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Antibiotic use is a key driver of antibiotic resistance. Under-
standing the quantitative association between antibiotic use and
resulting resistance is important for predicting future rates of
antibiotic resistance and for designing antibiotic stewardship
policy. However, the use–resistance association is complicated by
“spillover,” in which one population’s level of antibiotic use affects
another population’s level of resistance via the transmission of
bacteria between those populations. Spillover is known to have
effects at the level of families and hospitals, but it is unclear if
spillover is relevant at larger scales. We used mathematical mod-
eling and analysis of observational data to address this question.
First, we used dynamical models of antibiotic resistance to predict
the effects of spillover. Whereas populations completely isolated
from one another do not experience any spillover, we found that
if even 1% of interactions are between populations, then spillover
may have large consequences: The effect of a change in antibiotic
use in one population on antibiotic resistance in that population
could be reduced by as much as 50%. Then, we quantified spillover
in observational antibiotic use and resistance data from US states
and European countries for three pathogen–antibiotic combina-
tions, finding that increased interactions between populations
were associated with smaller differences in antibiotic resistance
between those populations. Thus, spillover may have an important
impact at the level of states and countries, which has ramifications
for predicting the future of antibiotic resistance, designing antibi-
otic resistance stewardship policy, and interpreting stewardship
interventions.
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Antibiotic resistance is a major threat to public health (1).
Outpatient antibiotic use, which accounts for ∼80% of hu-

man antibiotic use (2, 3), is considered a principal driver of an-
tibiotic resistance in the community (4). Understanding the
relationship between use and resistance is important because it
allows accurate predictions of the future of antibiotic resistance
and goal-oriented antibiotic stewardship policy. The use–resistance
association has been previously characterized in many ecological
studies at the level of US states (5–7) and European countries (8,
9). However, antibiotic resistance is a complex, temporally dynamic
phenomenon (10–13), and many factors complicate the use–
resistance association, making what should be an “obvious” con-
nection sometimes difficult to identify and quantify (11). Even
when detected, observed use–resistance associations are some-
times weaker than might be expected (7). One factor that could
account for the difficulty in detecting use–resistance associa-
tions in ecological studies and for the apparent weakness of such
associations is “spillover.”
Spillover is a consequence of the fact that antibiotic-resistant

and -susceptible bacteria can be transmitted from person to
person. Thus, one person’s risk of an antibiotic resistant infection
depends on their own antibiotic use (14, 15) as well as the rates
of antibiotic use among their contacts (16). For example, one
person’s use of antibiotics increases the risk of an antibiotic-
resistant infection among their family members (17–20). As an-
other example, hospitalized patients with no recent antibiotic use
can have a higher risk of resistance than people in the community

with high antibiotic use (21) because antibiotic use and resistance
in other hospitalized patients are high.
Spillover is important for three reasons. First, it means anti-

biotic resistance is not merely a localized problem. It is well
understood that new resistance determinants can emerge in one
geography and spread globally (22, 23), but the role of spillover
in determining the levels of resistance in a given locale is not well
quantified. To what degree, for example, can one US state ex-
pect that its antibiotic resistance levels are due to antibiotic use
within its borders, rather than in surrounding states? Second,
spillover makes it difficult to design antibiotic stewardship in-
terventions and understand their results. For example, if antibi-
otic use in one hospital changes, resistance might not change as
expected because of spillover from the community or other hos-
pitals into that hospital’s patients. Finally, spillover makes it dif-
ficult to interpret the results of controlled antibiotic interventions,
such as the effect of mass drug administration on antibiotic re-
sistance (24, 25), when the intervention and control populations
are not wholly epidemiologically separate.
The effect of spillover should scale with the amount of inter-

action between populations. If two populations do not interact at
all, then antibiotic use in one population cannot affect resistance
in the other. However, if two populations liberally exchange bac-
teria, then the rates of antibiotic resistance in the two populations
will be very similar, regardless of whether their rates of antibiotic
use differ greatly.
The effects of spillover also depend on population sizes. For

example, two large populations will have most interactions within
themselves, rather than between each other. Spillover should
therefore be most pronounced when considering small pop-
ulations and become less important for large populations. As
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mentioned above, a single individual’s risk of resistance is
modulated by antibiotic use in their family or in their healthcare
facility. Spillover is also observed at the level of hospitals, as the
level of resistance in one hospital appears to be affected by re-
sistance levels in nearby hospitals as well as by antibiotic use
rates in the surrounding communities (26–28). Presumably, when
examining ever larger populations, such as US Census tracts
(29), US states, or European countries, the effect of spillover will
become less important. However, the relationship between
population size and spillover effects is not well understood.
We hypothesized that US states and European countries,

