Fibronectin (Fn):
Structural – Adhesive 
Glycoprotein

Two polypeptide chains connected 
by two disulfide bridges.

Structural glycoprotein One of the 
most primitive ECM 
macromolecules: The first to be 
deposited in the embryo. Parallel 
to V-shaped joined by two 
disulfide bonds.

Connecting cells with other 
components of the ECM, which 
integrates the cell into a functional 
unit. Very important in wound 
healing.

Laminin:
The most abundant glycoprotein in 
BMs. Structural – Adhesive 
Glycoprotein
CABLIN: NEW
Capillary Basement membrane 
lamina

A, B1, B2
First unique protein of the capillary 
basement membrane

One A and two B chains. 
Structure: Cruciform shape
Rod like structure found only in 
the lamina rara of capillaries

Cell attachment Assembly of the 
BM Stabilization of type IV 
Collagen
Cell-matrix attachment providing 
stability to the basement 
membrane

See Figure 2

Table 4: A representation of proteoglycans I – IV present in vascular ECM

Family (location) Common name Function

I. Large (interstitial) Versican (CSPG) Compression resilience. Similar to Hyaluronan
II. Small (leucine-rich) Decorin

Biglycan
Lumican

Collagen organization.

III. Basement membrane Recently 
discovered → 
In diabetic renal BM the CSPG Bamacan may be 
substituted for the HSPG Perlecan

Perlecan (HSPG)
Bamacan (CSPG) (galactosaminoglycan 
chains)
Agrin (HSPG)

Anionic filtration barrier Binds growth factors
Neural tight junctions (Blood Brain Barrier) 
and in renal BM

IV. Cell surface (Plasma membrane).
I.- IV.
Present in vascular ECM The vascular 
SMC is the principal source for these 
vascular proteoglycans.

Syndecan-1
Fibroglycan
N-Syndecan (HSPG)
Ryudocan
Glypican (HSPG)

ECM receptors, growth factor receptors. Binds 
coagulant enzymes, cytokines, and lipases.

V. Cerebral Proteoglycans
Others:

Cerebrocan
Neurocan (CSPG)
Phosphacan (CSPG)
Brevican (CSPG)
_______
Aggrecan
Betaglycan

Prominent in cartilage
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They have multiple roles in regulating matrix structure
such as cell growth and differentiation and permeability.
They are highly sulfated and possess an anionic or nega-
tive charge, which makes them ideal to play the important
role of selective filtering in the BM, especially in the renal
glomerulus.

In this review we are mainly focused on the heparan sul-
fate proteoglycans (HSPG) (specifically perelecan of the
capillary BM) and their role in BM filtering function due
to the anionic charge provided by sulfation of the polysac-
charide chains. In diabetes there is known to be decreased
levels of perlecan in the glomerular BM and in the BM of
endothelial, epithelial, and renal tubular cells, which
would allow for the loss of an effective filtering function
and these observations play a central role in the develop-
ment of diabetic micro and macroalbuminuria.

This loss of filtering function is associated with the loss of
perlecan and is also associated with the increased perme-
ability of the microvessels throughout the vasculature
affecting most of the diabetic complications and
vasculopathies [37]. There are undoubtedly multiple
causes for this decrease in perlecan and the multiple met-
abolic A-FLIGHT-U toxicities are related to this decrease in
perlecan within the BM (table 1, 4). For example: Elevated
levels of LDL-cholesterol and oxidized LDL-cholesterol, as
well as, lysolecithin decrease not only perlecan core pro-
tein synthesis but also enhance heparan sulfate degrada-
tion by stimulating endothelial secretion of heparanase.
ApoE and apoE-HDL, in contrast, increase perlecan core
protein as well as sulfation of heparan sulfate [38]. Addi-
tionally non-esterified fatty acid or free fatty acid elevation
has been shown to alter PG synthesis within the intima
and contribute to LDL-cholesterol retention as well as
allowing for increased permeability through an alteration
in PG synthesis [39].

Recently it has been suggested that the PGs and the struc-
tural – adhesive glycoproteins and their associated gly-
cosaminoglycans (GAG) side chains form a unit, which
has been termed the glycocalyx. This unit may serve as a
mechanosensor for both endothelial nitric oxide and
prostacyclin responses of the endothelium to shear stress
[40].

Syndecans form the largest group of HSPG on the
endothelial surface and are set apart by being the only
HSPG that penetrates the cytoplasm, allowing for an inter-
action with the cytosolic cytoskeleton (enabling an "out-
side in" mechanosensing capability). Glypicans form the
second most common HSPG group, and have structural
similarities to syndecan, typically differing only in the
number of GAG attachment sites while perlecan remains
in the basement membrane as discussed earlier [41].

This allows the glycocalyx to sense changes in shear stress
from the outside and communicate with the G-protein
receptors, including those that form a cytoplasmic bond
with endothelial nitric oxide synthase and cytoskeletal
elements like actin that can transduce physical forces
throughout the cell to affect cellular function [42].

The nomenclature regarding PGs will undoubtedly
undergo changes in the near future as an attempt to relate
the specific PGs to their genomic origins. An attempt to
aid in the classification of various PGs relating to the vas-
cular ECM is presented at this point in time with some
names of PGs in other tissues also being represented
(table 4). Since there are present an unlimited number of
possible interactions and combinations of the various
PGs, there will undoubtedly become a new and improved
nomenclature in the near future.

Other PGs such as versican, biglycan, and decorin accu-
mulate in developing atherosclerotic and restenotic
lesions. They contribute to plaque burden and influence
cellular and extracellular events associated with the patho-
genesis of vascular lesions, such as migration and prolifer-
ation, lipid metabolism and retention, and thrombosis.

Additionally, PGs also interact with other components of
the ECM and contribute to their ability to regulate biome-
chanical properties of vascular lesions and even the ability
of plaques to resist rupture.

IV. Hyaluronan (HA) is a huge molecule consisting of dis-
accharides stretched end-to-end, while lacking a core pro-
tein. It binds large amounts of water and forms a viscous
hydrated gel, which gives the ECM turgor and allows it to
resist compressive forces. Because of this unique ability it
is found in abundance in cartilage of joints as it provides
resilience and lubrication. It serves as a ligand for core
proteins and is often a backbone for large proteoglycan
complexes. It facilitates cell migration and inhibits cell-
cell adhesion. It is synthesized primarily by the VSMC and
is important in the development and progression of
atherosclerosis, as well as, the process of post angioplasty
restenosis. It communicates primarily through the
integrin CD44 and is associated with angiogenesis.
Hyaluronan is increased along with VSMC in atheroscle-
rotic plaque erosion and is decreased in the vulnerable
thin-cap atheroma associated with plaque rupture.

V. Structural – adhesive glypoproteins
Fibronectin, a large glycoprotein (approximately 450
kDa), is one of the first structural macromolecules to be
deposited during embryonic development. It forms a
primitive matrix that allows the initial organization to be
replaced by the definitive, organ-specific matrix. The
embryologic role of tissue fibronectin as the initial
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undifferentiated matrix is recapitulated in the early phases
of injurious wound healing.

Fibronectin is a multifunctional adhesive protein whose
primary function is to attach cells to a variety of matrices.
Structurally, it consists of two polypeptide chains held
together by two disulfide bonds. In addition to providing
structural support it is associated with cell surfaces, peri-
cellular matrices, and BMs. It is synthesized primarily by
the cells of mesenchymal origin such as fibroblasts,
monocytes, and endothelial cells.

Fibronectin binds to collagen, fibrin, and proteoglycans
via specific domains and to cells via receptors that recog-
nize the specific amino acid tripeptide RGD sequence
(arginine-glycine-aspartic acid). This RGD integrin-bind-
ing motif is felt to be important for the haptotaxsis migra-
tion of cells within the ECM. A good example is the
migration of capillary endothelial cells within the ECM
during the process of capillary angiogenesis. Laminin
(820 kDa) is the most abundant glycoprotein in BMs. This
structural- adhesive glycoprotein binds to cells, heparan
sulfate proteoglycans, and type IV collagen. Laminin is a
hetero-trimeric polypeptide and appears as a cross-like
structure with a single central polypeptide A chain and
two flanking polypeptide B chains, which turns outward
at right angles. This adhesive glycoprotein is felt to be
important in cellular alignment (figure 2) [40-44].

Enactin and nidogen are different names for the same
macromolecule. It is a dumbbell shaped structural – adhe-
sive glycoprotein of ~150 kDa consisting of a 1217 amino
acid residue. It has binding properties to both laminin
and type IV collagen and thus can act as an adhesive
bridge and is important in assembling these two major
BM proteins [43,44] (figure 2). In addition to its role of
assembling type IV collagen and laminin, Lebel SP et al.
has been able to demonstrate it has permselective proper-
ties through an alteration of the anionic charges, as well
as, promoting a morphological thickening of the BM as
demonstrated in the enactin null transgenic mouse model
[45].

Thus, these initially reparative mechanisms (the remode-
ling of the ECM), when stimulated by the chronic injuri-
ous stimuli associated with MetS, prediabetes, and T2DM
result in devastating structural – functional
complications.

Cellular integrins and ECM ligand binding
As mentioned previously the ECM comes genetically
preloaded with a vast amount of information in addition
to its scaffolding and structural supporting capabilities.
Therefore, it is imperative that a brief discussion of the

mechanisms allowing this communication of informa-
tion be discussed.