which are large populations with relatively independent public
health policies, may be subject to substantially lower levels of
antibiotic resistance spillover than family- or hospital-sized pop-
ulations. This hypothesis, if true, would mean that individual states
or countries could act as independent “laboratories” of antibiotic
use and resistance. If not, it means that outpatient antibiotic re-
sistance policy must be national or international in order to achieve
its full effect. To evaluate this hypothesis, we first use mathematical
models of antibiotic use and resistance to make quantitative pre-
dictions about the effect of spillover between populations as a
function of their amount of mutual interaction. Then, we search
for signals of spillover in observational data of antibiotic use and
resistance in US states and European countries.

Methods
Dynamical Models of Antibiotic Resistance. To examine how interactions be-
tween populations could theoretically affect the association between anti-
biotic use and resistance, we used thewithin-host neutrality (WHN)mathematical
model presented by Davies et al. (30) and described in SI Appendix, Supple-
mental Methods. Briefly, the model predicts the prevalence ρ of antibiotic
resistance that results from an antibiotic use rate τ in a single, well-mixed
population. To verify that conclusions drawn from the WHN model are not
specific to the model structure, we also repeated all analyses with the “D-
types” model of use and resistance (31). We selected these two models be-
cause they demonstrate coexistence between sensitive and resistant strains at
equilibrium over a wide parameter space. Parameter values and simulation
methodology for both models are in SI Appendix, Supplemental Methods. In
the simulations, antibiotic use is measured as monthly treatments per capita,
and resistance is measured as the proportion of colonized hosts carrying
resistant strains.

To conceptually frame and clarify the question of spillover, we simulated
an antibiotic stewardship intervention experiment using a structured host
population approach inspired by Blanquart et al. (32). We considered pairs of
an intervention population with antibiotic use rate τint and a control pop-
ulation with use rate τcont. To determine how spillover affects the inter-
vention’s measured outcome, we modulated the proportion « of each
population’s contacts that support bacterial transmission that are in the
other population. For « = 0%, the populations are completely separate. For
« = 50%, contacts across populations are just as likely as contacts within
populations (SI Appendix, Supplemental Methods). We varied « between
0 and 50%, and we varied the difference in use Δτ = τcont – τint between
0 and 0.15 treatments per person per month while keeping the average use
0.5 × (τcont + τint) fixed at 0.125, reflecting the range of antibiotic use rates in
the original model presentations. We quantified the use–resistance associ-
ation between the two populations as Δρ/Δτ, the absolute difference in
resistance divided by the difference in antibiotic use. Because the simulations
suggested that Δρ/Δτ is a predictable function of the degree of population
mixing, we considered only this functional form for the use–resistance
association.

Spatial Antibiotic Use–Resistance Simulation. To explore how spillover as
simulated in the two-population model would manifest in cross-sectional
use–resistance data from multiple populations, we ran a second simula-
tion that incorporates the effects of varying interactions across a net-
work of populations. We randomly placed 50 theoretical populations in a
square grid, one length unit on a side, and randomly assigned each pop-
ulation an antibiotic use rate τ drawn from a uniform distribution. We then
assigned each population i an antibiotic resistance prevalence ρi according
to a weighted average of all populations’ use rates according to
ρi = β(∑

j
wij   τj)/(∑

j
wij). The constant β is the slope of the use–resistance line;

we use β = 1 for this simulation. The weights wij decline exponentially with
the distance between populations: wij = e−dij=d0 , where dij is the Euclidean
distance between the two populations and d0 is a scaling parameter. For
d0 → 0, there is no interaction between the populations, and each pop-
ulation’s resistance rate is determined by its own use rate. As d0 increases,
the amount of spillover increases.

To evaluate spillover in this simulation, we measured the association
between population pairs’ ranked interactions (closer distance means higher
interaction) and use–resistance associations Δρ/Δτ using the nonparametric
correlation (Spearman’s ρ). To quantify the effect of spillover, we compared
the median use–resistance associations among the populations that are in
the top and bottom deciles of ranked interactions.