The integrinsFigure 3
The integrins. This image portrays the integrin family of 
transmembrane molecules (receptors), which interact with 
the molecules of the ECM (ligands) and ligands associated 
with other cellular elements. Integrins are heterodimers, 
consisting of an alpha unit on the left made up of two 
disulfide bonded polypeptide chains. The beta unit on the 
right consists of a single polypeptide chain. Integrins bind to 
matrix ligand binding sties, which are specific amino acid 
sequences (usually 3–8) and at the top of this image the RGD 
(arginine, glycine, and aspartyl amino acids) matrix ligand – 
binding site is demonstrated. There are three domains: the 
extracellular domain – the transmembrane domain – the 
cytosolic domain, which interact with the cytosolic cytoskel-
etal proteins: Actin and Talin. These special transmembrane 
molecules allow for the "outside in" and "inside out" commu-
nication between cells and the ECM. Glucotoxicity affects 
integrin function through decreased perlecan within BMs and 
this may increase the susceptibility of endothelial cell dys-
function and demise (apoptosis), allowing for endothelial cell 
erosion and loss of endothelial cell stability upon its BM 
increasing the possibility of plaque erosion – rupture and 
thrombosis.
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The integrins comprise a molecular family of cell surface
receptors and communicators that bind to the compo-
nents of the ECM including collagen, laminin, and
fibronectin. This interaction between the ECM and cellu-
lar integrins allow for a bi-directional (outside in and
inside out) exchange of information facilitating a cell
matrix communication (figure 3). A specific matrix lig-
and-binding site of the ECM proteins, consisting of a
tripeptide sequence known as the RGD, binds to the
integrins on the cell surface.

A simple analogy to the personal computer can be made,
as integrins are the modern day computers of the cell,
which span the plasma membrane with an extracellular
domain, a transmembrane domain, and a cytosolic
domain. These above properties allow this unique
polypeptide – heterodimeric family consisting of 1 to 18
alpha chains and 1 to 8 beta chains (currently allowing for
24 different functional integrins to occur in humans) to
connect to the outside world (i.e. the world wide web of
the ECM). In addition to the individual 24 identified
integrins identified there exists another additional mode
of communication as they can cluster together just as mul-
tiple computers can be clustered to create a "google-like"
search engine to expand exponentially the cells communi-
cation skills. RO Hynes [47] has presented interesting
information that there are altered states of the integrins

resting on the plasma membrane: The inactive state,
whereintegrins rest flaccidly upon the cell surface and an
active state, where the integrin stands erect and at full
attention, and thus involve the previously mentioned
clustering of integrins expanding their communication
skills.

This marvelous communication system of integrins
allows the cell to share information and communicate bi-
directionally with the ECM. In order to survive as an
organism the dictum of "no cell is an island" holds true.
The cell must stay "connected" either through cell-cell
adhesion (connexins) or to its matrix (through integrin-
matrix ligand binding sites of the ECM) or undergo apop-
tosis – or more specifically anoikis (self suicide) triggered
by loss of contact with the ECM [46-54].

The role of matrix metalloproteinases: MMPs 
and their inhibitors TIMPs
The Interstitial or fibrillar collagen types I-III are the pri-
mary collagens in the interstitial ECM. They are main-
tained and under the control of the family of zinc-
dependent, redox sensitive, endopeptidases: matrix metal-
loproteinases (MMPs) (table 5). There is a delicate physi-
ologic balance between the tearing down, rebuilding,
tailoring, and sculpturing (remodeling) of the collagens
within the ECM.

Table 5: Extracellular matrix degradation mechanisms: Focus on MMP

Type Examples Location Examples of Substrates

Serine protease Plasmin, urokinase, cathepsin G, 
TPA

Pericellular Extracellular Fibrin, fibronectin, laminin, some 
proteoglycans

Cysteine protease Cathepsins B, D, H, L, N, and S Generally Cytosol-lysosomal Collagen, elastin. & proteoglycans
MMPs: Matrix Metalloproteinases Interstitial collagenases (MMP-1) Extracellular Collagens I, II, III, VII, and X

Basement Membrane Gelatinase A (MMP-2) 72 kDa Extracellular Collagens IV – BM, V, VII, and X 
Elastinolytic

Stromelysin-1 (MMP-3) Extracellular Collagens IV, III, V, and IX; laminin, 
fibronectin, elastin, proteoglycans

PUMP-1 (MMP-7) Extracellular Gelatin, fibronectin, laminin, 
collagen type IV, procollagenase, 
and proteoglycan core protein