Observational Data. We examined antibiotic use and resistance for three
pathogen-antibiotic combinations: Streptococcus pneumoniae and macro-
lides, S. pneumoniae and β-lactams, and Escherichia coli and quinolones. We
considered these three combinations because they are the subject of many
modeling (30, 31) and empirical studies (5, 14).

Observational data were drawn from three sources. First, we used
MarketScan (33) and ResistanceOpen (34) as previously described (7). The
MarketScan data include outpatient pharmacy antibiotic prescription claims
for 62 million unique people during 2011 to 2014. ResistanceOpen includes
antibiotic resistance data collected during 2012 to 2015 from 230 hospitals,
laboratories, and surveillance units in 44 states. Second, we used the Quin-
tilesIMS Xponent database (35) and the US Centers for Disease Control
and Prevention’s National Healthcare Safety Network (NHSN) (36). The
Xponent data includes state-level data on US quinolone use during 2011 to
2014. NHSN includes state-level data on quinolone resistance among E. coli
catheter-associated urinary tract infections during 2011 to 2014. Third, we
used the European Centre for Disease Prevention and Control’s (ECDC) Eu-
ropean Surveillance of Antimicrobial Consumption Network (ESAC-Net) an-
timicrobial consumption database (37) and European Antimicrobial Resistance
Surveillance Network (EARS-Net) Surveillance Atlas of Infectious Disease
(38) for 2011 to 2015. The ESAC-Net data include country-level outpatient
antibiotic use data provided by World Health Organization and ministries
of health from member countries. The EARS-Net data include country-level
resistance data. In the observational data, we quantified antibiotic use as
yearly treatments per capita and resistance as the proportion of collected
isolates that were nonsusceptible. We excluded the S. pneumoniae resis-
tance to β-lactams in US states from the analysis because, in previous work
using the same primary datasets, the point estimate for the use–resistance
relationship was negative (7). Further details about preparation of these
data sources and their availability are in SI Appendix, Supplemental
Methods.

Use–Resistance Associations by Interactions. To test the theoretical prediction
that the same difference in antibiotic use will be associated with smaller
differences in antibiotic resistance when two populations (US states or Eu-
ropean countries) have stronger interactions, we tested whether population
pairs’ use–resistance associations are inversely correlated with their inter-
population interactions as measured using transportation data. In other words,
we tested whether stronger-interacting pairs have weaker use–resistance
associations.

Similar to the approach in the simulations, we quantified the use–
resistance association as the percentage point difference (i.e., absolute risk
difference) in resistance (proportion of nonsusceptible isolates) divided by
the difference in antibiotic use. We then quantified interactions using in-
tercounty commuting statistics from the US Census (39) for US states and
using intercountry passenger flight data from Eurostat (40) for European
countries. Rather than trying to infer a precise mathematical relationship
between transportation statistics and epidemiological contacts, we used a
nonparametric approach: We assumed that pairs of populations with rela-
tively little interpopulation transportation also have relatively few inter-
population contacts, but we infer only the rank ordering of interpopulation
contacts, not their magnitudes. Specifically, we first obtained the matrix of
the number of counts (workers in the commuting data and passengers in the
flight data) from each population to every other population. The diagonal
matrix entries are the number of workers who live and work in the same US
state or the number of intracountry European flight passengers. We then
converted this matrix of counts into a matrix of the proportion of counts
moving from one population to another (i.e., divided each row by its sum),
then symmetrized the resulting matrix by taking the elementwise aver-
age of the matrix and its transpose, and finally converted the resulting
values into ranks. We assumed that intrapopulation interactions outnumber
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interpopulation interactions, and so we set diagonal entries, which repre-
sent within-population interactions, to the highest rank.

Like in the spatial simulation, we measured the association between
ranked interactions and use–resistance associations using the nonparametric
correlation (Spearman’s ρ). We computed CIs using the jackknife method to
account for correlations between population pairs (e.g., the use–resistance
relationship between populations A and B is not independent of the rela-
tionship between A and C). We tested for statistical significance using the
Mantel test with 999 permutations. To quantify the effect of spillover, we
used an approach similar to that in the spatial simulation, comparing the
median use–resistance associations among the top and bottom deciles of
ranked interactions.

In a separate analysis, we also tested whether the use–resistance associ-
ation is weaker in adjacent pairs of populations, which presumably have
more cross-population contacts, compared to nonadjacent populations (SI
Appendix, Supplemental Methods).