Of Emerging Importance! [134] Neutrophil Elastase - collagenase
(MMP-8): Activated by CD-40 
ligand

Extracellular Macrophage
Endothelial Cell of Vasa Vasorum

Collagens I, II, and III and 
proteoglycans Elastinolytic Internal 
Elastic Lamina. Activates MMP-2 -9

Basement Membrane Gelatinase B (MMP-9) 92 kDa Extracellular Collagens IV – BM V, VII, and plus 
Elastinolytic

Stromelysin-2 (MMP-10) Extracellular Similar to stromelysin-1
Stromelysin-3 (MMP-11) Extracellular Gelatin, fibronectin, and 

proteoglycans
Metalloelastase (MMP-12) Extracellular Elastin

Membrane type MMP MT-MMP (MMP-14) Cell surface Collagen IV, gelatin, and 
progelatinase A

Cardiac integrin MMP Disintegrin Metalloproteinse 
(DMP)

Membrane type integrin matrix 
degrading MMP

Endothelial Cardiac Integrin
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MMPs show a wide range of specificity for various sub-
strates, which include: native and partially degraded
fibrillar collagens, basement membrane collagens, prote-
oglycans, elastin, and fibronectin. The ability of certain
MMPs, such as MMP-2, MMP-3, MMP-9, and MMP-12, to
hydrolyze elastin are of particular importance in terms of
their effects on the vasculature not only within the arte-
rial-vascular wall of vulnerable plaques but also within
the vulnerable renal-mesangial stalk, which may result in
plaque rupture and glomerular collapse, respectively.

MMP-2 or gelatinase A (72 kDa) and MMP-9 or gelatinase
B (92 kDa) are the two enzymatic proteinases, which are
primarily responsible for tearing down type IV collagen
BM. These are synthesized by multiple vascular cell types
including the endothelial cell and its supportive cell types:
the pericyte and podocyte, VSMCs, renal mesangial cells,
the fibroblast and the vascular fibroblast and myofibrob-
last, and the systemic-circulatory derived monocyte
derived macrophage, as well as, the local tissue macro-
phage. The following two statements are necessary for a
better understanding of their complicated roles in the
ECM remodeling process.

MMP-2 may be considered to be a constitutive enzyme,
while MMP-9 may be considered to be inducible in
these various cell types.

The more robust the MMP signal and actions within the
ECM, the more robust the repair mechanism of newly
formed collagen synthesis.

There is a delicate balance between MMPs and their natu-
rally occurring inhibitors (tissue inhibitors of matrix
metalloproteinases or TIMPs). In the physiologic state the
organism attempts at all times to achieve homeostasis. As
a result there are checks and balances in the MMP – TIMP
ratio. Additionally, it is important to understand that
MMPs reside not only in the secreted form in the circula-

tory system, but also reside within the zymogen form
within the ECM and remain in an inactive-latent or pro
MMP state until they are activated by the tissue or uroki-
nase plasminogen activator (tPA – uPA) driven plasmin.
MMP-9 specifically can be activated by MMP-2 and MMP-
3, as well as, membrane anchored MT1-MMP at the cell
surface, converting proMMP-2 to active MMP-2 [55].

As will discussed later, the elevations of plasminogen acti-
vator inhibitor, elevated in MetS, prediabetes, and overt
T2DM may have a devastating and detrimental effect on
plasmin production and thus activation of latent or pro
MMPs. This may play a role in matrix accumulation
within the capillary BM, impaired fibrinolysis, impaired
wound healing, and the impaired arteriogenesis associ-
ated with the vascular paradox.

MMP-9 has been shown to be elevated in T2DM and, in
addition, the role of redox stress was shown to play an
important role [56]. In addition to the endothelial cell,
tissue and circulatory monocyte derived macrophage of
chronic inflammation, the mesangial cell of the renal
glomerular mesangium, the endothelial supporting podo-
cyte and pericyte, and the cardiac myofibroblast each play
an important role in synthesizing the inducible MMP-9.
Because of the finding of an elevated MMP-9 in T2DM,
both of these supportive cells may play an important role
in the maintenance and the over-expression of type IV col-
lagen in the endothelial CBM.

The integrin receptor for hyaluronan is CD-44 and it has
been shown that MMP-9, in its active form, is associated
with the cell surface via this CD-44 – hyaluronan integrin,
which demonstrates just how connected the proteolytic
MMP-9 enzyme activity is related to proteoglycans of the
matrix and the cell surface membrane anchored MT1-

Table 6: The positve protective effects of Endothelial Nitric Oxide Synthase (Enos) and Endothelial Nitric Oxide (eNO)

The positve protective effects of eNOS – eNO

1. Promotes vasodilatation of vascular smooth muscle.
2. Counteracts smooth muscle cell proliferation.
3. Decreases platelet adhesiveness.
4. Decreases adhesiveness of the endothelial layer to WBCs (monocytes). Thus, the .... "Teflon effect".
5. Anti- inflammatory.
6. Anti- oxidant. It scavenges reactive oxygen species, locally.