Simulations and observational analyses were made using R (Version 3.6.0)
(41). The Mantel test used the vegan package (42). Multiple hypotheses were
accounted for using the Benjamini–Hochberg false discovery rate.

Results
In simulations of two populations, representing intervention and
control groups, interactions between the two populations atten-
uated the effect of the intervention (Fig. 1). With increasing
interaction strength, the same intervention, that is, the same dif-
ference in antibiotic use between the populations, was associated
with a smaller difference in antibiotic resistance. The difference in
resistance between populations increases with the difference in
antibiotic use but decreases with increasing interaction strength.
Thus, spillover between populations attenuates the measured
use–resistance association.
The precise relationship between «, the proportion of each

population’s contacts that are in the other population, and the
attenuation of the use–resistance association depended on the
choice of mathematical model (SI Appendix, Fig. S1 and Table
S1). For « = 1%, the use–resistance declined by ∼30% in the
WHN model and more than 60% in the D-types model. In other
words, the models predict that as few as 1% of contacts need to
be across populations, rather than within populations, to cause
the observed effect of an antibiotic stewardship intervention to
shrink by one-third, or even half, compared to an idealized sit-
uation with zero interaction between the populations.

In simulations of interacting multiple populations arranged
randomly on a grid, increased interaction strength led to a
weaker observed use–resistance association in terms of both
the association’s slope and its variance (Fig. 2). Spillover could
be detected as an inverse correlation between population pairs’
interaction strength and their use–resistance associations. For
example, when the interaction strength was sufficiently strong
(d0 = 0.075) to reduce the observed, cross-sectional use–
resistance association by ∼50%, there was an inverse correlation
(Spearman’s ρ = −0.17) between interaction rank and use–
resistance associations, and population pairs in the highest decile
of interactions had use–resistance associations 47% weaker than
for those pairs in the lowest-interacting decile (SI Appendix,
Table S2).
To test whether spillover is important at the scale of US states

or European countries, we use empirical use–resistance associ-
ations between pairs of populations in six combinations of
pathogen species, antibiotic class, and data source (Fig. 3). We
reasoned that if spillover is relevant at these scales, then pairs of
states or countries with stronger interactions would have detect-
ably weaker use–resistance associations. Using a rank-ordered
estimate of interactions drawn from US commuting and Euro-
pean airline passenger flows, we found that, in four of six dataset/
pathogen/antibiotic combinations, the nonparametric associa-
tion between increased interpopulation interactions and decreased
use–resistance associations was statistically significant (i.e., a
negative correlation; Fig. 4 and SI Appendix, Table S3). The
weakest significant result was for S. pneumoniae and macrolides in
the MarketScan/ResistanceOpen dataset (Spearman’s ρ = −0.07,
95% jackknife CI of −0.18 to 0.03; P = 0.028, Mantel test), and the
strongest was for E. coli and quinolones in the Xponent/NHSN
dataset (ρ = −0.13, 95% jackknife CI of −0.25 to −0.007; P =
0.001). The correlation for S. pneumoniae and macrolides in the
ECDC data has a point estimate suggesting spillover but was not
statistically significant, while the correlation for S. pneumoniae and
β-lactams in the ECDC data had the opposite sign of that expected
by the simulations. An analysis of use–resistance associations by
populations’ physical adjacency did not yield statistically significant
results (SI Appendix, Figs. S2 and S3 and Table S4).

C D

A B

Fig. 1. Simulated interactions between populations attenuate the effect of interventions. (A) Results of simulations of the two-population WHN model for a
modest intervention (difference in antibiotic use between populations Δτ = 0.05 monthly treatments per capita; average of control and intervention
treatment rates is 0.125). As interaction strength («, horizontal axis) increases, the difference in antibiotic resistance between the two populations decreases.
The dashed line shows the resistance level in a population with a mean treatment rate of 0.125. (B) The same pattern holds for a stronger intervention (Δτ =
0.1, same average treatment rate). (C) The difference in resistance between populations (Δρ, vertical axis) increases with the difference in antibiotic use (Δτ,
horizontal axis), but the rate of increase is lower with increasing interaction «. (D) In the WHN model, the use–resistance relationship (Δρ/Δτ, vertical axis)
declines exponentially with the interaction strength « (Δτ fixed at 0.10).
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Finally, to quantify the effect of increased interactions on the
observed use–resistance associations, we compared the use–
resistance associations in pairs of populations within the lowest
decile of interactions against those in the highest decile, using
the same approach as for the spatial simulation (SI Appendix,
Table S5). In five of six dataset/pathogen/antibiotic combinations,
the sign of the point estimate for the difference in use–resistance
associations was consistent with spillover, with a weaker associa-
tion among pairs of populations with greater interactions. In those
five cases, the point estimates ranged from a 18% reduction up to
a 75% reduction in use–resistance associations among the highest-
interacting pairs of populations, compared to the lowest-
interacting populations.

Discussion
We used theoretical models to show that interactions between two
populations can attenuate the observed use–resistance association.
In simulations, the quantitative relationship between interpopu-
lation interactions and the attenuation of the use–resistance as-
sociation was dependent on the theoretical model used. However,
we found that, in two models of the use–resistance association,
having on the order of 1% of interactions that can support bac-
terial transmission between a control and intervention population
was sufficient to attenuate the observed effect of theoretical
stewardship intervention by 50%, relative to a situation where the
two populations were completely isolated. These theoretical re-
sults suggest that even small numbers of interactions could lead to
substantial spillover. We furthermore found that, in simulations,
spillover led to apparently weaker cross-sectional use–resistance
relationships across multiple populations and that pairs of pop-
ulations with stronger interpopulation interactions tended to have
weaker measured use–resistance associations.
When examining observational antibiotic use and resistance

data from US states and European countries and using trans-
portation data to estimate the relative ranking of epidemiologi-
cal contacts between those populations, we found a correlation
between increased interactions and attenuated use–resistance as-
sociations. Pairs of populations in the highest decile of interpop-
ulation interactions, that is, those most subject to spillover, had
use–resistance associations on the order of 50% weaker than pairs
in the lowest decile of interactions. The two pathogen/antibiotic

dataset combinations with data not indicative of spillover, namely,
S. pneumoniae and β-lactams and macrolides in the ECDC data,
may not have shown the same signal as other cases because the
smaller number of populations in those cases (27 versus 28 to 50 in
the other cases) led to insufficient statistical power, because air
transportation data are not an appropriate proxy for epidemio-
logical interactions (SI Appendix, Fig. S3), because the available
data were insufficiently accurate, or potentially because the biol-
ogy or epidemiology of S. pneumoniae resistance in these cases is
somehow different and does not exhibit spillover.
These theoretical and empirical results suggest that spillover is

relevant at the level of US states and European countries. This
finding has important ramifications. First, attempts to attribute
changes in a population’s level of antibiotic resistance to changes
in that population’s rates of antibiotic use may lead to inaccurate
conclusions unless use and resistance in surrounding populations

A

B

Fig. 2. Simulated pairs of populations with stronger interactions have weaker use–resistance associations. (A) Each filled circle represents a simulated
population. When spillover is weak (i.e., d0, measured in arbitrary length units, is small), populations fall along an idealized use–resistance association (dashed
black line). As spillover is increased, the cross-sectional use–resistance association becomes weaker and has greater variance. Gray lines show the simple linear
regression best fit. (B) Each open circle represents a pair of the populations shown in the corresponding facet in A. For amounts of spillover, all pairs have the
same use–resistance association Δρ/Δτ (i.e., 1, the slope of the dashed black line in A). For stronger spillover, there is substantial variance in the associations.
For nonzero spillover (d0 > 10−6), stronger-interacting pairs have weaker use–resistance associations (Spearman’s ρ; SI Appendix, Table S2). The red line shows
the robust regression best fit. The vertical axis is truncated for visual clarity.

Fig. 3. Use–resistance relationships across US states and European countries.
Each point represents antibiotic use and resistance in a US state (Top) or Eu-
ropean country (Bottom). Lines show the simple linear regression best fit. Gray
areas show the 95% CI. Ec/q: E. coli and quinolones. Sp/m: S. pneumoniae and
macrolides. Sp/bl: S. pneumoniae and β-lactams. RO: ResistanceOpen.
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are accounted for. Second, state- or country-level antibiotic
stewardship pilot studies may substantially underestimate the po-
tential reduction in antibiotic resistance that would follow from a
reduction in antibiotic use if that reduction were implemented at a
larger scale. Spillover does not necessarily mean that the inter-
vention led to a smaller global benefit but, rather, that the benefit
of an intervention might have spilled over into neighboring, un-
measured populations. Third, mass drug administration trials may
lead to elevated levels of antibiotic resistance in the control
populations if those populations are not entirely separated from
the intervention population. Finally, spillover can at least partly ex-
plain why use–resistance associations at the level of US states or
European countries are sometimes difficult to detect and, when they
are detected, are sometimes weaker than expected (5, 7, 11). Thus,
theoretical models of antibiotic use and resistance that treat US states
or European countries as epidemiologically independent populations
will not accurately represent the dynamics of resistance (32).
Our study has several limitations. First, we interpreted the