Acts as a chain – breaking antioxidant to scavenge ROS.
7. Anti- fibrotic. When NO is normal or elevated MMPs are low and conversely if NO is low MMPs are elevated and active. MMPs are redox 

sensitive.
8. NO has diverse anti-atherosclerotic actions on the arterial vessel wall: including antioxidant effects by direct scavenging of ROS – RNS 

acting as chain breaking antioxidants and anti-inflammatory effects

Plasminogen Plasmin

Latent or Pro MMP

tPA -uPA

Plasmin
(ce

 →

lll surface: MT1-MMP, MMP-2, and MMP-3)
a → cctive MMP
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MMP and the integrins. Also, the inactive or pro MMP-9
has a strong binding affinity via its gelatin-binding
domain to bind to the alpha 2 (IV) chain of BM type IV
collagen [55]. Recently, in our laboratory, we have been
able to demonstrate decreased endothelial cell density
with increased apoptosis of endothelial cells in the hearts
of mice treated with alloxan vs. controls. Additionally,
there was a decrease in NO and an increase in peroxyni-
trite and ROS in these same animals thus, linking the
importance of cellular apoptosis, MMP-9 and redox stress.
We then compared these findings of alloxan-induced dia-
betes in MMP-9 knockout mice to alloxan-induced diabe-
tes in the wild type. Alloxan-induced diabetes MMP-9 -/-
mice did not have induced apoptosis and did not have a
decrease in endothelial cell density when compared to
wild type alloxan-induced diabetes [57,58].

These findings may apply to the beta cell within the islet,
as all cells require an integrin-matrix ligand binding for
survival. The MMP-9 may also decrease the larger size
amylin derived islet amyloid fibrils to the more interme-
diate size toxic amyloid particles and contribute to apop-
tosis as described by Janson et al. [59]

Death AK et al. have recently been able to demonstrate
that MMP-1, MMP-2, and MMP-9 had an increased
expression and activity by endothelial and monocyte
derived macrophage cells under the influence of an ele-
vated glucose in diabetic relevant concentrations. Addi-
tionally, they were able to show a decrease in MMP-3,
while there was no significant effect on TIMP-1 expres-
sion. This dysregulation of MMP/TIMP system could lead
to a net activation and a robust matrix degradation of type
IV collagen within the basement membrane leading to a
more robust laying down of new and reassembled type IV
collagen as well as other BM matrix constituents [60]. This
could also add to the vulnerability of vulnerable plaques,
as well as, accelerating the underlying atherosclerotic
process within the arterial vessel wall.

Tsilibary EC has been able to demonstrate an increase in
type IV collagen, a decreased expression of MMP-2 and
MMP-3, and an increased expression of TIMP-2 under
high glucose conditions [34]. Their group has also been
able to elegantly demonstrate a dysregulation of integrin
expression, in that, under high glucose conditions the
normal pattern of type IV collagen – integrin expression
was shifted from alpha(3)beta(1) and alpha(2)beta(1) to
a pattern of expression for alpha (v)beta(3) and
alpha(5)beta(1). This alteration between the integrin –
type IV interaction could certainly be playing a role in the
loss of foot processes and the narrowed filtration slits of
the supportive glomerular endothelial podocyte. Also, if
there was robust MMP-9 production the integrin – matrix
ligand binding could also become disrupted resulting in

the loss of attachment of the podocyte to the ECs resulting
in anoikis (apoptosis as a result of loss of attachment by
integrin-matrix ligand binding sites: see previous section
on integrins) [34].

The guardian angels of the capillary endothelial 
cell: the pericyte and podocyte
Capillary endothelial cells are supported and nourished
by the pericyte in the systemic vascular bed and by the
podocyte (the renal visceral epithelial cell) of the renal
glomerular vascular bed. These cells play a similar
supportive role for the endothelium and may be consid-
ered to be their guardian angels.

Each of these cells is very sensitive to oxidative – redox
stress and the toxicity of hyperglycemia, be it intermittent
(postprandial as in prediabetes) or sustained in overt
T2DM. Once the protective effect of the pericyte and
podocyte are lost by dysfunction or loss by apoptosis, the
capillary endothelium becomes highly vulnerable to the
multiple toxicities (A-FLIGHT-U toxicities) (table 1) and
injurious stimuli (figure 1) associated with the MetS, pre-
diabetes, and overt T2DM.