theoretical results and ecological data as if the association be-
tween antibiotic use and resistance were causal and determinis-
tic. However, decreases in the use of an antibiotic may not
necessarily lead to declines in resistance to that antibiotic in a
target pathogen (12, 43–45). We do not address coresistance and
cross selection (46, 47), and we assumed that resistance equili-
brates on a timescale comparable to an intervention. Previous
research has shown that resistance among E. coli, S. pneumoniae,
N. gonorrhoeae, and other organisms can respond to changes in
antibiotic use on the timescale of months (48–51), but the
expected delay between a perturbation to antibiotic use and the
resulting change in resistance remains a subject of active study
(13, 48, 52, 53). Nevertheless, the use of ecological data was es-
sential to addressing our hypothesis, as data from multiple con-
trolled, state- or country-wide experiments are not available.
Second, our analyses attributed all differences in antibiotic

resistance between populations to differences in use across those
populations and to interactions between them. In fact, antibiotic
resistance is associated with factors beyond antibiotic use (6, 54),

and those factor are likely spatially correlated. In other words,
closely interacting populations might have more similar use–
resistance associations because they tend to be more similar with
respect to other determinants of antibiotic use. Our estimates of
the correlation between interpopulation interactions and the
attenuation of use–resistance relationships may therefore be over-
estimates. A more careful quantification of the relative roles of
spillover versus other spatially correlated determinants of resistance
is required.
Third, our analysis only considered pairs of populations, when,

in fact, spillover is happening between all pairs of populations in our
analysis simultaneously.We used the pairs approach because it allowed
for a simple theoretical model and a straightforward comparison of
theory with the observational data. However, more sophisticated
approaches that account for the network of spillover interactions
will likely lead to more refined characterizations of spillover.
Finally, analyses based on administrative entities like US states

or European countries, although logistically attractive “labora-
tories” of antibiotic stewardship, will always be difficult to interpret
because administrative entities average over important dimensions
of population structure like age (55), sexual networks (56), and
race/ethnicity (57). Thus, use–resistance associations measured
across states and countries may be different from those that ap-
pear among geographically proximate populations with dissimilar
antibiotic use rates, such as the sexes (58) and racial/ethnic groups
(59). The ideal data source for studying antibiotic use and resis-
tance would be linked records of individual-level antibiotic use,
antibiotic resistance, geography, and behavior, but these types of
datasets are not generally available.
We suggest four lines of investigation that could refine our

understanding about the role of spillover at levels of US states
and European countries. First, further mathematical modeling
studies with more realistic structuring of the host population
might articulate more detailed theoretical expectations about the
relationship between intervention scale and spillover. For exam-
ple, models could be parameterized with epidemiological infor-
mation about individuals’ contacts and travel patterns, as has been
done for other infectious diseases (60). Second, meta-analysis of
existing studies of use–resistance relationships (5, 61, 62), both
experimental and observational, could potentially determine the
empirical relationship between intervention population size and
the importance of spillover. This kind of meta-analysis might re-
veal that populations other than US states are feasible “labora-
tories” for resistance: It may be that cities, daycares, schools,
workplaces, or even families represent the optimal trade-off be-
tween maximizing logistical feasibility and minimizing spillover.
Third, prospective cohort studies could track the transmission of
bacteria between different types of populations, providing direct
estimates of the magnitude of interpopulation interactions rele-
vant to bacterial transmission. Finally, future experimental out-
patient antibiotic stewardship interventions should make careful
and deliberate decisions about the sizes and interconnectedness of
the populations they target. We hope that a better understanding
of spillover will improve predictions about the future of antibiotic
resistance, the formulation of stewardship policy, the design of
stewardship interventions and antibiotic administration trials, and
theoretical models of resistance.

Data Availability. Data and code to reproduce results have been
deposited in Zenodo (DOI: 10.5281/zenodo.3909812).
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