The initial structural findings demonstrated by electron
microscopy were the loss of the foot process between the
pericyte, podocyte, and capillary endothelial cells and
eventually the loss of these two supportive cells, in part,
through apoptosis. The vulnerability of these two specific
cells are quite reminiscent of the beta cell within the islets
of the pancreas in regards to their being unable to prop-
erly handle the elevated tension of oxidative – redox
stress. These two unique cells support the capillary
endothelium in synthesizing and maintaining their
shared tri-laminar BM consisting of a lamina rara – lam-
ina densa – lamina rara [61-65].

The role of advanced glycosylation endproducts 
(age) and ECM remodeling
AGE and the resultant cross-linking of proteins make the
AGE-collagen adducts less likely to be degraded by MMPs
(thus allowing for accumulation). The BM thickening
associated with obesity and MetS are probably reversible,
while the BM thickening associated with diabetes, hyper-
glycemia, ROS, and PKC activation are irreversible due to
AGE formation and cross-linking.

Additionally, AGE directly quench endothelial nitric
oxide and the oxidative – redox stress generated in their
formation contributes to endothelial nitric oxide quench-
ing, as well. This contributes to the endothelial cell dys-
function associated with the MetS, prediabetes, and
T2DM. These affects of AGE not only contribute to the
thickening of the capillary BM but also contribute to the
endothelial dysfunction seen early on and contribute to
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its progressive deterioration as the underlying glyco-
sylated type IV collagen accumulates within the BM [66-
68]

The formation of AGE also will contribute to the accumu-
lation of the interstitial fibrillar collagens responsible for
the interstitiopathy associated with diabetic nephropathy
and diabetic cardiomyopathy (figure 4).

Remodeling of ECM in metabolic syndrome
When T2DM is clinically diagnosed there may already be
diabetic complications, such as: retinopathy (20%), neph-
ropathy (8%), neuropathy (9%), atheroscleropathy –
macrovascular disease (50%), and endotheliopathy
(endothelial dysfunction: approaching 100 %) [69-72].
These clinical findings have lead clinicians to the hypoth-
esis that either impaired glucose tolerance and impaired

fasting glucose have preexisted for some time prior (in the
5–10 year range) to the diagnosis of overt T2DM or that
the natural history of T2DM with its origins rooted in the
MetS have contributed to the preexisting diabetic compli-
cations at the time of clinical diagnosis. Other possible
explanations could be that polygenic T2DM is a vascular
disease rooted in endothelial genetic defects and occurs as
a result of interactions with environmental stressors such
as over nutrition, obesity, and under exercise in the MetS
with hyperglycemia being a late manifestation [73].

The MetS (figure 5) consists of four major components: I.
Hyperinsulinemia, II. Hypertension, III, Dyslipidemia
(Lipid Triad of increased triglycerides, increased small
dense LDL-cholesterol, and decreased HDL-cholesterol) –
Obesity, and IV.

Formation of ageFigure 4
Formation of age. The formation of AGE, as a result of chronic hyperglycemia, is complex and this figure demonstrates the 
steps and time frames involved in the formation of AGE and cross-linking of proteins. This complex process is reversible until 
the NH-R(n) 's are crosslinked.

Copyright 2002, Aronson and Rayfield; licensee BioMed Central Ltd.

Cardiovasc Diabet. 2002; 1(1):1 Formation of Advanced Glycation Products [82].

Reversible Fixed
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Hyperglycemia. The hyperglycemia – glucotoxicity section
[G] of the A-FLIGHT-U toxicities are discussed elsewhere
in this article and therefore the focus will be on the
remaining four categories of the MetS: Volume, Pressure,
Dyslipidemia – Obesity, and Hyperglycemia.

I. Volume
Hyperinsulinemia, hyperproinsulinemia, and hyper-
amylinemia all three independently and synergistically

activate angiotensin II and increase renal blood flow
resulting in renal hyperfiltration (Section [A] amylin tox-
icity and Ang II toxicity and section (I) insulin toxicity of
table1). This results in both increased volume and
pressure. Increased volume and hyperfiltration results in
dilated glomerular capillaries, expansion of Bowman's
space, glomerular hypertrophy and expansion and capil-
lary BM thickening.

The metabolic syndrome "Reloaded"Figure 5
The metabolic syndrome "Reloaded". MetS (Syndrome X) "reloaded" is a unique clustering of clinical syndromes and 
metabolic derangements. Reaven initially described the MetS in 1988. He initially discussed the four major determinants con-
sisting of: I. Hypertension. II. Hyperinsulinemia. III. Hyperlipidemia (Dyslipidemia of elevated VLDL – triglycerides, decreased 
HDL-cholesterol, and elevated small dense atherogenic LDL-cholesterol). IV. Hyperglycemia or impaired glucose tolerance, 
impaired fasting glucose, or even overt T2DM and the central importance of insulin resistance and hyperinsulinemia. The 
important association of polycystic ovary syndrome (PCOS), hyperuricemia, fibrinogen, hsCRP, microalbuminuria, PAI-1, and 
more recently reactive oxygen species (ROS), NASH, and the damaging oxidative potential of Hcy and endothelial dysfunction 
have all contributed to a better understanding of this complicated clustering phenomenon. ROS, and those with a white back-
ground: Hyperuricemia, microalbuminuria, hyperhomocysteinemia, highly sensitive CRP, indicate the newer additions giving 
rise to the new terminology: Metabolic Syndrome Reloaded.
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II. Pressure: hypertension
Hypertension is part and parcel of the MetS and results in
vascular remodeling consisting of arteriolosclerosis of the
BM especially in the afferent arteriole of the kidney (figure
6) as well as, remodeling of type I-III collagen of the renal
tubular interstitium. Additionally there is arterial intimal
remodeling in thehypertensive MetS patient [74].

Hypertension is associated with oxidative stress of the
arterial intima (associated with the production of ROS),
which can activate protein kinase C (PKC) and transform-
ing growth factor beta affecting both the BM of arterioles,
as well as, the interstitium associated with the vascular
intima and the interstitium of the renal tublular epithe-
lium (figure 6).

Renal glomerular RemodelingFigure 6
Renal glomerular Remodeling. This image portrays a normal nephron unit on the left transitioning to an abnormal remod-
eled nephron unit with changes representative of diabetic nephropathy and changes of glomerulosclerosis. Left: Normal renal 
capillary glomerular and tubulo-interstitial structures. Transitioning to the Center of the image is the mesangial stalk with 
mesangial cell hyperplasia (yellow) and mesangial expansion with loss of foot processes of the podocyte (also termed visceral 
epithelium) (blue) and increasing thickness of the glomerular BM (red). Right: Increased capillary glomerular BM thickening 
(red) with atrophic podocytes and loss of foot processes of the podocyte (blue) to the capillary glomerular endothelial cell. 
Right: Also depicts tubulo-interstitial fibrosis with expansion of the peritubular (blue) extracellular matrix (fibrosis) with an 
increased thickening of the tubular BM (red). Just below the efferent (blue) arteriole is depicted hyaline arteriolosclerosis and 
just above the afferent arteriole (red) is depicted hyperplastic arteriolosclerosis with its characteristic "onion skin" like 
changes. The thickened BMs, arteriolar changes, and the mesangial expansion all are PAS+, hyaline staining, and contain large 
amounts of type IV collagen with increased laminin and fibronectin with concurrent decreased amounts of heparin sulfate pro-
teoglycan (perlecan). Continuous with the proximal tubules (green) is the outer parietal epithelial cells (green), which consti-
tutes the outer structure of Bowman's capsule and Bowman's space.

1/25/04 105
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III. Dyslipidemia – obesity
Lipid peroxidation results in ROS, which may activate the
PKC beta isoform resulting transforming growth factor-
beta activation and glomerular BM, matrix expansion, and
interstitial renal tubular remodeling.

Obesity is associated with insulin resistance (IR) and com-
pensatory hyperinsulinemia, hyperproinsulinemia, and
hyperamylinemia, which are known to activate the renin
angiotensin system and Ang II. Likewise, Ang II is known
to induce ROS through the membraneous reduced nicoti-
namide adenine dinucleotide phosphate oxidase enzyme
system and transforming growth factor-beta, which results
in glomerular and renal tubular interstitial remodeling.
We have been able to demonstrate in an (high-fat diet)
obesity dog model an increase in arterial pressure, hyper-
insulinemia, activation of the renin-angiotensin system,
glomerular hyperfiltration, a trend to elevation of trans-
forming growth factor beta and structural changes includ-
ing: expansion of Bowman's capsule, increased mesangial
matrix and thickening of the glomerular and tubular base-
ment membranes and the number of dividing cells in the
kidney [75].

The natural progressive history of T2DM with associated
MetS and IR – associated compensatory hyperinsulinemia
may result in a remodeling of the ECM prior to the
diagnosis of overt T2DM. The volume, pressure, dyslipi-
demia, and obesity can also stimulate these same mecha-
nisms and affect the intima, BM, and interstitial collagen
within the myocardium resulting in a periodic acid Shiff
positive staining of arterioles, capillary BMs, and the myo-
cardial interstitium, in addition too, the remodeling of
collagens type I-III of the interstitial matrix in target
organs including the myocardium [76].

IV. Hyperglycemia impaired glucose tolerance (IGT),
impaired fasting glucose, and overt T2DM are discussed
later in the section entitled: Central role for protein kinase
C beta isoform. Hyperglycemia mechanisms.

Remodeling of ECM in diabetic complications
Regarding macrovascular disease, Norhammer A et al.,
were able to demonstrate that 70% of patients with an
acute myocardial infarction have either diabetes or IGT
[77]. This elevated association of IGT and or diabetes
points to atheroscleropathy and macrovascular disease.
Cardiologists have noted a strong correlation of acute cor-
onary syndromes and diabetes or IGT for some time and
this study now validates their clinical suspicions. This
information provides the clinician with an opportunity to
possibly reverse the progressive nature of macrovascular
disease in these patients by aggressive treatment through
weight loss and exercise or pharmacological intervention
to treat the underlying MetS state of IR and possibly the

progressive beta cell dysfunction with resultant acceler-
ated atherosclerosis and macrovascular disease. This
needs to be accomplished in concert with the primary care
clinician.

Regarding microvascular pathology, diabetes is the lead-
ing cause of blindness, end-stage renal disease, and a vari-
ety of debilitating neuropathies. Diabetic patients are the
fastest-growing group of renal dialysis and transplant
recipients, and in the USA, their 5-year survival rate is only
21 percent, which is worse than all forms of cancer com-
bined. Over 60% of diabetic patients suffer from neurop-
athy, which accounts for 50% of all nontraumatic
amputations in the USA [78].

A central role for protein kinase C beta isoform 
(PKC)
Each of the microvascular diabetic complications share a
common microvascular metabolic signaling pathway
through activation of PKC (figure 7) [79,80]. ROS and
PKC play such important roles in each of the microvascu-
lar diabetic complications in both T1DM and T2DM.
Hyperglycemia has been thought to be the stimulus for
activation of PKC and the subsequent complications.

Hyperglycemia-induced mechanisms that may induce
vascular dysfunction in specific sites of diabetic microvas-
cular damage include the following:

1. Increased polyol pathway flux.

2. Altered cellular redox state with elevations of ROS.

3. Increased formation of diacylglycerol

4. Subsequent activation of specific PKC isoforms

5. Accelerated nonenzymatic formation of AGE and the
AGE-RAGE connection. Activation of the receptor for
AGE plays an important role.

6. Elevations of ROS.

Each of these mechanisms may contribute to the known
pathophysiologic features of diabetic complications by a
number of mechanisms, including the upregulation of
cytokines and growth factors. Recently Brownlee M et al.
has demonstrated that hyperglycemia (glucotoxicity)
results in the formation of ROS, which then activate the
deleterious PKC mechanism (figure 7) [81].

While the above may help to understand the increase in
microvascular disease, it is felt that macrovascular disease
may be an earlier occurrence and more deeply rooted in IR
than from the later onset of hyperglycemia. While, at the
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same time a better understanding of the above numbered
mechanisms play such an important role of accelerating
and destabilizing atherosclerotic vulnerable plaques in
the diabetic patient [82].

Conclusion
The adaptability of the ECM and its individual compo-
nents in response to an ever changing environment
including its response to multiple injurious stimuli result-
ing in an oxidative – redox stress resulting in an excess of
ROS, known to be present in MetS and T2DM, allows tis-
sues and organs to survive. However, this adaptability –
survival mechanism results in a change in form and struc-
ture resulting in fibrosis or scarring, which results in
abnormal function or disease. The ECM with its
communications skills enhanced through a family of cel-
lular integrins allows for information to be exchanged in

order to adapt to its ever-changing environment. This
review has focused on MetS, prediabetes, T2DM, and
atheroscleropathy in an effort to better understand these
mechanisms in the clustering of clinical syndromes
(MetS) and the specific disease state of T2DM, which are
each tightly associated with the current epidemic of obes-
ity – diabesity and a genetic predisposition of a large
number of patients in order to expand our current data-
base of knowledge.

A central theme to the injury process regarding gene acti-
vation and transcription of various factors in an attempt
to respond to the multiple injurious stimuli can be related
to each organ, tissue, and cell, in that, whenever there is
injury the cell recapitulates its embryonic genetic memory
in an attempt to heal through growth (re-growth), differ-
entiation, development, and repair. As a result of this

Pkc activationFigure 7
Pkc activation. This figure demonstrates the multiple deleterious actions and mechanisms of PKC beta II isoform on cellular 
function and ECM remodeling and BM thickening.
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chronically activated wound healing mechanism, which
allows for survival; we as clinicians and researchers in this
field of study must constantly review and expand our
knowledge in an attempt to alter the wound healing –
ECM response in a manner to decrease the morbidity and
mortality and the progressive nature of MetS, prediabetes,
T2DM, atheroscleropathy, and their associated
complications.
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